用户名: 密码: 验证码:
小球藻的高压诱变及生理生化响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力作为一个重要的物理参数,已经在生物学中引起了广泛的应用。本文研究了高静水压对小球藻个体形态、及其生理生化特性的影响,比较了不同压力条件处理后的小球藻和对照组之间的生化指标的差异性并对其细胞超微结构进行表征。主要研究结果如下:
     1 80MPa的静水压力不能导致小球藻致死,300MPa的压力对小球藻有明显的致死效应,但仍然有存活小球藻。300MPa压力处理1h对小球藻的个体形态影响不大,经过不同次数高压处理(80MPa,24h)能够提高小球藻的个体尺寸,其中3次压力处理组个体尺寸变化最为明显。
     2 经80MPa高压处理不同时间,小球藻的生物量蛋白含量以及抗氧化酶活性均发生变化。其中12h压力处理组获取最大干质量,蛋白含量随着干质量的增加而减少。300MPa预处理1h,80MPa再处理不同时间后,2h组具有最大干质量,6h组具有最高蛋白含量。两种情况下的抗氧化酶活性随着压力时间的增加而下降。
     3 通过对小球藻进行不同次数高压(300MPa,24h)处理研究,结果表明,3次高压处理组小球藻具有最快生长速率和最大生物量,并且生长代时缩短。并且3次高压处理组的色素含量增加也最为明显,可能是由于小球藻光合作用加强的原因。
     4 不同次数压力处理组小球藻,其子代的生长与当代有所不同。3次高压处理组的干质量最大,1次高压处理组的蛋白含量最高,各子代的色素含量并没有增加。多代培养压力处理后的小球藻,其干质量、蛋白含量均高于对照组,并且蛋白含量增加与压力次数无关。叶绿素含量与对照组相比没有增加,但3次压力处理组总类胡萝卜素含量有所增加。
     5 与对照组相比,80MPa处理组小球藻的细胞壁基本保持完整,蛋白核的发育也不会受到明显的损伤,而光合作用产生的淀粉颗粒物数量有所增加,部分线粒体发生轻微破坏。300MPa压力处理组的小球藻细胞壁表面极为粗糙,蛋白核的发育受到阻碍,部分藻细胞中观察不到蛋白核的存在,线粒体发生肿胀性破坏。
Pressure is an important physical parameter; it has attracted more and more attention in biological sphere. The effect of high hydrostatic pressure on the morphology, growth and physiological characteristics of C.vulgaris were studied in this paper. The differences of physiological characteristics between C.vulgaris treated by hydrostatic pressure and the control were compared. The morphological changes of C.vulgaris were also carried out in this study. The main results are as follows:
    1. 80 MPa pressure seems not to be lethal to C.vulgaris, while 300 MPa pressure can result a significant death of C.vulgaris, a minority of C.vulgaris were surviving. 300 MPa pressure treated for an hour didn't contribute to its size, while several times of 300 MPa pressure treatment for 24 h is favored to the increase of C.vulgaris size, among which, 300 MPa pressure treated for 3 times has the most significant effect.
    2. The difference of dry weight, protein content and anti-oxidant enzyme activity between 80 MPa pressed C.vulgaris for different hours and the control were demonstrated. The highest cell dry weight was obtained when C.vulgaris was cultured after 12 hour's pressure treatment. Protein content increases with the decrease of dry weight. When C.vulgaris was preliminary pretreated by 300 MPa high hydrostatic pressure for an hour, then pressured by 80 MPa pressure for different hours, C.vulgaris which was treated for 2 hours has the maximal cell dry weight, treated with 6 hours has a maximal protein content. Under both condition, anti-oxidant enzyme activity decreases with the increase of pressed time.
    3. The Physiological characteristics of C.vulgaris treated by 300 MPa pressure for 24 hours with different times were compared with the control. The result indicated that the cultured C.vulgaris pressed by 300 MPa pressure for three times obtained the maximal growth rate and the highest cell dry weight, and cell generation time were shorten compared with the control. Besides that, the increased pigment content was measured in the three times pressed C.vulgaris cell, maybe the function of photosynthesis was strengthened.
引文
[1] 徐冠仁.植物诱变育种学.北京:中国农业出版社.1996.1-23.
    [2] 李培夫,李万云.细胞工程技术在作物育种上的研究与应用新进展.中国农学通报,2006,22(2):83-86.
    [3] 王琳清.作物诱变育种研究与进展.南京:东南大学出版社,1994,1-16.
    [4] 闵绍楷,汤圣祥.辐射诱变育种.中国稻米,1997,5:34-36.
    [5] Tang Z X, Shi J G, Hu J C. Biological effects of synchronous irradiation (soft X-rays and ultra-violet rays) on wheat. Acta Agriculturae Nucleatae Sinica, 1996, 12(6): 321-326.
    [6] Vladeanu G, Mitrea N, Titu H. Stud. Cercet. Biol. Ser. Biol. Veg., 1994, 46(2): 143-148.
    [7] 龚小敏,胡鸿钧.~(60)Co—γ射线诱变钝顶螺旋藻的研究.武汉植物学研究,1996,14(1):58-66.
    [8] 刘录祥,程俊源.植物诱变育种新技术研究进展.核农学报,1997,18(4):187-190.
    [9] 赵学武,王作芸,吴以平,张闻迪,邹建华.激光对生产β胡萝卜素的藻种—盐生杜氏藻诱变的影响.中国激光,1992,19(6):463-466.
    [10] 赵萌萌,王卫卫.He—Ne激光对钝项螺旋藻的诱变效应.光子学报,2005,34(3):400-403.
    [11] 李桂双.高静水压诱导水稻变异的光合生理特性的研究.西北农林科技大学2003年硕士毕业论文.7-11.
    [12] 施巧琴,吴松刚.工业微生物育种学.福州:福建科学技术出版社,1991.55-58.
    [13] 张学成,谭桂英,何丽容,党宏月.甲级磺酸乙酯对螺旋藻的诱变作用.海洋学报,1990,12(4):517-523.
    [14] 崔海瑞,汪志平,徐步进.甲基磺酸乙酯对钝顶螺旋藻生长和形态的影响.浙江农业大学学报,1997,23(6):645-648.
    [15] Singh D P, Singh N. Isolation and characterization of a metronidazole tolerant mutant of the cyanobacterium Spirulina platensis exhibiting multiple stress tolerance. World Journal of Microbiology and Biotechnology, 1997, 13(2): 179-183.
    [16] 殷春涛,胡鸿钧,李夜光,龚小敏,施定基.中温螺旋藻新品系的研究.武汉植物学研究.1997,15(3):250-254.
    [17] 陈必链,施巧琴.螺旋藻藻种选育研究进展,食品与发酵工业,2000,26(3):78-81.
    [18] Sivan A, Thomas J C, Dubacq J P, Moppes D, Arad S. Protoplast fusion and genetic complementation of pigment mutations in the red microalga Porphyridium Sp. Journal of Phycology,1995, 31(1): 167-172.
    [19] 杨蓉,译.国外科技动态.高压研究,1994,(2):44-45.
    [20] 李宗军,方武,徐建兴.高压生物科学与技术研究.生物物理学报,2004,20(1):1-6.
    [21] Chyba C F, Phillips C B. Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. USA., 2001, 98: 801-804.
    [22] Cossins A R, Macdonald A G. Homeoviscous theory under pressure. Ⅱ. The molecular order of membranes from deepsea fish. Biochim. Biophys. Acta., 1984, 776: 144-150.
    [23] Cossins A R, Macdonald A G. Homeoviscous adaptation under pressure.Ⅲ. The fatty acid composition of liver mitochondrial phospholipids of deep-sea fish. Biochim. Biophys. Acta., 1986, 860: 325-335.
    [24] Sebert P. Fish at high pressure: a hundred year history. Comparative Biochemistry and Physiology Part A, 2002, 131(3): 575-585.
    [25] Robey M, Benito A, Roger H. Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7. Applied and Environmental Microbiology, 2001, 67(10): 4901-4907.
    [26] 席峰,郑天凌,焦念志,张瑶.深海微生物多样性形成机制浅析.地球科学进展,2004,19(1):38-46.
    [27] Singer S J, Nicolson G L. The fluid mosaic model of the structure of cell membranes. Science, 1972, 175:720-731.
    [28] Malone A S, Shellhammer T H, Courtney P D. Effects of high pressure on the viability, morphology, lysis, and cell wall hydrolase activity of lactococcus lactis subsp. Cremoris. Applied and environmental microbiology, 2002, 68(9): 4357-4363.
    [29] Ulmer H M, Herberhold H, Fahsel S. Effects of pressure-induced membrane phase transitions on inactivation of HorA, an ATP-dependent multidrug resistance transporter, in lactobacillus plantarum. Applied and Environmental Microbiology, 2002, 68(3): 1088-1095.
    [30] Heremans K, Smeller L. Review-Protein structure and dynamics at high pressure. Biochimica et Biophysica Acta, 1998, 1386(2): 353-370.
    [31] Boonyaratanakornkit B B, Park C B, Clark D S, Douglas S. Review-Pressure effects on intra-and intermoleeular interactions within proteins. Biochimica et Biophysica Acta, 2002, 1595(1/2): 235-249.
    [32] Silva J L, Foguel D, Royer C A. Pressure provides new insights into protein folding, dynamics and structure. Trends in Biochemical Sciences, 2001, 26(10): 612-618.
    [33] Meersman F, Heremans K. High pressure induces the formation of aggregation-prone states of proteins under reducing conditions. Biophysical Chemistry, 2003, 104(1): 297-304.
    [34] Ruan K C, Tian S M, Lange R, Balny C. Pressure Effects on Tryptophan and Its Derivatives. Biochemical and Biophysical Research Communications, 2000,269(3): 681-686.
    [35] Panick G, Winter R. Pressure-Induced Unfolding/Refolding of Ribonuclease A: Static and Kinetic Fourier Transform Infrared Spectroscopy Study. Biochemistry, 2000, 39(7): 1862-1869
    [36] Lellis F B, David L W. Structural Changes in Lipid Bilayers and Biological Membranes Caused by Hydrostatic Pressure. Biochemistry, 1986,25(23): 7484-7488.
    [37] Katopo H, Song Y, Jane J L. Effect and mechanism of ultrahigh hydrostatic pressure on the structure and properties of starch. Carbohydrate Polymers, 2002,47(3): 233-244.
    [38] Quaglia G B, Gravina R, Paperi R, Paoletti F. Effect of High Pressure Treatments on Peroxidase Activity, Ascorbic Acid Content and Texture in Green Peas. Lebensmittel-Wissenschaft und-Technologie-Food Science and Technology, 1996, 29(5/6): 552-555.
    [39] Cano M P, Hernandez A, De Ancos B. High Pressure and Temperature Effects on Enzyme Inactivation in Straw- berry and Orange Products. Journal of Food Science, 1997,62: 85-88.
    [40] Bartett D H, Kato C, Horikoshi K. High pressure influences on gene and protein expression. Research in Microbiology, 1995, 146(8): 697-706.
    [41] Welch T J, Bartlett D H. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Molecular Microbiology, 1998, 27(5): 977-985.
    [42] Galazka V B, Sumner I G, Ledward D A. Changes in protein-protein and protein polysaccharide interactions induced by high pressure. Food Chemistry, 1996, 57 (3): 393-398.
    [43] Erijman L, Clegg R M. Reversible stalling of transcription Elongation Complexes by high pressure. Journal of biophysics, 1998, 75:453-462.
    [44] Kayo C, Smorawinaka M, Li L. Comparison of the gene expression of apartate bate-D-smialdehyde dehydrogenase at elevated hydrostastic pressure in deep-sea Bacteria. J Biochemistry, 1997, 121(4): 717-723.
    [45] Li L, Kato C, Nogi Y, Horikoshi K. Distribution of the pressure-regulated operons in deep-sea bacteria. FEMS Microbiology Letters, 1998, 159(2): 159-166.
    [46] Alpas H, Lee J, Bozoglu F, Kaletunc G. Evaluation of high hydrostatic pressure sensitivity of Staphylococcus aureus and Escherichia coli O157:H7 by differential scanning calorimetry. International Journal of Food Microbiology, 2003, 87(3): 229-237.
    [47] Hayashi R. High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value. Biochimica et Biophysica Acta, 2002, 1595(1/2): 397-399.
    [48] Wennberg M, Nyman M. On the possibility of using high pressure treatment to modify physieo-chemical properties of dietary fibre in white cabbage. Innovative Food Science and Emerging Technologies, 2004, 5(2): 171-177.
    [49] 毕会敏,马中苏.膜液的高压处理对大豆分离蛋白膜性能的影响.食品科学,2004,25(3):49-51.
    [50] Cheftel J. C, Culioli J. Effect of high pressure on meet: A review. Meat Science, 1997, 46(3): 211-236.
    [51] Saltveit, Jr.Mann Mikal. Effect of high pressure Gas Atmospheres and Anaesthetics on chilling injury of plants. Journal of Experimental Botany, 1993, 44(265): 1361-1368.
    [52] Hauben K J, Bartlett D H, Soontjens C C. Escherichia coli mutants resistant to inactivation by high hydrostatic pressure. Applied and Environment. Microbiology, 1997, 63: 945-950.
    [53] Robey M, Benito A ,Roger H. Variation in resistance to high hydrostatic pressure and rpoS heterogeneity in natural isolates of Escherichia coli O157:H7.Applied and Environmental Microbiology, 2001, 67(10): 4901-4907.
    [54] 高翔,李炯,阮康成.高压力诱变的耐压大肠杆菌.生物化学与生物物理学报,2001,33(1):77-81.
    [55] Welch T J, Farewell A, Neidhardt F C, Bartlett D H. Stress response of Escherichia coli. to elevated hydrostatic pressure. Journal of Bacteriology, 1993, 175:7170-7177.
    [56] 余叔文,汤章城.植物生理与分子生物学.北京:科学出版社,1999.
    [57] 徐世平,廖耀平,肖万生.高压对水稻生长发育的影响.高压物理学报,1999,13(增刊):58-62.
    [58] 徐世平,廖耀平,翁克难,肖万生,陈钊明,律广才,何秀英.水稻压致变异和高压对水稻生长发育的影响.高压物理学报,2001,15(4):241-248.
    [59] 吴学华,陈丽英,苏磊,刘秀茹,洪时明.高压氮气处理微型番茄种子对其生长特性的影响.高压物理学报,2004,18(4):379-384.
    [60] 申斯乐,徐春娥,龙国徽,王宏华,王彦峰,赵明智.高压对小麦种子萌发及幼苗生长的影响.吉林农业科学,2003,28(6):8-10.
    [61] 梁灵,张正茂,段旭昌,杨公明,李国龙.高压对小麦种子发芽和幼苗生长的影响初探.高压物理学报,2005,19(3):241-246.
    [62] 陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社,2001.
    [63] 韩士群,张振华,刘海琴.小球藻生长因子对免疫功能的影响.中国生化药物杂志,2004,25(1):5-7.
    [64] Translated by Japan Chlorella Treatment Associate. Scientific reports on chlorella in Japan. Silpaque Publishing, Inc. Kyoto, Japan, 1992, 1-18.
    [65] 李师翁,李虎乾.植物单细胞蛋白资源—小球藻开发利用研究的现状.生物技术,1997,7(3):45-48.
    [66] 刘学铭,梁世中.小球藻的保健和药理作用.中草药,1999,30(5):383-385.
    [67] 汪炬,蒲含林,洪岸,戴云,杨小柯,何柳媚.蛋白核小球藻提取物的抑瘤作用及对免疫功能的影响.营养学报,2004,26(2):136-143.
    [68] 周秀琴,译.日本小球藻的开发.世界农业,1996,(4):36.
    [69] Valderrama L T, Del Campo C M., Rodriguez C M, de- Bashan L E, Bashan Y. Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Research, 2002, 36(16): 4185-4192.
    [70] 葛利云,邓欢欢,吴峰,邓南圣.普通小球藻引发水中苯胺光降解的研究.环境化学,2004,23(2):178-182.
    [71] 李桂双,白成科,段俊,彭长连,刘曙东,翁克难,徐世平.高静水压诱变水稻突变体的农艺性状及光合特性.作物学报,2003,29(5):765-769.
    [72] 何秀英,徐世平,廖耀平,毛兴学,翁克难,陈钊明,陈粤汉,肖万生.水稻高压变异材料的SSR标记和叶片可溶性蛋白质含量分析.中国水稻科学,2003,17(4):373-375.
    [73] 陈钊明,翁克难,廖耀平,徐世平,何秀英,肖万生,陈粤汉,律广才,程永胜.水稻压致变异后代主要农艺性状的研究.核农学报,2004,18(3):170-173.
    [74] 申斯乐,徐世平,翁克难,谭梅,张剑锋,龙国徽,贾晓朋,池元斌,刘宝,邹广田.高静水压处理水稻诱导稳定遗传变异系的DNA分析.高压物理学报,2004,18(4):289-294.
    [75] 徐世平,郭丽秀,翁克难,段俊,律广才.水稻高压诱变与突变体的ISSR分析.高压物理学报,2005,19(4):305-311.
    [76] Cline M N, Esfeld M A. Hybridization: bring new energy to wheat. Cereal Food Word, 1998, 43(1): 5-10.
    [77] Zhang H K, Li L, Tatsumi E, Kotwal S. Influence of high pressure on changes of soybean glycinin. Innovative Food Science and Emerging Technologies, 2003, 4(3): 269-275.
    [78] 缪锦来,阚光锋,李光友,张波涛,王波,侯旭光.UV-B辐照培养下南极冰藻的形态和超微结构及主要生化组成的变化.中国海洋药物,2003,(6):1-5.
    [79] 李建武,余瑞元,袁明秀.生物化学实验原理和方法.北京:北京大学出版社,1997,174-176.
    [80] Beauchamp C, Fridovich I. Superoxide disumtase: improved assays and an assay applicable to acrylamide gel. Annal. Biochem, 1971, 44: 276-278.
    [81] Bewley T D. Physiological aspects of desiccation tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 1979, 30:195-238.
    [82] 唐学玺,李永祺,李春雁,董宝贤.有机磷农药对海洋微藻致毒性的生物学研究:I四种海洋微藻对久效磷的耐受力与其SOD活性的相关性.海洋环境科学,1995,14(2):1-5.
    [83] Chance B, Maehly A C. Assay of catalase and peroxidase. Methods in Enzymology. 1955, 2: 764-775.
    [84] Huang B R, Liu X Z, Xu Q Z. Supraoptimal soil temperatures induced oxidative stress in leaves of creeping bentgrass cultivars differing in heat tolerance. Crop Science, 2001, 41: 430-435.
    [85] Bochiroc X H著.荆家海译.植物生物化学分析方法[M].北京:科学出版社,1981.197~201.
    [86] 沈文飚,徐朗莱,叶茂炳,张荣铣.抗坏血酸过氧化物酶活性测定的探讨.植物生理学通讯,1996,32(3):203-205.
    [87] Alfredo, Aguilar. Extramophile research in the European Union: from fundamental aspects to industrial expectations FEMS Microbiology Reviews, 1996, 18: 89-92.
    [88] Lellis F B, David L W. Structural Change in Lipid Bilayers and Biological Membrane Caused by Hydrostatic Pressure. Biochemistry, 1986, 25: 7484-7488.
    [89] Amparo B, Georgia V, Maria C. Variation in Resistance of Natural Isolates ofEscherichia coli O157 to High Hydrostatic Pressure, Mild Heat, and Other Stresses. Applied and Environmental Microbiology, 1999, 65 (4):1564-1569.
    [90] 丘冠英,彭银祥.生物物理学.武汉:武汉大学出版社,2000,190-214.
    [91] 余叔文.植物生理与分子生物学.北京:科学出版社,1998.
    [92] 白成科,李桂双,段俊,彭长连,翁克难,徐世平.高压处理后水稻抗氧化酶活性及对逆境胁 迫的响应.高压物理学报,2005,19(3):235-240.
    [93] 潘欣,李建宏,戴传超,浩云涛,马宇翔,王雪峰.小球藻异养培养的研究.食品科学,2002,23(4):28-33.
    [94] Bochiroe X H著.邢家海,丁外荣译.植物生物化学分析方法.北京:科学出版社,1981.255-259.
    [95] Chen T F, Zheng W J, Luo Y, Yang F, Bai Y, Tu F. Journal of Plant Physiology and Molecular Biology, 2005, 31(4): 369-373.
    [96] 高瑀珑,江汉湖,邱伟芬.高压力对微生物的影响及其杀菌机理的研究进展.食品工业科技,2003,(5):110-112.
    [97] Baker N R, Ort D R. Light and Crop photosynthesis performance. In: Baker N R, Thomas H (eds). Crop Photosynthesis: Spatial and Temporal Determinants. Amsterdam: Elsevier Science Publishers, 1992, 289-312.
    [98] 王岁楼,吴晓宗,郝莉花,孙君社.超高压对微生物的影响及其诱变效应探讨.微生物学报,2005,45(6):970-973.
    [99] Femandes P M B, Domitrovic T, Kao C M, Kurtenbach E. Genomic expression pattern in Saccharomyces cerevisiae cells in response to high hydrostastic pressure. FEBS Letters, 2004, 556(1-3): 153-160.
    [100] 涂芳,郑文杰,杨芳,等.螺旋藻细胞脱水与再吸纳引起的谱学变化.暨南大学学报,2004,25(5):621-625.
    [101] Landau J. Induction transcription and translation in Escherichia Coli:A hydrostatic pressure study. Bioehim Biophys Acta, 1967, 146, 506-512.
    [102] 计亮年,黄锦汪,莫廷焕.生物无机化学导论.广州:中山大学出版社,2001,167-172.
    [103] Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta, 1994, 1184: 1-19.
    [104] 付洪兰.实用电子显微镜技术.北京:高等教育出版社.2004.
    [105] 陈填烽.高富硒螺旋藻的混养研究及硒的形态分析.暨南大学硕士学位论文,2005,65-67.
    [106] Popova A F. Comparative characteristic of mitochondria ultrastructuml organization in Chlorella cells under altered gravity conditions. Advanced in Space Research, 2003, 31 (10): 2253-2259.
    [107] 何培民,吴维宁,赵建华.几种蛋白核小球藻的超微结构研究.水生生物学报,2002,26(4):327-334.
    [108] Fisher P, Klein U. Localization of nitrogen-assimilating enzymes in the chloroplast of Chloamydomonas reinhardtii. Plant Physiology, 1998, 88:149—155.
    [109] Lacoste R G, Gibbs S P. Immunoeytoehemical localization of ribulose-1,5-bisphosphate carboxylasei in the pyrenoid and thylakoid region of the chloroplast of Chlamydomonas reinhardtii Plant Physiology, 1987, 83:602—606.
    [110] Modta E, Kuroiwa H, Kuroiwa T, Nozaki H. High localization of Ribulose-1,5-bisphosphate carboxylase/oxygenase in the pyrenoids of Chlamydomanas reihardtii (Chorophyta), as revealed by cryofixation and immunogold electron microscopy. Journal of Phycology, 1997, 33(1): 68-72.
    [111] 夏建容,高坤山.不同CO_2浓度下培养的蛋白核小球藻细胞结构的变化.武汉植物学研究,2002,20(5):403-404.
    [112] Popova A F, Sytnik K M. Peculiarities of ultrastructure of Chlorella cells growing aboard the Bion-10 during 12 days. Advanced in Space Research, 1996, 17(6/7): 99-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700