用户名: 密码: 验证码:
干旱区不同管理措施下绿洲棉田土壤呼吸及碳平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤呼吸作用是陆地生态系统中土壤和大气之间CO2交换的主要组成成分,在全球的碳循环中扮演着重要的角色。农田生态系统土壤与大气之间的温室气体交换及碳循环过程受不同农业管理措施的强烈影响。新疆作为我国重要的干旱区,同时也是我国最重要的商品棉产区。进入21世纪以来,新疆农业生产技术发生较大变革,膜下滴灌农业节水技术大面积推广应用,农作物施肥量的逐渐增加,长期实施作物秸秆还田等技术,使干旱区绿洲农作物生产水平大幅度提高的同时,也导致干旱区绿洲农田生态系统土壤碳的分配格局与过程发生变化。基于以上这些现象,本文从土壤呼吸速率的角度入手,通过对棉花整个生育期农田土壤呼吸速率进行田间的原位测定,探讨不同农业管理措施对干旱区绿洲农田生态系统土壤呼吸作用、土壤呼吸各组分变化、土壤有机碳(SOC)、土壤微生物量碳(MBC)以及土壤碳库平衡的影响,了解不同农田管理措施对土壤碳通量、碳平衡的影响机理,并分析不同农业管理措施下棉田土壤有机碳含量与土壤碳排放量之间的关系,以期为干旱区绿洲农田安排合理的农田管理措施及制定农业低碳栽培技术,进而提升干旱区绿洲农田土壤的质量及固碳潜力。主要的研究内容和结果如下:
     1.研究了不同管理措施对土壤呼吸速率动态变化的影响。结果表明,不同管理措施下,干旱区绿洲棉田土壤呼吸速率季节变化特征明显,峰值出现在7月中旬,最小值出现在10月中旬;土壤呼吸速率日变化呈单峰曲线变化趋势,盛花期在15:00—17:00达到峰值,盛铃期均在15:00达到峰值,均于凌晨04:00降到最低。10cm地温与土壤呼吸速率呈极显著(P<0.01)正相关关系。不同农业管理措施下棉田土壤呼吸速率的矫正系数在09:00—13:00接近于1,说明这一时间段的土壤呼吸速率最能代表一天的平均土壤呼吸速率。灌溉处理间平均土壤呼吸速率为常规漫灌显著小于膜下滴灌,施肥处理间各处理平均土壤呼吸速率为NPK     2.研究了不同农田管理措施下土壤呼吸速率与土壤温度、土壤湿度之间的关系。结果表明,常规漫灌和膜下滴灌模式土壤呼吸速率的温度敏感性系数(Q_(10)值)的平均值分别为2.43和2.03,不同年份膜下滴灌Q_(10)值均小于常规漫灌。不同农田管理措施下,采用复合方程模拟土壤呼吸速率时其准确性提高,决定系数(R~2)均在0.64—0.72。综合考虑土壤温度和土壤水分含量对土壤呼吸速率的影响,能够提高区域农田土壤呼吸作用研究的准确性。
     3.研究了不同管理措施对土壤呼吸各组分贡献的影响。结果表明,膜下滴灌条件下各施肥处理根系呼吸对土壤呼吸的贡献率为36.38%—58.74%,常规漫灌条件下为33.73%—52.03%;铃期根系呼吸贡献率最高,整个生育期根系呼吸平均贡献率膜下滴灌和常规漫灌方式下分别为48.05%和44.31%。
     4.研究了不同棉田管理措施对土壤碳排放、有机碳含量及碳平衡的影响。结果表明,棉花生育期间,不同管理措施下,膜下滴灌土壤碳排放量大于常规漫灌,施肥处理间为(NPK+OM)>OM>CK>NPK,秸秆还田处理间为秸秆还田>秸秆不还田。不同管理措施下,棉田土壤有机碳含量呈表层最高、随土层深度增加而降低的分布趋势;灌溉处理间棉田0—40cm土层土壤有机碳含量为常规漫灌>膜下滴灌,施肥处理间为(NPK+OM)>OM>NPK>CK,秸秆还田处理间为秸秆还田>秸秆不还田。分析表明,棉花生育期,棉田土壤碳排放量与不同层次土壤有机碳含量呈正相关,与20—40cm土层土壤有机碳含量的相关性较好。不同管理措施下,农田土壤均表现为碳汇,但碳汇强度不同。农田土壤碳汇强度灌溉处理间为膜下滴灌>常规漫灌,施肥处理间为NPK>(NPK+OM)>OM/CK,秸秆还田处理间土壤碳汇强度差异不显著,灌溉方式、秸秆还田与施肥措施互作,膜下滴灌方式和秸秆还田措施下NPK和NPK+OM处理农田土壤碳汇强度最强。
     5.研究了不同棉田管理措施对土壤微生物量碳的影响。结果表明,干旱区绿洲棉田土壤微生物量碳含量呈表层含量最高,其下层随着土壤深度的增加呈逐渐降低的分布趋势;灌溉处理间常规漫灌土壤微生物量碳含量、微生物熵均小于膜下滴灌;秸秆处理间土壤微生物量碳含量、微生物熵(qMB)表现为秸秆不还田小于秸秆还田,施肥处理间为CK     6.研究了不同管理措施对棉花群体光合物质生产的影响及与土壤呼吸速率的关系。结果表明,不同农田管理措施下,灌溉处理间棉花群体光合速率(CAP)、棉田总土壤呼吸速率(Rt)、根呼吸速率(Rr)、净初级生产力(NPP)、棉花皮棉产量均为常规漫灌小于膜下滴灌,秸秆处理间CAP、Rt、Rr、Rr/Rt、NPP、棉花皮棉产量为秸秆不还田小于秸秆还田处理,施肥处理间CAP、Rr、Rr/Rt、NPP、棉花皮棉产量为CKSoil respiration as an important part of the exchange of CO2between the terrestrial ecosystemsoil and the atmosphere, plays a key role in the global carbon cycle. The different agriculturalmanagement practices strongly influence greenhouse gas exchange and the carbon cyclebetween agro-ecosystems and the atmosphere. As the most important arid region of China,Xinjiang also is the most important cotton-producing region. Since entering the21st century,agricultural production technology in Xinjiang has experienced significant changes, large-areapopularization and application of water-saving under-mulch-drip irrigation, increased cropfertilization, as well as the long-term implementation of crop stubble incorporationtechnology, which have created constant improvement in crop production but also causechanges of carbon distribution pattern and process in the arid oasis cropland ecosystems.Based on the above phenomenon, the paper from the perspective of soil respiration rate, fieldexperiment was conducted in situ to determinate the soil respiration rate of farmland duringthe growing season of cotton. To explore the effects of different agricultural managementpractices on the soil respiration of agro-ecological systems, the component changes of soilrespiration, soil organic carbon (SOC), soil microbial biomass carbon (MBC) and soil carbonsink balance. To clear the influence mechanism of different agricultural managementpractices on the soil carbon flux and carbon balance, and to analyse the relationship betweenthe soil organic carbon content and soil carbon emissions of cotton fields under differentagricultural management practices. Further, the results obtained can provide a theoreticalbasis for reasonable agricultural management practices were arranged and the formulation oflow-carbon cultivation techniques that to improve agricultural soil carbon sequestrationability in oasis croplands of arid region. Below are the main results in this thesis.
     1. Effects of different agricultural management practices on the dynamic changes of soilrespiration rate were studied. The result showed that cotton soil respiration rate has asignificant seasonal characteristic under different agricultural management practices. Soilrespiration rate reached a peak in mid-July and then reduced to the minimum inmid-October after cotton harvest. The diurnal variations of soil respiration rate showed asingle peak curve, and the highest peak of full flowering stage appeared at15:00-17:00and full bolling stage appeared at15:00and the minimum value appeared at04:00.Further, there was highly significant (P<0.01) positive correlations between soilrespiration rate and soil temperature in10cm depth. The correction coefficient of soilrespiration rate in cotton field in09:00-13:00close to one under different agriculturalmanagement practices, indicating that this period of soil respiration rate is most representative of the day's average soil respiration rate. Additionally, the average soilrespiration rate under conventional flood irrigation was smaller than that under dripirrigation under mulch, and the soil respiration rate with (NPK+OM) treatment was thehighest, and then followed by OM, CK and NPK among the fertilizer treatments. Underthe condition of interaction between fertilization and irrigation practices, the average soilrespiration rate was the strongest under drip irrigation under mulch method andNPK+OM treatment.
     2. The relationship between the soil respiration rate and soil temperature and soil moisturecontent under different agricultural management practices were studied. The resultshowed that the average temperature sensitivities (Q_(10)) of soil respiration underconventional flood irrigation and drip irrigation under mulch were2.43and2.03,respectively. The Q_(10) value under conventional flood irrigation was smaller than thatunder drip irrigation under mulch. Under different agricultural management practices, theveracity is higher when compound equation be used to simulated soil respiration rate, andthe coefficient of determination (R~2) was0.64to0.72. Therefore, considering the effectsof soil temperature and soil moisture content on soil respiration rate could improve theaccuracy of soil respiration rate in regional research.
     3. Effects of different agricultural management practices on the contribution of eachcomponent to soil respiration were studied. The result showed that the fertilizertreatments ratio of root respiration contribution to soil respiration was fluctuated between36.38%and58.74%under drip irrigation under mulch method, whereas between33.73%and52.03%under conventional flood irrigation method. Root respiration contributionwas the highest at the bolling stage. During the whole growth period, the root respirationcontribution under drip irrigation and flood irrigation was averagely48.05%and44.31%,respectively.
     4. Effects of different agricultural management practices on the soil carbon emissions,organic carbon content and carbon balance were studied. The result showed that soilcarbon emissions were smaller under conventional flood irrigation than those under dripirrigation under mulch, highest under NPK+OM fertilization (followed by OM, CK, andNPK), and larger with stubble incorporation relative to removal. Soil organic carboncontent of the cotton field surface was highest, with lower distribution trends as soil layerdepth increased under different management practices. Soil organic carbon content in the0-40cm soil layer was larger under conventional flood irrigation than under dripirrigation under mulch, highest under NPK+OM treatment (followed by OM, NPK, andCK), and larger under stubble incorporation relative to removal. Cotton field soil carbon emissions were best correlated with organic carbon content in the20-40cm soil layerduring the growth season. Soil carbon sink intensity was larger under drip irrigation undermulch than under conventional flood irrigation, highest under NPK treatment (followedby NPK+OM, OM, and CK), but had no significant difference between the stubbletreatments. Under combined treatments, soil carbon sink intensity was strongest underdrip irrigation, stubble incorporation, and NPK and NPK+OM fertilization.
     5. Effects of different agricultural management practices on the soil microbial biomasscarbon were studied. The result showed that the soil microbial biomass carbon of surfacesoil was highest, with lower distribution trends as soil layer depth increased of the oasiscotton field in arid region. Soil microbial biomass carbon content and soil microbialquotient (qMB) were smaller under conventional flood irrigation than those under dripirrigation under mulch among the irrigation treatments, smaller with stubble removalrelative to incorporation among the stubble treatments, and highest under NPK+OMfertilization (followed by OM, CK, and NPK) among the fertilization treatments. Therewas highly significant (P<0.01) positive correlations between soil microbial biomasscarbon and total soil organic carbon (TOC). Under the different agricultural managementpractices, the soil microbial metabolic quotient (qCO2) were smaller under under-mulchdrip irrigation than under conventional flood irrigation among the irrigation treatments,smaller with stubble incorporation relative to removal among the stubble treatments, andlowest under NPK+OM fertilization (followed by OM, NPK, and CK) among thefertilization treatments. Under the condition of interaction between different agriculturalmanagement practices, qCO2was the lowest under under-mulch drip irrigation methodand NPK+OM treatment with stubble incorporation. Therefore, in arid region, cottonproduction using cropland management practices, such as water saving technology of dripirrigation under mulch, combined application of NPK fertilizer and organic manure andstubble incorporation, could not only maintain good soil properties and potential forsustainable use, but also promote to the accumulation of soil organic carbon and reducecarbon discharge.
     6. Effects of different agricultural management practices on the cotton photosyntheticmaterial production and the relationship with soil respiration rate were studied. The resultshowed that under the different agricultural management practices, the canopy apparentphotosynthesis rate (CAP), total soil respiration (Rt) of cotton field, root respiration (Rr),net primary productivity (NPP), and lint yield of cotton under conventional floodirrigation were smaller than that under drip irrigation under mulch among the irrigationtreatments, and the CAP, Rt, Rr, Rr/Rt, NPP and lint yield of cotton under stubble removal were smaller than that under incorporation among the stubble treatments, and the CAP, Rr,Rr/Rt, NPP and lint yield of cotton with (NPK+OM) treatment were the highest, and thenfollowed by NPK, OM and CK among the fertilizer treatments, but the Rt with(NPK+OM) treatment were the highest, and then followed by OM and NPK/CK. Weconduct to fit the relationship between the cotton canopy apparent photosynthesis rate andthe total soil respiration rate and the root respiration rate, clearly, the fitting degree ofquadratic equation was better than that of the linear equation. Besides, the fitting degreeof the two equations of the cotton canopy apparent photosynthesis rate with the total soilrespiration rate and the root respiration rate in full flowering stage was better than that infull bolling stage. Under the same growth stage, the fitting degree of the two equations ofthe cotton canopy apparent photosynthesis rate with the root respiration rate was betterthan the fitting degree with the total soil respiration rate. Additionally, the fitting degreeof the net primary productivity with the cotton canopy apparent photosynthesis rate waslarger than that with the total soil respiration rate, the fitting degree in full flowering stagewas better than that in full bolling stage.
引文
[1]毕建杰,劳秀荣,周波,张玉玲,董玉良,巩俊花,宗海英.施肥与品种演替对麦田CO2排放量的影响.水土保持学报,2007,21(6):165-169.
    [2]卜洪震,王丽宏,尤金成,肖小平,杨光立,胡跃高,曾昭海.长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响.中国农业科学,2010,43(16):3340-3347.
    [3]蔡艳,丁维新,蔡祖聪.土壤-玉米系统中土壤呼吸强度及各组分贡献.生态学报,2006,26(12):4273-4280.
    [4]曹凑贵,李成芳,展茗,汪金平.稻田管理措施对土壤碳排放的影响.中国农业科学,2011,44(1):93-98.
    [5]曹兴,陈荣毅,蔡新婷,王斯萌,蒋恒.干旱区绿洲棉田土壤呼吸日变化特征分析.干旱地区农业研究,2011,29(5):156-162.
    [6]柴仲平,梁智,王雪梅,贾宏涛.不同灌溉方式对棉田土壤物理性质的影响.新疆农业大学学报,2008,31(5):57-59.
    [7]陈全胜,李凌浩,韩兴国,阎志丹.水分对土壤呼吸的影响及机理.生态学报,2003,23(5):972-978.
    [8]陈全胜,李凌浩,韩兴国,阎志丹,王艳芬,张焱,熊小刚,陈世苹,张丽霞,高英志,唐芳,杨晶,董云社.典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系.生态学报,2004,24(4):831-836.
    [9]陈泮勤,黄耀,于贵瑞.地球系统碳循环.北京:科学出版社,2004.
    [10]陈书涛.管理措施对农田土壤呼吸、N2O和CH4排放的影响:博士学位论文.南京:南京农业大学,2007.
    [11]陈述悦,李俊,陆佩玲,王迎红,于强.华北平原麦田土壤呼吸特征.应用生态学报,2004,15(9):1552-1560.
    [12]董鸣.陆地生物群落调查观测与分析.北京:中国标准出版社,1996.
    [13]高飞,贾志宽,路文涛,韩清芳,杨宝平,侯贤清.秸秆不同还田量对宁南旱区土壤水分、玉米生长及光合特性的影响.生态学报,2011,31(3):777-783.
    [14]高会议,郭胜利,刘文兆,车升国.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态.生态学报,2009,29(5):2551-2559.
    [15]辜运富,云翔,张小平,涂仕华,孙锡发.不同施肥处理对石灰性紫色土微生物数量及氨氧化细菌群落结构的影响.中国农业科学,2008,41(12):4119-4126.
    [16]韩宾.保护性耕作措施对农田土壤健康状况的影响及作物响应研究:博士学位论文.泰安:山东农业大学,2007.
    [17]韩春丽.新疆棉花长期连作土壤养分时空变化及可持续利用研究:博士学位论文.石河子:石河子大学,2010.
    [18]韩春丽,刘梅,张旺锋,刘娟,干秀霞,郝全胜.连作棉田土壤剖面钾含量变化特征及对不同耕作方式的响应.中国农业科学,2010,43(14):2913-2922.
    [19]韩广轩,周广胜.土壤呼吸作用时空动态变化及其影响机制研究与展望.植物生态学报,2009,33(1):197-205.
    [20]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望.植物生态学报,2008,32(3):719-733.
    [21]韩广轩,周广胜,许振柱,杨扬,刘景利,史奎桥.玉米地土壤呼吸作用对土壤温度和生物因子协同作用的响应.植物生态学报,2007,31(3):363-371.
    [22]韩琳,张玉龙,金烁,王娇,魏岩岩,崔宁,魏巍.灌溉模式对保护地土壤可溶性有机碳与微生物量碳的影响.中国农业科学,2010,43(8):1625-1633.
    [23]黄湘,李卫红,马建新,陈亚鹏,朱成刚.通过改变光热条件分析胡杨群落光合作用对土壤呼吸速率的影响.中国沙漠,2011,31(5):1167-1173.
    [24]黄耀,孙文娟,张稳,于永强.中国陆地生态系统土壤有机碳变化研究进展.中国科学(生命科学),2010,40(7):577-586.
    [25]井艳丽,关德新,吴家兵,王安志,袁凤辉.光合作用调控土壤呼吸研究进展.应用生态学报,2013,24(1):269-276.
    [26]孔雨光.苏北海岸防护林地土壤呼吸及微生物量碳研究:博士学位论文.南京:南京林业大学,2009.
    [27]寇太记,徐晓峰,朱建国,谢祖彬,郭大勇,苗艳芳.CO2浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献.应用生态学报,2011,22(10):2533-2538.
    [28]李长生,肖向明,Frolking S,Moore Ⅲ B,Salas W,邱建军,张宇,庄亚辉,王效科,戴昭华,刘纪远,秦小光,廖柏寒,Sass R.中国农田的温室气体排放.第四纪研究,2003,23(5):493-503.
    [29]李虎,邱建军,王立刚.农田土壤呼吸特征及根呼吸贡献的模拟分析.农业工程学报,2008,24(4):14-20.
    [30]李建敏,丁维新,蔡祖聪.氮肥对玉米生长季土壤呼吸的影响.应用生态学报,2010,21(8):2025-2030.
    [31]李玲,仇少君,刘京涛,刘庆,陆兆华.土壤溶解性有机碳在陆地生态系统碳循环中的作用.应用生态学报,2012,23(5):1407-1414.
    [32]李伶俐,房卫平,谢德意,马宗斌,杜远仿,张东林.施氮量对杂交棉干物质积累、分配和氮磷钾吸收、分配与利用的影响.棉花学报,2010,22(4):347-353.
    [33]李旭毅,孙永健,程宏彪,郑洪帧,杨志远,贾现文,刘树金,胡蓉,马均.氮肥运筹和栽培方式对杂交籼稻II优498结实期群体光合特性的影响.作物学报,2011,37(9):1650-1659.
    [34]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环.地学前缘,2002,9(2):351-357.
    [35]廖敏,彭英,陈义,谢晓梅,吴春艳,唐旭,刘玉学,杨生茂.长期不同施肥管理对稻田土壤有机碳库特征的影响.水土保持学报,2011,25(6):129-138.
    [36]林而达.气候变化与农业可持续发展.北京:北京出版社,2001,1-32.
    [37]刘恩科,赵秉强,李秀英,姜瑞波,Hwat Bing So.不同施肥制度土壤微生物量碳氮变化及细菌群落16srDNA V3片段PCR产物的DGGE分析.生态学报,2007,27(3):1079-1085.
    [38]刘建国,卞新民,李彦斌,张伟,李崧.长期连作和秸秆还田对棉田土壤生物活性的影响.应用生态学报,2008,19(5):1027-1032.
    [39]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469-476.
    [40]刘守龙,苏以荣,黄道友,肖和艾,吴金水.微生物商对亚热带地区土地利用及施肥制度的响应.中国农业科学,2006,39(7):1411-1418.
    [41]刘爽,严昌荣,何文清,刘勤.不同耕作措施下旱地农田土壤呼吸及其影响因素.生态学报,2010,30(11):2919-2924.
    [42]芦思佳,韩晓增,尤孟阳,朱巍巍.施肥对黑土密度分组中碳、氮的影响.水土保持学报,2011,25(2):177-180.
    [43]栾军伟,刘世荣.土壤呼吸的温度敏感性——全球变暖正负反馈的不确定因素.生态学报,2012,32(15):4902-4913.
    [44]罗宏海,李俊华,勾玲,张旺锋,何在菊,杨新军.膜下滴灌对不同土壤水分棉花花铃期光合生产、分配及籽棉产量的调节.中国农业科学,2008,41(7):1955-1962.
    [45]马富裕,张旺锋,李锦辉,张勇,刘莉君.棉花群体光合作用测定方法探讨.石河子大学学报(自然科学版),1998(增刊):46-50.
    [46]孟凡乔,关桂红,张庆忠,史雅娟,屈波,况星.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律.环境科学学报,2006,26(6):992-999.
    [47]朴河春,洪业汤,袁芷云,周竞业.贵州喀斯特地区土壤中微生物量碳的季节性变化.环境科学学报,2000,20(1):106-110.
    [48]齐晔,李惠民,王晓.农业与中国的低碳发展战略.中国农业科学,2012,45(1):1-6.
    [49]任天志,Grego S.持续农业中的土壤生物指标研究.中国农业科学,2000,33(1):68-75.
    [50]任万军,刘代银,吴锦秀,伍菊仙,陈德春,杨文钰.免耕高留茬抛秧对稻田土壤肥力和微生物群落的影响.应用生态学报,2009,20(4):817-822.
    [51]沈雨,黄耀,宗良纲,张稳,徐茂,刘林旺.基于模型和GIS的江苏省农田土壤有机碳变化研究.中国农业科学,2003,36(11):1312-1317.
    [52]孙维,赵吉.不同草原生境下的土壤微生物生物量的研究.内蒙古农业大学学报,2002,23(l):29-31.
    [53]田慎重,宁堂原,迟淑筠,王瑜,王丙文,韩惠芳,李成庆,李增嘉.不同耕作措施的温室气体排放日变化及最佳观测时间.生态学报,2012,32(3):879-888.
    [54]田慎重,宁堂原,王瑜,李洪杰,仲惟磊,李增嘉.不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响.应用生态学报,2010,21(2):373-378.
    [55]王国兵.北亚热带次生栋林与火炬松人工林土壤碳动态研究:博士学位论文.南京:南京林业大学,2008.
    [56]王国兵,唐燕飞,阮宏华,施政,何容,王莹,蔺菲,苏广鑫.次生栎林与火炬松人工林土壤呼吸的季节变异及其主要影响因子.生态学报,2009,29(2):966-975.
    [57]王建林,赵风华,欧阳竹.灌溉量对灌浆期麦田土壤呼吸的影响.华北农学报,2010,25(3):186-189.
    [58]王俊华,胡君利,林先贵,戴珏,王军涛,崔向超,钦绳武.长期平衡施肥对潮土微生物活性和玉米养分吸收的影响.土壤学报,2011,48(4):766-772.
    [59]王立刚,邱建军,马永良,王迎春.应用dndc模型分析施肥与翻耕方式对土壤有机碳含量的长期影响.中国农业大学学报,2004,9(6):15-19.
    [60]王小国,朱波,王艳强,郑循华.不同土地利用方式下土壤呼吸及其温度敏感性.生态学报,2007,27(5):1960-1968.
    [61]王新源,李玉霖,赵学勇,毛伟,崔夺,曲浩,连杰,罗永清.干旱半干旱区不同环境因素对土壤呼吸影响研究进展.生态学报,2012,32(15):4890-4901.
    [62]吴建国,艾丽.祈连山3种典型生态系统土壤微生物活性和生物量碳氮含量.植物生态学报,2008,32(2):465-476.
    [63]吴金水,林启美,黄巧云,肖和艾.土壤微生物生物量测定方法及其应用.北京:气象出版社,2006,54-59.
    [64]解婷婷,苏培玺,高松.临泽绿洲边缘区棉花群体光合速率、蒸腾速率及水分利用效率.应用生态学报,2010,21(6):1425-1431.
    [65]许泉,芮雯奕,何航,吴峰,罗鸿,卞新民,张卫建.不同利用方式下中国农田土壤有机碳密度特征及区域差异.中国农业科学,2006,39(12):2505-2510.
    [66]严俊霞,秦作栋,张义辉,李洪建.土壤温度和水分对油松林土壤呼吸的影响.生态学报,2009,29(12):6366-6376.
    [67]杨兰芳,蔡祖聪.玉米生长中的土壤呼吸及其受氮肥施用的影响.土壤学报,2005,42(1):9-15.
    [68]杨庆朋,徐明,刘洪升,王劲松,刘丽香,迟永刚,郑云普.土壤呼吸温度敏感性的影响因素和不确定性.生态学报,2011,31(8):2301-2311.
    [69]展茗.不同稻作模式稻田碳固定、碳排放和土壤有机碳变化机制研究:博士学位论文.武汉:华中农业大学,2009.
    [70]张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展.地球科学进展,2005,20(7):778-785.
    [71]张电学,韩志卿,刘微,高书国,候东军,李国舫,常连生.不同促腐条件下玉米秸秆直接还田的生物学效应研究.植物营养与肥料学报,2005,11(6):742-749.
    [72]张鸽香.城市不同植被类型土壤呼吸与微生物量碳研究:博士学位论文.南京:南京林业大学,2011.
    [73]张海林,孙国峰,陈继康,陈阜.保护性耕作对农田碳效应影响研究进展.中国农业科学,2009,42(12):4275-4281.
    [74]张红星,王效科,冯宗炜,宋文质,刘文兆,李双江,庞军柱,欧阳志云.黄土高原小麦田土壤呼吸对强降雨的响应.生态学报,2008,28(12):6189-6196.
    [75]张红星,王效科,冯宗炜,宋文质,刘文兆,李双江,朱元骏,庞军柱,欧阳志云.干湿交替格局下黄土高原小麦田土壤呼吸的温湿度模型.生态学报,2009,29(6):3028-3035.
    [76]张丽华,陈亚宁,李卫红,赵锐锋,葛洪涛.干旱区荒漠生态系统的土壤呼吸.生态学报,2008,28(5):1911-1922.
    [77]张丽华,陈亚宁,赵锐锋,李卫红.温带荒漠中温度和土壤水分对土壤呼吸的影响.植物生态学报,2009,33(5):936-949.
    [78]张庆忠,吴文良,王明新,周中仁,陈淑峰.秸秆还田和施氮对农田土壤呼吸的影响.生态学报,2005,25(11):2883-2887.
    [79]张容娟,布乃顺,崔军,方长明.土地利用对崇明岛围垦区土壤有机碳库和土壤呼吸的影响.生态学报,2010,30(24):6698-6706.
    [80]张旺锋,王振林,余松烈,李少昆,曹连莆,王登伟.氮肥对新疆高产棉花群体光合性能和产量形成的影响.作物学报,2002,28(6):789-796.
    [81]张永平,张英华,王志敏.不同供水条件下冬小麦叶与非叶绿色器官光合日变化特征.生态学报,2011,31(5):1312-1322.
    [82]张宇,张海林,陈继康,陈阜.耕作方式对冬小麦田土壤呼吸及各组分贡献的影响.中国农业科学,2009a,42(9):3354-3360.
    [83]张宇,张海林,陈继康,伍芬琳,陈阜.耕作措施对华北农田CO2排放影响及水热关系分析.农业工程学报,2009b,25(4):47-53.
    [84]赵成义.陆地不同生态系统土壤呼吸及土壤碳循环研究:博士学位论文.北京:中国农业科学院农业气象研究所,2004.
    [85]赵先丽,程海涛,吕国红,贾庆宇.土壤微生物生物量研究进展.气象与环境学报,2006,22(4):68-72.
    [86]郑聚锋,程琨,潘根兴,Pete S,李恋卿,张旭辉,郑金伟,韩晓君,杜彦玲.关于中国土壤碳库及固碳潜力研究的若干问题.科学通报,2011,56(26):2162-2173.
    [87]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用.生物多样性,2007,15(2):162-171.
    [88] Albiach R,Canet R,Pomanes F,Ingelmo F.Microbial biomass content and enzymatic activities after the applicationof organic amendments to a horticultural soil.Bioresour Techn,2000,75(1):43-48.
    [89] Al-Kaisi MM,Yin X.Tillage and crop residue effects on soil carbon and carbon dioxide emission in corn-soybeanrotations.Journal of Environmental Quality,2005,34:437-445.
    [90] Antisari LV,Carbone S,Gatti A,Vianello G,Nannipieri P.Toxicity of metal oxide (CeO2,Fe3O4,SnO2)engineered nanoparticles on soil microbial biomass and their distribution in soil.Soil Biology and Biochemistry,2013,60:87-94.
    [91] Austin AT,Yahdjian L,Stark JM,Belnap J,Porporato A,Norton U,Ravetta DA,Schaeffer SM.Waterpulses and biogeochemical cycles in arid and semiarid ecosystems.Oecologia,2004,141(2):221-235.
    [92] Bajracharya RM,Lal R,Kinble JM.Diurnal and seasonal CO2-C flux from soil as related to erosion phases incentral Ohio.Soil Science Society of America Journal,2000,64:286-293.
    [93] Ball BC,Scott A,Parker JP.Field N2O,CO2and CH4fluxes in relation to tillage,compaction and soil qualityin Scotland.Soil and Tillage Research,1999,53:29-39.
    [94] Bath E.Effects of heavy metal in soil on microbial processes and populations a review.Water Air Soil Pollution,1989,47(3-4):335-379.
    [95] Bauer PJ,Frederick JR,Novak JM,Hunt PG.Soil CO2flux from a norfolk loamy sand after25years ofconventional and conservation tillage.Soil and Tillage Research,2006,90:205-211.
    [96] Boone RD,Nadelhoffer KJ,Canary JD,Kaye JP.Roots exert a strong influence on the temperature sensitivity ofsoil respiration.Nature,1998,396:570-572.
    [97] Burke MK,Raynald DJ.Fine root growth phenology,production,and turnover in northern hardwood forestecosystems.Plant and Soil,1994,162:135-146.
    [98] Buyanovsky GA,Wagner GH,Gantzer CJ.Soil respiration in a winter wheat ecosystem.Soil Science Society ofAmerica Journal,1986,50:338-344.
    [99] Carbone MS,Czimczik CI,McDuffee KE,Trumbore SE.Allocation and residence time of photosynthetic productsin a boreal forest using a low-level14C pulse-chase labeling technique.Global Change Biology,2007,13:466-477.
    [100] Cebrian J,Duarte CM.Plant growth-rate dependence of detritus carbon storage in ecosystem.Science,1995,268:1606-1608.
    [101] Chapman SJ,Thurlow M.The influence of climate on CO2and CH4emissions from organic soils.Agriculturaland Forest Meteorology,1996,79:205-217.
    [102] Chen TH, Chiu CY, Tian GL. Seasonal dynamics of soil microbial biomass in coastal sand duneforest.Pedobiologia,2005,49:645-653.
    [103] Chu HY,Lin XG,Fujii T,Morimoto S,Yagi K,Hu JL,Zhang JB.Soil microbial biomass,dehydrogenaseactivity,bacterial community structure in response to long-term fertilizer management.Soil Biol Biochem,2007,39(11):2971-2976.
    [104] Coleman DC,Hunter MD,Hutton J,Pomeroy S,Swift L.Soil respiration from four aggrading forestedwatersheds measured over a quarter century.Forest Ecology and Management,2002,157:247-253.
    [105] Comstedt D,Bostrm B,Ekblad A.Autotrophic and heterotrophic soil respiration in a Norway spruce forest:Estimating the root decomposition and soil moisture effects in a trenching experiment.Biogeochemistry,2011,104:121-132.
    [106] Contin M,Corcimaru S,De Nobili M,Brookes PC.Temperature changes and the ATP concentrations of the soilmicrobial biomass.Soil Biology and Biochemistry,2000,32:1219-1225.
    [107] Cook FJ,Orchard VA.Relationships between soil respiration and soil moisture.Soil Biology and Biochemistry,2008,40:1013-1018.
    [108] Craine JM,Wedin DA,Chapin FS.Predominance of ecophysiological controls on soil CO2flux in a Minnesotagrassland.Plant and Soil,1999,207:77-86.
    [109] Davidson EA,Belk E,Boone RD.Soil water content and temperature as independent or confounded factorscontrolling soil respiration in a temperate mixed hardwood forest.Global Change Biology,1998,4(2):217-227.
    [110] Davidson EA,Matson PA,Vitousek PM,Riley R,Dunkin K,Garcia-Mendez G,Maass JM.Processesregulating soil emissions of NO and N2O in a seasonally dry tropical forest.Ecology,1993,74:130-139.
    [111] Davidson EA,Verchot LV,Cattanio JH,Ackerman IL,Carvalho JEM.Effects of soil water content on soilrespiration in forests and cattle pastures of eastern Amazonia.Biogeochemistry,2000,48(1):53-69.
    [112] Dempster DN,Gleeson DB,Solaiman ZM,Jones DL,Murphy DV.Decreased soil microbial biomass and nitrogenmineralisation with Eucalyptus biochar addition to a coarse textured soil.Plant and Soil,2012,354:311-324.
    [113] Dilly O,Munch JC.Microbial biomass content,basal respiration and enzyme activities during the course ofdecomposition of leaf litter in a black alder (Alnus glutinosa (L.) Gaertn) forest.Soil Biol Biochem,1996,28:1073-1081.
    [114] Domisch T,Finer L,Lehto T,Smolander A.Effect of soil temperature on nutrient allocation and mycorrhizas inScots pine seedlings.Plant and Soil,2002,239:173-182.
    [115] Du ZL,Ren TS,Hu CS.Tillage and residue removal effects on soil carbon and nitrogen storage in the North Chinaplain.Soil Science Society of America Journal,2010,74:196-202.
    [116] Ekblad A,Nordgren A.Is growth of soil microorganisms in boreal of forests limited by carbon or nitrogenavailability? Plant and Soil,2002,242:115-122.
    [117] Follett RF,Vogel KP,Varvel GE,Mitchell RB,Kimble J.Soil carbon sequestration by switchgrass and no-till maizegrown for bioenergy.BioEnergy Research,2012,5(4):866-875.
    [118] Fortin MC,Rochette P,Pattey E.Soil carbon dioxide fluxes from conventional and no-tillage small-graincropping systems.Soil Science Society of America Journal,1996,60:1541-1547.
    [119] Frank AB,Liebig MA,Han-Son JD.Soil carbon dioxide fluxes in northern semiarid grass lands.Soil Biologyand Biochemistry,2002,34:1235-1241.
    [120] Franzluebbers AJ,Hons FM,Zuberer DA.Soil organic carbon microbial biomass,and mineralizable carbon andnitrogen in sorghum.Soil Science Society of America Journal,1995,59:460-466.
    [121] Freibauer A, Rounsevell MDA, Smith P, Verhagen J. Carbon sequestration in the agricultural soils ofEurope.Geoderma,2004,122:1-23.
    [122] Friedlingstein P,Dufresne JL,Cox PM,Rayner P.How positive is the feedback between climate change and thecarbon cycle? Tellus,2003,55B:692-700.
    [123] Granier A,Ceschia E,Damesin C,Dufrêne E,Epron D,Gross P,Lebaube S,Le Dantec V,Le Goff N,LemoineD,Lucot E,Ottorini JM,Pontailler JY,Saugier B.The carbon balance of a young Beech forest. Functional Ecology,2000,14:312-325.
    [124] Han GX,Zhou GS,Xu ZZ,Yang Y,Liu JL,Shi KQ.Biotic and abiotic factors controlling the spatial and temporalvariation of soil respiration in an agricultural ecosystem.Soil Biology and Biochemistry,2007,39:418-425.
    [125] Heinze S,Raupp J,Joergensen RG.Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomassindices in a long-term field trial of organic agriculture.Plant and soil,2010,328:203-215.
    [126] H gberg P,Nordgren A,Buchmann N,Taylor AFS,Ekblad A,H gberg MN,Nyberg G,Ottosson-L fveniusM,Read DJ.Large-scale forest girdling shows that current photosynthesis soil respiration.Nature,2001,411:789-792.
    [127] Houghton RA,Skole DL,Nobre CA,Hackler JL,Lawrence KT,Chomentowski WH.Annual fluxes ofcarbon from deforestation and regrowth in the Brazilian Amazon.Nature,2000,403(6767):301-304.
    [128] Huxman TE,Snyder KA,Tissue D,Joshua Leffler A,Ogle K,Pockman WT,Sandquist DR,Potts DL,Schwinning S.Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia,2004,141(2):254-268.
    [129] Insam H,Mitchell CC,Dormaar JF.Relationship of soil microbial biomass and activity with fertilization practiceand crop yield of three Ultisols.Soil Biol Biochem,1991,23(5):459-464.
    [130] Jassal RS,Black TA,Novak MD,Gaumont-Guay D,Nesic Z.Effect of soil water stress on soil respiration and itstemperature sensitivity in an18-year-old temperate Douglas-fir stand.Glob Chang Biol,2008,14:1305-1318.
    [131] Johnston CA,Groffman P,Breshears DD,Cardon ZG,Currie W,Emanuel W,Gaudinski J,Jackson RB,LajthaK,Nadelhoffer K,Nelson D,Post WM,Retallack G,Wielopolski L.Carbon cycling in soil.Frontiers in Ecologyand the Environment,2004,2(10):522-528.
    [132] Kandeler E,Mosier AR,Morgan JA,Milchunas DG,King JY,Rudolph S,Tscherko D.Response of soill mierobialbiomass and enzyme activities to the transient elevation of carbon dioxide in a semi-arid grassland.Soil Biology andBioehemistry,2006,38:2448-2460.
    [133] Kandeler E,Tscherko D,Spiegel H.Long-term monitoring of a microbial biomass, N mineralisation and enzymeactivities of a Chernozem under different tillage management.Biol Fertil Soils,1999,28(4):343-351.
    [134] Kaur K,Kapoor KK,Gupta AP.Impact of organic manures with and without mineral fertilizers on soil chemicaland biological properties under tropical conditions.J Plant Nutr Soil Sci,2005,168:117-122.
    [135] Kautz T,Wirth S,Ellmer F.Microbial activity in a sandy arable soil is governed by the fertilization regime.EurJ Soil Boil,2004,40:87-94.
    [136] Kaye JP,Hart SC.Competition for nitrogen between Plants and soil micro-organisms. Trends in Eeology andEvolution,1997,12:139-143.
    [137] King AJ,Meyer AF,Sehmidt SK.High levels of microbial biomass and activity in unvegetated tropical andtemperate alpine soils.Soil Biology and Bioehemistry,2008,40:2605-2610.
    [138] Koizumi H,Nakadai T,Usami Y,Satoh M,Shiyomi M,Oikawa T.Effect of carbon dioxide concentration onmicrobial respiration in soil.Ecological Research,1999,6(3):227-232.
    [139] Kushwaha CP,Trpathi SK,Singh KP.Variations in soil microbial biomass and N availability due to residue andtillage management in dry land rice agro ecosystem.Soil and Tillage Research,2000,56:153-166.
    [140] Kuzyakov Y,Gavrichkova O.Time lag between photosynthesis and carbon dioxide efflux from soil:A review ofmechanisms and controls.Global Change Biology,2010,16:3386-3406.
    [141] Lal R.Offsetting China’s CO2emissions by soil sequestration.Climate Change,2004c,65:263-275.
    [142] Lal R.Residue management,conservation tillage and soil restoration for mitigating greenhouse effect byCO2-enrichment.Soil and Tillage Research,1997,43:81-107.
    [143] Lal R.Soil carbon sequestration impacts on global climate change and food security.Science,2004a,304(5677):1623-1627.
    [144] Lal R.Soil carbon sequestration to mitigate climate change.Geoderma,2004b,123:l-22.
    [145] Lao XR,Sun WH,Wang Z.Effect of matching use of straw and chemical fertilizer on soil fertility.ActaPedologica Sinica,2003,40(4):618-623.
    [146] Lee MS,Nakane K,Nakatsubo T,Koizumi H.Seasonal changes in the contribution of root respiration to totalsoil respiration in a cool-temperate deciduous forest.Plant and Soil,2003,255(1):311-318.
    [147] Lee XH,Wu HJ,Sigler J,Oishi C,Siccama T.Rapid and transient response of soil respiration to rain.Global ChangeBiology,2004,10(6):1017-1026.
    [148] Li ZG,Wang XJ,Zhang RH,Zhang J,Tian CY.Contrasting diurnal variations in soil organic carbon decompositionand root respiration due to a hysteresis effect with soil temperature in a Gossypium s.(cotton) plantation.Plant andSoil,2011,343:347-355.
    [149] Liu B,Gumpertz ML,Hu SJ,Ristainoa JB.Long-term effects of organic and synthetic soil fertility a mendments onsoil microbial comm unities and the development of southern blight.Soil Biology and Biochemistry,2007,39:2302-2316.
    [150] Liu X,Herbert SJ,Hashemi AM,Zhang X,Ding G.Effects of agricultural management on soil organic matterand carbon transformation-a review.Plant Soil Environ,2006,52(12):531-543.
    [151] Lu F,Wang XK,Han B,Ouyang ZY,Duan XN,Zheng H,Miao H.Soil carbon sequestrations by nitrogen fertilizerapplication,straw return and no-tillage in China's cropland.Global Change Biology,2009,15:281-305.
    [152] Ma J,Xu H,Cai ZC,Yagi K.Diurnal variation of CH4emission from rice field as affected by riceplant.Soils,2007,39:859-862.
    [153] Maestre FT,Cortina J.Small-scale spatial variation in soil CO2efflux in a Mediterranean semiarid steppe.AppliedSoil Ecology,2003,23(3):199-209.
    [154] Malhi SS,Nyborg M,Goddard T,Puurveen D.Long-term tillage,straw management and N fertilization effectson quantity and quality of organic C and N in a Black Chernozem soil.Nutr Cycl Agroecosyst,2011,90(2):227-241.
    [155] Malone S,Herbert DA,Holshouser DL.Evaluation of the LAI-2000plant canopy analyzer to estimate leaf area inmanually defoliated soybean.Agron J,2002,94:1012-1019.
    [156] Martin-Rueda I,Munoz-Guerra L M,Yunta F.Tillage and crop rotation effects on barley yield and soil nutrients ona Calciortidic Haploxeralf.Soil and Tillage Research,2007,92:1-9.
    [157] Masto RE,Chhonkar PK,Singh D,Patra AK.Changes in soil biological and biochemical characteristics in along-term field trial on a sub-tropical inceptisol.Soil Biol Biochem,2006,38:1577-1582.
    [158] Michel K, Matzner E. Nitrogen content of forest floor Qa Layers affects carbon pathways and nitrogenmineralization.Soil Biochemistry,2002,34:1807-1813.
    [159] Muhammad S,Müller T,Joergensen RG.Decomposition of pea and maize straw in Pakistani soils along agradient in salinity.Biol Fertil Soils,2006,43:93-101.
    [160] Ogle SM,Breidt FJ,Eve MD,Paustian K.Uncertainty in estimating land use and management impacts on soilorganic carbon storage for US agricultural lands between1982and1997.Global Change Biology,2003,9(11):1521-1542.
    [161] Olsson P, Linder S, Giesler R, Hogberg P. Fertilization of boreal forest reduces both autotrophic andheterotrophic soil respiration.Global Change Biology,2005,11(10):1745-1753.
    [162] Peng SS,Piao SL,Wang T,Sun JY,Shen ZH.Temperature sensitivity of soil respiration in different ecosystemsin China.Soil Biology and Biochemistry,2009,41:1008-1014.
    [163] Phillips RL,Zak DR,Holmes WE,White DC.Microbial community composition and function beneath temperatetrees exposed to elevated atmospheric carbon dioxide and ozone.Oecologia,2002,131(2):236-244.
    [164] Post WM,Kwon KC.Soil carbon sequestration and land use change:processes and potential.Global ChangeBiology,2000,6(3):317-327.
    [165] Priess JA,Koning GH,Veldkamp A.Assessment of interactions between land use change and carbon andnutrient fluxes in Ecuador.Agriculture Ecosystems and Environment,2001,85:269-279.
    [166] Puri G,Ashman MR.Relationship between soil microbial biomass and gross N mineralization.Soil BiolBiochem,1992,30:251-256.
    [167] Qi Y,Xu M.Separating the effects of moisture and temperature on soil CO2efflux in a coniferous forest in theSierra Nevada mountains.Plant and Soil,2001,237(1):15-23.
    [168] Qi Y,Xu M,Wu JG.Temperature sensitivity of soil respiration and its effects on ecosystem carbon budget:non-linearity begets surprises.Ecological Modeling,2002,153(1/2):131-142.
    [169] Raich JW,Potter CS.Global patterns of carbon dioxide emissions from soils.Global Biogeochemical Cycles,1995,9(1):23-26.
    [170] Raich JW,Schlesinger WH.The global carbon dioxide flux in soil respiration and its relationship to vegetation andclimate.Tellus B,1992,44(2):81-99.
    [171] Raich JW,Tufekcioglu A.Vegetation and soil respiration:Correlations and controls. Biochemistry,2000,48(1):71-90.
    [172] Rao BK,Siddaramappa R.Evaluation of soil quality parameters in a tropical paddy soil amended with rice residuesand tree litters.Eur J Soil Boil,2008,44:334-340.
    [173] Reth S,Reichstein M,Falge E.The effect of soil water content,soil temperature,soil pH-value and the root masson soil CO2efflux-A modified model.Plant and Soil,2005,268(1):21-23.
    [174] Reyes-Reyes BG,Alcántara-Hernández R,Rodríguez V,Olalde-Portugal V,Dendooven L.Microbial biomass ina semiarid soil of the central highlands of Mexico cultivated with maize or under natural vegetation.EuropeanJournal of Soil Biology,2007,43:180-188.
    [175] Rochette P, Desjardins RL, Pattey E. Spatial and temporal variability of soil respiration in agriculturefields.Canadian Journal of Soil Science,1991,71:189-196.
    [176] Rosacker LL,Kieft TL.Biomass and adenylate energy charge of agrassland soil during drying.Soil Biology andBiochemistry,1990,22:1121-1127.
    [177] Ruehr NK,Offermann CA,Gessler A,Winkler JB,Ferrio JP,Buchmann N,Barnard RL.Drought effects onallocation of recent carbon:From beech leaves to soil CO2effiux.New Phytologist,2009,184:950-961.
    [178] Rustad LE,Fernandez IJ.Experimental soil warming effects on CO2and CH4flux from a low elevation spruce-firforest soil in Maine,USA.Global Change Biology,1998,4:597-605.
    [179] Saetre P,Stark JM.Microbial dynamic sand carbon and nitrogen cycling following rewetting of soils beneath twosemi-arid plant species.Oecologia,2005,142(2):247-260.
    [180] Sainju UM,Jabro JD,Stevens WB.Soil carbon dioxide emission and carbon content as affected by irrigation,tillage,cropping system,and nitrogen fertilization.Journal of Environmental Quality,2008,37(1):98-106.
    [181] Sánchez ML,Ozores MI,López MJ,Colle R,Torre BD,García MA,Pérez I.Soil CO2fluxes beneath barleyon the central Spanish plateau.Agricultural and Forest Meteorology.Agricultural and Forest Meteorology,2003,118:85-95.
    [182] Saowakon H,Georg C,Banyong T.Dynamics of residue decomposition and N2fixation of grain legumes uponsugarcane residue retention as an alternative to burning.Soil Till Res,2008,99:84-97.
    [183] Schlesinger WH,Andrews JA.Soil respiration and the global carbon cycle. Biogeochemistry,2000,48:7-20.
    [184] Selsted MB,Linden L,Ibrom A,Michelsen A,Larsen KS,Pedersen JK,Mikkelsen TN,Pilegaard K,Beier C,Ambus P.Soil respiration is stimulated by elevated CO2and reduced by summer drought:three years ofmeasurements in a multifactor ecosystem manipulation experiment in a temperate heathland (CLIMAITE).GlobalChange Biology,2012,18:1216-1230.
    [185] Sharma P,Rai SC,Sharma R,Sharma E.Effects of landuse change on soil microbial C,N and P in a Himalayanwatershed.Pedobiologia,2004,48:83-92.
    [186] Singh LI,Yadava PS.Spatial distribution of microbial biomass in relation to land-use in subtropical systems ofnorth-east India.Tropical Ecology,2006,47(l):63-70.
    [187] Sistla SA,Asao S,Schimel JP.Detecting microbial N-limitation in tussock tundra soil:implications for Arctic soilorganic carbon cycling.Soil Biology and Biochemistry,2012,55:78-84.
    [188] Smith P.Land use change and soil organic carbon dynamics.Nutr Cycl Agroecosyst,2008,81(2):169-178.
    [189] Smolander A,Kitunen V.Soil microbial activities and characteristics of dissolved organic C and N in relation totree species.Soil Biology and Biochemistry,2002,34(5):651-660.
    [190] Soe ARB,Giesemann A,Anderson TH,Weigel HJ,Buchmann N.Soil respiration under elevated CO2and itspartitioning into recently assimilated and older carbon sources.Plant and Soil,2004,262:85-94.
    [191] Soon YK,Arshad MA,Haq A,Lupwayi N.The influence of12years of tillage and crop rotation on total andlabile organic carbon in a sandy loam soil.Soil and Tillage Research,2007,95:38-46.
    [192] Sotta ED,Meir P,Malhi Y,Nobre AD,Hodnett M,Grace J.Soil CO2efflux in a tropical forest in the centralAmazon.Global Change Biology,2004,10:601-617.
    [193] Sparling GP.Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soilorganic matter.Aust J Soil Res,1992,30:195-207.
    [194] Subke JA, Voke NR, Leronni V, Garnett MH, Ineson P. Dynamics and pathways of autotrophic andheterotrophic soil CO2efflux revealed by forest girdling.Journal of Ecology,2011,99:186-193.
    [195] Swift RS.Sequestration of carbon by soil.Soil Sci,2001,166:858-871.
    [196] Taylor TP,Wilson B,Mills MS,Burns RG.Comparison of microbial numbers and enzymatic activities insurface soils and sub-soils using various techniques.Soil Biol Biochem,2002,34:387-401.
    [197] Valentini R,Mattenucei G,Dolman AJ,Schulze ED,Rebmann C,Moors EJ,Granier A,Gross P,JensenNO,Pilegaard K,Lindroth A,Grelle A,Bernhofer C,Grnwald T,Aubinet M,Ceulemans R,KowalskiAS,Vesala T,Rannik ü,Berbigier P,Loustau D,Gumundsson J,Thorgeirsson H,Ibrom A,MorgensternK,Clement R,Moncrieff J,Montagnani L,Minerbi1,Jarvis G.Respiration as the main determinant of carbonbalance in European forest.Nature,2000,404:862-86.
    [198] Van Gestel M,Ladd JN,Amato M.Carbon and nitrogen mineralization from two soils of contrasting texture andmicroaggregate stability:Influence of sequential fumigation drying and storage.Soil Biology and Biochemistry,1991,23:313-322.
    [199] Verburg PSJ,Arnone III JA,Obrist D,Schorran DE,David Evans,Leroux-swarthout D,Johnson DW,Luo YQ,Coleman JS.Net ecosystem carbon exchange in two experimental grassland ecosystems.Global Change Biology,2004,10:498-508.
    [200] Verburg PSJ,Van Dam D,Hefting MM,Tietema A.Microbial transformations of C and N in a boreal floor asaffected by temperature.Plant and Soil,1999,208:187-197.
    [201] Wallenstein MD,Hall EK.A trait-based framework for predicting when and where microbial adaptation to climatechange will affect ecosystem functioning.Biogeochemistry,2012,109:35-47.
    [202] Wardle DA.A cormparative assessment of factors which influence microbial biomass carbon and nitrogen levels insoil.Biological Reviews,1992,67:321-358.
    [203] Wardle DA,Ghani A.A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance andecosystem development.Soil Biol Biochem,1995,27:1601-1610.
    [204] Weltzin JF,Tissue DT.Resource pulses in arid environ ments-patterns of rain,patterns of life.NewPhytologist,2003,157(2):171-173.
    [205] West TO,Marland G.A synthesis of carbon sequestration,carbon emission,and net carbon flux from agriculture:comparing tillage practices in the United States.Agriculture Ecosystems Environment,2002,91:217-232.
    [206] Wichem F,Luedeling E,Müller T,Joergensen RG,Buerkert A,Ellert BH,Janzen HH,Entz T.Fieldmeasurements of the CO2evolution rate under different crops during an irrigation cycle in a mountain oasis ofOman.Applied Soil Ecology,2004,25(1):85-91.
    [207] Wildung RE,Garland TR,Buschbom RL.The interdependent effects of soil temperature and water content on soilrespiration rate and plant root decomposition in arid grassland soils.Soil Biology and Biochemistry,1975,7:373-378.
    [208] Williams MA,Rice CW,Owensby CE.Carbon dynamics and microbial activity in tallgrass prairie exposed toelevated CO2for8years.Plant and Soil,2000,227:127-137.
    [209] Wise M,Calvin K,Thomson A,Clarke L,Bond-Lamberty B,Sands R,Smith S,Janetos A,EdmondsJ.Implications of limiting CO2concentrations for land use and energy.Science,2009,324:1183-1186.
    [210] Woodwell GM,Whittaker RH,Reiners WA,Likens GE,Delwiche CC,Botkin DB.The biota and the worldcarbon budget.Science,1978,199:141-146.
    [211] Wu LS,Wood Y,Jiang PP,Li LQ,Pan GX,Lu JH,Chang AC,Enloe HA.Carbon sequestration anddynamics of two irrigated agricultural soils in California.Soil Science Society of America Journal,2008,72(3):808-814.
    [212] Xu M,Qi Y.Soil-surface CO2efflux and its spatial and temporal variations in a young ponderosa pine plantationin northern California.Global Change Biology,2001,7:667-677.
    [213] Zou J,Huang Y,Zhang XH,Wang YS,Chen YQ.Static opaque chamber-based technique for determination ofnet exchange of CO2between terrestrial ecosystem and atmosphere.Chinese Science Bulletin,2004,49(4):381-388.
    [214] Yan LM,Chen SP,Huang JH,Lin GH.Water regulated effects of photosynthetic substrate supply on soil respirationin a semiarid steppe.Global Change Biology,2011,17:1990-2001.
    [215] Yu JQ,Ye SF,Zhang MF,Hu WH.Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus)and allelochemicals,on photosynthesis and antioxidant enzymes in cucumber.Biochemical systematics and Ecology,2003,31:129-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700