用户名: 密码: 验证码:
施用有机物料对农田固碳减排及生产力的影响:田间试验及整合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,以全球变暖为主要表现的气候变化是当今人类社会面临的重大环境问题之一,全球农业面临着粮食安全和固碳减排的双重挑战。采用良好农业施肥和农田管理措施提高农田作物生产力并促进温室气体减排是应对气候变化中农业实践的技术需求。以往研究表明,有机无机配合施肥有利于农田固碳并促进农田生产力;但施用有机物料特别是秸秆有机物料转化的生物质炭对土壤固碳、温室气体减排与作物生产力能否达到共赢,是否具有普遍性和持续性并没有充分研究认识。本论文通过跨地域长期施肥试验、秸秆生物质炭田间试验的观测分析,研究施用有机物料(有机无机配合施肥或生物质炭还田处理)对以稻田为代表的农田生态系统土壤有机碳变化、土壤肥力变化、温室气体排放变化和作物生产力变化;并通过整合分析,对生物质炭施用后作物生产力变化与固碳减排变化的协同性、持续性和普遍性,提出有机无机施肥的增产减排效应,揭示其对于作物可持续生产和温室气体可持续减排的意义,为减缓气候变化农业技术选择和秸秆生物质炭农业应用提供科学依据和技术支撑。
     主要结果如下:
     1.首先对我国南方六个稻田生态系统长期不同施肥田间试验中土壤肥力、有机碳积累率和土壤呼吸速率变化进行了系统监测和比较研究。这些长期试验经历了近30年的长期不同施肥处理,主要施肥模式包括:不施肥对照(CK)、氮、磷和钾肥配合施用(NPK)、化肥与秸秆配合施用(NPKStr)及化肥配合畜禽粪便施用(NPKOM)。
     长期不施肥处理下(CK),不同地区土壤有机碳平均增加量为0.13g kg-1,年均增长率为61.14mg kg-1a-1;与不施肥对照相比,长期氮磷钾肥配施(NPK)、氮磷钾肥配施秸秆(NPKStr)和氮磷钾配施粪肥处理(NPKOM)下显著促进土壤有机碳积累,不同地区平均增加量分别为3.64、5.12和6.10g kg-1,年均增长率分别为136.10、195.66和225.27mg kg-1a-1。长期氮磷钾肥配施(NPK)下不同地区土壤呼吸速率平均为2.13μmol m-2s-1,显著低于对照(2.57μmol m-2s-1);而氮磷钾肥配施秸秆(NPKStr)和氮磷钾配施粪肥处理(NPKOM)下土壤呼吸速率显著高于不施肥对照(CK),分别为3.02和3.11μmol m-2s-1。单位微生物量碳土壤呼吸作用,即微生物代谢熵,以不施肥处理(CK)最高,为5.1g kg-1d-1,化学肥料与有机物料配施次之,氮磷钾肥配施最低,不同地区的平均值为3.2g kg-1d-1。
     2.长期不同施肥下稻田温室气体与水稻产量及土壤肥力变化。采用静态暗箱-气相色谱法对湖南望城和江西进贤两个长期试验点早稻-晚稻-冬季休闲整个轮作周期温室气体排放通量进行了田间原位观测,探讨不同肥料施用模式对稻田温室气体排放的影响。与不施肥对照相比(CK),肥料施用显著提高了土壤肥力水平和生产力,且长期有机无机肥配合施用水稻产量增加幅度显著高于单纯施用化学肥料。在湖南望城,有机无机肥配合施用水稻产量是对照1.8倍,是单施化肥的1.1倍;在江西进贤,化肥配合施猪粪下水稻产量是对照2.9倍,是单施化肥的1.9倍。整个轮作周期内,三种温室气体排放量湖南望城点均高于江西进贤点。在湖南望城,长期不同肥料施用对CO2排放没有影响,但肥料施用显著增加了CH4和N2O排放,不同肥料施用模式下两种温室气体排放没有显著差异。在江西进贤,CK、NK和NPK处理下三种温室气体排放没有显著差异,但化肥与有机肥配施显著提高三种温室气体的排放通量。受土壤水分条件、水稻种植和肥料施用影响,不同时期(早稻、晚稻和休闲期)三种温室气体排放量不同。在湖南望城,CO2在三个时期都有排放,以休闲期排放最高;CH4排放主要集中在早稻和晚稻种植期,且晚稻排放量显著低于早稻;而N2O排放晚稻高于早稻。在江西进贤,CO2在休闲期排放最高;CH4排放量早稻低于晚稻而N2O排放早稻高于晚稻。在两个点,休闲期N2O均有一定量的排放。与不施用对照相比,虽然肥料施用对综合温室效应(GWP)有不同程度的促进作用,但由于作物产量增加,导致单位产量的温室气体排放(GHGI)并没有显著增加。
     CO2、CH4和N2O排放在整个轮作周期内的排放格局受土壤水分管理和土壤温度的影响。CO2和N2O排放主要出现在水稻生长季的排放水期和休闲期;CH4排放主要出现有水稻生长报淹水期。在观测到的温度范围内,CO2和N2O排放速率随着土壤5cm温度增加呈指数增长,CH4排放与土壤温度呈正线性相关关系。
     3.稻田生物质炭田间试验固碳减排试验研究。布置了多地的秸秆生物质炭稻田土壤施用田间试验,进一步采用静态暗箱-气相色谱法监测分析了生物质炭和氮肥施用下水稻生长季温室气体排放、水稻生长及土壤性质变化进行了观测研究。生物质炭施用显著增加了表层土壤pH、有机碳和速效钾含量,增加幅度随着施用量的增加而增加;对土壤全氮、速效磷含量没有影响;但是显著降低了土壤容重。生物质炭对土壤微生物活性有一定的影响,增加了蔗糖酶活性;土壤中微生物碳含量受生物质炭和氮肥施用的共同影响。当无氮肥施用时,随着生物质炭用量增加微生物碳含量降低,而当有氮肥施用时,随着生物质炭用量增加微生物碳含量升高。虽然生物质炭对水稻产量和生物量均没有显著影响,但是生物质炭施用影响了水稻地上部对养分吸收,主要表现为对氮素吸收量下降和硅吸收增加。当生物质炭施用量为40t ha-1时,收获时水稻籽粒和秸秆氮吸收分别比对照降低了16.9%和28.8%。生物质炭通过增加硅的输入量和土壤pH,进而改善土壤硅的供应能力,最终促进了水稻硅吸收增加。不同试验点水稻硅吸收平均增加幅度为264%。生物质炭施用显著降低水稻生长季氧化亚氮排放。当用量为40t ha-1时,其排放系数比对照降低53.7%,对甲烷和二氧化碳排放没有显著影响。生物质炭施用,降低了整个水稻生长季综合增温潜势和温室气体排放强度。
     4.生物质炭农田固碳减排及其持续性:水田和旱地对比研究。整合分析了生物质炭施用于水田和旱地后,连续两年作物产量、土壤有机碳和温室排放变化,结果表明:生物质炭施用于农田土壤,显著提高旱地作物产量,多个试验点平均增加幅度为8.5%;而对水稻产量没有显著影响。生物质炭施用增加了土壤有机碳含量,但土壤呼吸作用没有相应增加。土壤有机碳平均增加幅度为24.7%(20t ha-1)和48.3%(40t ha-1)。无论是水田还是旱地,生物质炭施用均显著降低了N2O排放;在水田中随着生物质炭用量增加,N2O降低幅度增加,但在旱地中不同用量下N2O排放变化没有显著差异。生物质炭施用没有增加单位面积温室气体气体的排放量(GWP),但降低了旱地生态系统单位产量温室气体的排放量(GHGI);而在稻田生态系统中,当生物质炭用量为40t ha-1时,单位产量温室气体的排放量也显著降低。生物质炭对N2O减排效果在不同地区间具有一致性,且一次放入后能够持续降低N2O排放。
     5.生物质炭土壤施用的作物生长效应整合分析通过整合分析方法。对全球尺度生物质炭施用后作物产量和地上部生物量变化幅度及影响因素进行了统计分析。生物质炭施用能够显著增加作物产量和地上部生物量,与对照相比,其增加的幅度分别为8.4%和12.5%。作物生长对生物质施用的响应主要受土壤因素、生物质炭生产原料及作物类型的影响。首先不同土壤对生物质炭施用后作物生产力的响应不同。生物质炭施用于砂性和粘性土壤中,作物生产力的增加幅度分别为29.0%和16.0%,显著高于壤质土壤;施用于强酸性和酸性土壤中的增产幅度分别为30.2%和14.8%,显著高于中性和碱性土壤。来源于畜禽粪便的生物质炭施用土壤后作物产量增加幅度为28.3%,是其它原料炭的2-3倍。不同类型作物对生物质炭施用的响应以蔬菜类和豆科类作物增产效果最好,分别为30.3%和28.6%,远高于其它大田作物。在所有的田问试验中,旱地施用生物质炭后,作物生产力的增加幅度为10.6%,显著高于水田(5.6%)。此外,生物质炭的生产条件(炭化温度)、试验类型对作物生产力对生物质炭响应也有不同程度影响;盆栽试验可能会高估生物质炭的增产效果。
     综上所述,长期不同有机物料还田能够显著增加稻田土壤的生产力和有机碳积累。与单施化肥相比,有机无机肥料配合施用虽然增加单位面积温室气体排放量,但并没有显著提高单位产量温室气体的排放。将作物秸秆经低温裂解制成生物质炭后再还田,在快速度增加土壤有机碳积累的同时,还能够显著降低温室气体排放,尤其是氧化亚氮排放,是较为理想的农田作物秸资源化利用、改善土壤、实现农业固碳减排措施。因此,秸秆生物质炭作为新型的有机物料土壤施用是一种可以普遍提高土壤肥力,持续性降低农田温室气体排放的良好途径。
Climate change, resulted from global warming, is one of the important issues that challenge the humankind. The global agriculture need to provide enough food to the increasing population and mitigate greenhouse gases emission. Therefore, it is urgent to enhance crop productivity and decrease greenhouse gases emission though suitable agricultural management practices, such as appropriate fertilization. The combination of chemical and organic fertilization has been evidenced to increase agriculture productivity. However, it is still unclear whether a co-benefit can be obtained either for soil carbon sequestration and greenhouse gases mitigation or for crop productivity improvement. It is still unclear that whether these benefits are universe and how long they can persist. A cross-site field experiment study was conducted to evaluate the effect of organics (crop straw, poultry manure and straw biochar) soil amendment on changes of soil organic carbon (SOC) storage, soil fertility, greenhouse gases emission and crop productivity in rice paddies. A meta-analysis was also done to investigate the changed of crop productivity with the amendment of biochar globally. We were trying to provide a scientific and technology base for the policy choose in mitigate climate change in Agriculture.
     The conclusions were as follows:
     1. A survey was conducted to evaluate the soil respiration rate influenced by different fertilization regime using an auto soil respiration monitor system. These six experimental sites are located in the South part of China, and had been practiced under different fertilization for nearly30years. The treatments at each site included:the control without any fertilizer amendment (CK), the amendment with chemical fertilizer (NPK), the combination of chemical fertilizer and crop straw, and the combination of chemical fertilizer and poultry manure (NPKOM). Among the six sites, rice growing under long-term no fertilization increased SOC with mean value of0.13g kg-1and mean annual increase rate of61.14mg kg-1a-1. Compared with the CK, long-term fertilization promoted the SOC accumulation at all sites, with mean values of3.64,5.12and6.10g kg-1for NPK, NPKStr, and NPKOM, respectively. The mean annual increase rates for the three treatments were136.10,195.66and225.27mg kg-1a-1. The average respiration rate under NPK at six sites was2.13μmol m-2s-1, which was significantly lower than the CK (2.57μmol m-2s-1). As expected, the amendment of crop straw and poultry manure increased soil respiration compared with the CK, with mean value of3.02and3.11μmol m-2s-1for NPKStr and NPKOM, respectively. The average microbial quoit of different sites was5.1under the CK, which higher than the other treatments.
     2. In order to evaluate to greenhouse gases emission under different fertilization regimes, we conducted greenhouse gases monitoring for one year including early rice, late rice and fallow period at two of the six sites mentioned above. Compared with the CK, the application of fertilizer increased soil fertility and rice productivity. The highest rice yield was observed under treatments with organic amendment at both sites. At Wangcheng, rice yield under organic amendment was1.8and1.1times of that under CK and NPK. Whereas, the rice yield under NPKOM was2.9and1.9times of that under CK and NPK at Jinxian. The greenhouse gases emission rate was higher at Wangcheng site than Jinxian within the whole year. At Wangcheng, no difference was observed among different treatments. However, the application of fertilizer increased methane and nitrous oxide emission compared with the control. The amendment of crop straw and poultry manure did not stimulate methane and nitrous oxide emission. At Jinxian, no difference was found among the treatments of CK, NK and NPK in terms the three greenhouse gases, but the amendment of poultry manure significantly promoted the emission of carbon dioxide, methane and nitrous oxide. The amount of greenhouse gas emission emitted at early rice, late rice and fallow period was different as a result of water management regimes, rice cultivation and fertilization. At Wangcheng, a great proportion of carbon dioxide was emited at fallow period while methane was emitted during the rice growing with higher emission rate at early rice. Nitrous oxide emission occurred at three periods with higher emission rate at late rice than early rice. At Jinxian, in contrast to Wangcheng, methane emission was higher at late than early rice while nitrous oxide was higher at early than late rice. There was also a considerable amount of N2O at fallow period at both sites. Although the amendment of organics increased the global warming potential compared with the control, the greenhouse gases emission intensity did not increased under treatments with straw and manure amendment due to the increase in rice yield.
     The emission patterns of three greenhouse gases were affected by water regimes and soil temperature. The emission peaks of carbon dioxide and nitrous oxide mainly occurred after the drainage of flooding water and in the fallow period; whereas, methane emission only occurred when the soil was flooded with water. The emission rate of carbon dioxide and nitrous oxide increases exponentially with the increase in soil temperature at5cm. While methane emission increased with soil temperature linearly with soil temperature.
     3. A new experiment was established at Guanghan, Sichuan province. The objectives were to evaluate the influence of biochar amendment on rice production, soil improvement and greenhouse gases emission. Biochar amendment increased soil pH, organic carbon and available K concentration, with no influence on soil total N and available P, but decreased soil bulk density. The activity of invertase was also promoted with the amendment of biochar. There was a significant interaction effect of biochar and N fertilizer on soil microbial biomass carbon. In the absence of N fertilizer, the soil microbial biomass carbon decreased with the increase in biochar amended amount. However, the soil microbial biomass carbon increased with the increase in biochar amended amount in the presence of N fertilizer.
     Biochar addition did not affect the yield of rice grain and biomass, but it significantly decreased N uptake and increased Si uptake. Nitrogen uptake by grain and rice straw by rice harvest was decreased by16.9%and28.8%respectively under biochar application rate of40t ha-1. The promotion of Si by rice was resulted from the input of Si with biochar and the elevation of soil pH. The average increase of Si in rice straw was264%compared with the control.
     The amendment of biochar significantly decreased nitrous oxide emission, with emission factor decreased by53.7%under40t ha-1, while, the emission of methane and carbon dioxide were not affected by biochar addition. The global warming potential (GWP) and greenhouse gases emission intensity was also decreased correspondingly with biochar during the whole rice growing season.
     4. We investigated the potential of greenhouse gases mitigation potential of biochar amendment into agricultural soils and its sustainability. The biochar effects was analyszed on crop yield, SOC concentration and greenhouse gases emission by comparing the effects between paddy rice and dry cropland. The results showed that the amendment of biochar consistly and significantly increased crop yield in dry croplands, but without any effect on rice yield. The average increase in dry cropland yield was8.5%. Biochar addition increased SOC concentration by24.7%and48.3%for20and40t ha-1, respectively. However, soil respiration was no affected by biochar addition. The amendment of biochar, either in rice paddies or in dry croplands, consistently and significantly decreased N2O emission. The decrease in N2O was propotinaly related with biochar application rate in rice paddies; whereas, there was no difference in N2O mitigation between application rate of20and40t ha-1for dry croplands. Biochar decreased the greenhouse gases emission intensity (GHGI) in both systems.
     5. A meta-analysis was conducted to access the effect of biochar soil amendment on crop productivity including yield and above ground biomass. And we were also trying to obtain the key factors that influence crop productivity response to biochar addition. By summarizing the leteratures released before April1st,2013using a meta-analysis, we found that biochar soil amendment increased crop yield and above ground biomass by8.4%and12.4%, respectively. The response of crop productivity to biochar addition was regulated by many factors including soil texture, pH, biochar feedstock and crop types. Higher crop productivity can be obtained when biochar was applied to soils with sandy and clay textures and soils with low pH. The crop productivity increased by29.0%,16.0%,30.2%and14.8%for sandy, clay, strong acid and acid soils, respectively. The amendment of manure biochar increased crop productivity by28.3%, which was2to3times of those other biochar feedstocks. The best response of crop productivity was found for vegetables and beans and the yield increase was30.3%and28.6%, respectively. It is very interesting that biochar increased crop productivity by10.6%for dry land crops which was significantly higher than that for rice paddies (5.6%). Besides, there were some other factors that influence crop productivity response to biochar addition. These factors included pyrolyzing temperature of biochar and experimental types. The results from pot studies may overestimate the yield increase than in field studies.
     In conclusion, long-term different organics amendment significantly increased rice yield and SOC accumulation. Although the combination of chemical fertilizer and organics promoted the global warming potential in rice paddy, it did not increase greenhouse gases emission intensity due to the increase in rice yield. It is a good way to treat crop straw by converting it to biochar through pyrolysis and then applied to soil. Biochar could increase SOC content in a very short time and decrease nitrous oxide emission during crop growing period. Therefore, biochar production and amendment in agricultural soils would be an efficient way to utilize organic waste, improve soil fertility and mitigate greenhouse gases emission in agriculture.
引文
Akiyama H, Yagi K, Yan X. Direct N2O emissions from ricepaddy fields:summary of available data [J]. Global Biogeochemical Cycles,2005,19, GB1005, doi:10.1029/2004GB002378.
    Asai H, Samson, K B, Stephan M H, et al.2009. Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield [J]. Field Crops Research,2009,111:8184
    Bachelet D, Kern J, Tolg M. Balancing the rice carbon budget in China using a spatially distributed data [J]. Ecological Modeling,1995,79:167-177
    Batjes N H. Carbon and nitrogen in the soils of the world [J]. European Joournal of Soil Science,1996,47: 151-163
    Biederman L A, Harpole W S. Biochar and its effects on plant productivity and nutrient cycling:a meta-analysis. Global Change Biology and Bioenergy,2013,5:202-214
    Brodowski S, Amelung W, Haumaier, L, et al. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy [J]. Geoderma,2005,128:116-129
    Cai Z C, Xing G X, Shi S L, et al. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management [J]. Plant and Soil,1997,196:7-14
    Case S D C, McNamara N P, Reay D S, et al. The effect of biocha addition on N2O and CO2 emissions from a sandy loam soil-the role of soil aeration [J]. Soil Biology and Biochemistry,2012,51:125-134
    Chan K Y, van Zwieten L, Meszaros I, et al. Agronomic values of greenwaste biochar as a soil amendment [J]. Australian Journal of Soil Research,2010,45:629-634
    Chan K Y, van Zwieten L, Meszaros I, et al. Using poultry litter biochars as soil amendments. Australian Journal of Soil Research,2008,46:437-444
    Cheng K, Ogle S, Parton W, et al. Stimulating greenhouse gas mitigation potentials for Chinese croplands using the DAYCENT ecosystem model [J]. Global Change Biology,2013, doi: 10.1111/gcb.12368
    Clough T J, Bertram J E, Ray J L, et al. Unweathered wood biochaimpact on nitrous oxide emissions from a bovine-urine amended pasture soil [J]. Soil Science Society of American Journal,2010,74: 852-860
    Clough T J, Bertram J E, Ray J L, et al. Unweathered wood biochar impact on nitrous-oxide emssions from a bovine-urine-amended pasture soil [J]. Soil Science Society of Americal Journal 2010,74:852-860
    Feng S Y, Tan S H, Zhang A F, et al. Effect of household land management on cropland topsoil organic carbon storage at plot scale in a red earth soil area of South China [J]. Journal of Agricultural Sciety, 2011,149:557-566
    Frokling S, Qiu J, Boles S, Xiao X, et al. Combing remote sensing and ground census data to develop new maps of the distribution of rice agriculture in China [J]. Global Biogeochemical Cycles,2002,16: 1091-1101
    Glaser B, Lehmann J, Zech W. Ameliorating physical and chemical properties of highly wearthered siols in the tropics with charcoal-a review [J]. Biology and Fertility of Soils,2002,35:219-230
    Guo L B, Gifford R M. Soil carbon stocks and land use change:a meta analysis [J]. Global Change Biology, 2002,8:345-360.
    Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology [J]. Ecology,1999,80:1150-1156
    Holzapfel-Pschorn A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil [J]. Plant and Soil,1986,92,223-233
    Hossain M K, Strezov V, Chan K Y, et al. Agronomic properties of wastewater sludge biochar and bioavailability of metals in production of cherry tomato (Lycopersicon esculentum) [J]. Chemosphere, 2010,78:1167-1171
    Huang Y, Zhang W, Zheng X H, et al. Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database [J]. Acta Ecologica Sinica,2006,26(4):980-988
    Huang Y, Zou J W, Zheng X H, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C:N ratios [J]. Soil Biology and Biochemistry,2004,36:973-981
    IPCC (Intergovernmental Panel on Climate Change),2007a. Agriculture. In:Metz, B., Davidson, O.R., Bosch, P.R. (Eds). Climate Change 2007:Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom/New York, NY, USA.
    IPCC (Intergovernmental Panel on Climate Change),2007b. Changes in atmospheric constituents and in radiative forcing. In:Solomon S., Qin D., Manning M., et al. (Eds), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York,498-540
    IRRI,2009. Rice ecosystems, http://www.ppi-ppic.org/ppiweb/filelib.nsf/0/6191D544DF714DEF48257 074002E78E6/$file/Rice%20HB%20p2-5.pdf
    Jeffery S, Verheijen F G A, van der Velde M, et al. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis [J]. Agricuture, Ecosystem and Environment,2011,144:175-187
    Jenkinson D D. Determination of microbial biomass carbon and nitrogen in soils [M]. In:Wilson, J. R. (Ed.), Advances in nitrogen cycling in agricultural ecosystems. CAB International, Wallingford, UK, 1988,368-386.
    Jia J X, Li B, Chen Z Z, et al. Effects of biochar application on vegetable production and emissions of N2O and CH4 [J]. Soil Science and Plant Nutrition,2012,58:503-509
    Jones D L, Murphy D V, Khalid M, et al. Short-term biochar-induced increase in soil CO2 release is both biotically and abiotically mediated [J]. Soil Biology and Biochemistry,2011,43:1723-1731
    Karhu K, Mattila T, Bergstrom I, et al. Biochar addition to agricultural soil increased CH4 uptake and water holding capacity-Results from a short-term pilot field study [J]. Agricuture, Ecosystem and Environment,2011,140:309-313
    Kleber M. What is recalcitrant soil organic carbon? [J]. Environment Chemestry,2010,7:320-332
    Knox J W, Matthews R B, Wassmann R. Using a crop/soil simulatioin model and GIS techniques to assess methane emissions from rice fields in Asia Ⅲ [J]. Nutrient Cycling Agroecosystem,2000, 58:179-199
    Korschens M. The importance of long-term field experiments for soil science and environmental research-a review [J]. Plant Soil Environment,2006,52:1-8
    Kuzyakov Y, Friedel J K, Stahr K. Review of mechanisms and quantification of priming effects [J]. Soil Biology and Biochemistry,2000,32:1485-1498
    Kuzyakov Y, Subbotina I, Chen H, et al. Black carbon decomposition and incorporation into soil microbial biomass estimated by C-14 labeling [J]. Soil Biology and Biochemistry,2009,41:210-219
    Lehmann J, da Silva Jr J P, Sreiner C, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin:fertilizer, manure and charcoal amendments [J]. Plant and Soil,2003,249:343-357
    Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems-a review [J]. Mitigation and Adaption Strategies for Global Change,2006,11:403-427
    Lehmann J. A handful of carbon [J]. Nature,2007,447:143-144
    Li C S, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems:Sensityvity and upscaling [J]. Global Biogeochem Cycles,2004,18:GB1043, DOI:10.1029/2003GB002045
    Li C S, Mosier A, Wassmann R, et al. Modeling greenhouse gas emissions from rice-based production systems:Sensitivity and upscaling [J]. Global Biogeochem Cycles,2004,18:GB1043, DOI: 10.1029/2003GB002045.
    Li Z P, Han F X, Su Y, et al. Assessment of soil organic and carbonate carbon storage in China [J]. Geoderma,2007,138:119-126
    Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity of soils [J]. Soil Science Society of America Journal,2006,70,1719-1730
    Linquist B, van Groenigen K J, Adviento-Borbe M A, et al. An agronomic assessment of greenhouse gas emissions from major cereal crops [J]. Global Change Biology,2012,18,194-209
    Lloyd J, Taylor J A. On the temperature dependence of soil respiration [J]. Functional Ecology,1994,8: 315-323
    Lou Y, Ren L, Li Z, et al. Effect of Rice Residues on Carbon Dioxide and Nitrous Oxide Emissions from a Paddy Soil of Subtropical China [J]. Water Air and Soil Pollution,2007,178:157-168
    Lu F, Wang X, Han B, et al. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland [J]. Global Change Biology,2009,15:281-305
    Luo Y, Durenkamp M, Nobili M D, et al. Short term soil priming effects and the mineralization of biochar following its incorporation to soils of different pH [J]. Soil Biology and Biochemistry,2011,43: 2304-2314
    Ma J F, Miyake Y, Takahashi E. Silicon as a beneficial element for crop plants, in Datnoff L, Snyder G, Korndorfer G.:Silicon in Agriculture, Elsevier Science, New York,2001, pp.17-39
    Ma J, Xu H, Yagi K, et al. Methane emission from paddy soils as affected by wheat straw returning mode [J]. Plant and Soil,2008,313:167-174
    Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombia savanna oxisol [J]. Plant and Soil,2010,333:117-128
    Makabe S, Kakuda K I, Sasaki Y, et al. Relationship between mineral composition or soil texture and available silicon in alluvial paddy soils on the Shounai Plain, Japan [J]. Soil Science and Plant Nutrition,2009,55:300-308
    Matthews R B, Wassmann R, Knox J W, et al. Using a crop/soil simulation model and GIS techniques to assess methane emissions from rice fields in Asia Ⅳ[J]. Upscaling to national levels. Nutirent Cycling Agroecosystem,2000,58:201-217
    Mitchell C C, Arriaga F J, Entry J A, et al. The Old Rotation,1896-1996. Special publication of the Alabama Agriculture Experiment Station, Auburn University, AL,1996
    Mitchell C C, Reeves W, Hubbs MD. The Old Rotation,1996-1999. Agronomy and Soils Dep. Ser.No. 228. Alabama Agriculture Experiment Station, Auburn University, AL,2000
    Mosier A, Kroeze C, Nevison, et al. Closing the global N2O budget:nitrous oxide emissions through the agricultral nitrogen cycle-OECD/IPCC/IEA phase II development of IPCC guidelines for national greenhouse gas inventory methodology [J]. Nutrient chdling in Agricecosystems,1998,52:225-248
    Murty D, Kirschbaum M F, Mcmurtrie R E, et al. Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature [J].Global Change Biology,2002,8:105-123
    Neue H U, Sass R L. The budget of methane from rice fields [J]. IGACtivities newsletter,1998,12:311
    Noble G H. Meta-analysis:methods, strengths, weaknesses, and political uses [J]. Journal of Laboratory and Clinical Medicine,2006,147:7-20
    Novak J M, Busscher W J, Watts, et al. Short-term CO2 mineralization after additions of biochar and switchgrass to a Typic Kandiudult [J]. Geoderma,2010,154:281-288
    Olivier J G J, Bouwman A F, van der Hoek K W, et al. Global air emission inventories for anthropogenic sourees of NOx, NH3 and N2O in 1990 [J]. Envorinmenatal Pollurion,1998,102:135-148.
    Orchard V A, Cook F J. Relationship between soil repiration and soil moisture [J]. Soil Biology and Biochemistry,1983,15:447-453
    Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of tops oil organic carb on in China's paddy soils [J]. Global Change Biology,2003,10:79-92
    Pan G X, Smith Pete, Pan W N. The role of soil organic matter in maintaining the productivity and yield stability of cereals in China [J]. Agriculture, Ecosystems and Environment,2009,129:344-348
    Sass R L, Fischer, F M, Harcombel P A, et al. Methane production and emission in a Texas agriculture wetland [J].Global Biogeochemical Cycles,1990,4:47-681
    Sass R L, Fisher F M, Wang B, et al. Methane emission from rice fields:The effect of floodwater management [J]. Global Biogeochemical Cycles,1992,6:249-262.
    Sass R L, Fisher Jr F M, Ding A, et al. Exchange of methane from rice fields:National, regional, and global budgets [J]. Journal of Geophysical Research:Atmospheres,1999,104:26943-26951
    Scheer C, Grace P, Rowlings D, et al. Effect of biochar amendment on the soil-atmosphere exchange of greenhouse gases from an intensive subtropical pasture in notthetrn New South Wales, Australia [J]. Plant and Soil,2011,345:47-58
    Schmidt M W I, Torn M S, Abiven S, et al. Persistence of soil organic matter as an ecosystem property [J]. Nature,2011,478:49-56
    Shang Q Y, Yang X X, Gao C M, et al. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems:a 3-year field measurement in long-term fertilizer experiments [J]. Global Change Biology,2011,17:2196-2210
    Singh B P, Hatton B J, Singh B, et al. Influence of biochars on nitrous oxide emisson and nitrogen leaching from two contrastin soil s[J]. Journal of Environental Quality,2010,39:1224-1235
    Six J, Eliiot E T, Paustial K. Soil macroaggregate turnover and microaggregate formation:a mechanism for C sequestration under no-tillage agriculture [J]. Soil Biology and Biochemistry,2000,32: 2099-2103
    Smith J L, Collins H P, Bailey V L. The effect of young biochar on soil respiration [J]. Soil Biology and Biochemistry,2010,42:2345-2347
    Song G H, Li L Q, Pan G X. Top soil organic carbon storage of China and its loss by cultivation [J]. Biogeochemestry,2005,74:47-62
    Spokas K A, Baker J M, Reicosky D C. Ethylene:potential key for biochar amend impacts [J]. Plant and Soil,2010,333:443-452
    Spokas K A, Reicosky D C. Impacts of siteen different biochars on soil greenhouse gas production[J]. Annals of Environmental Science,2009,3:179-193
    Sun W J, Huang Y, Zhang W, et al. Carbon sequestration and its potential in agricultural soils of China [J]. Global Biogeochemistry Cycles,2010,24:1302-1307
    Taghizadeh-Toosi A, Clough T J, Sherlock R R, et al. Biochar adsorbed ammonia is bioavailable [J]. Plant and Soil,2012,50:57-69
    Taghizadeh-Toosi A, Clough TJ, Condron LM, et al. Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches [J]. Journal of Environmetal Quality,2011, 40:468-476
    Takai Y. The mechanism of methane formation in flooded paddy soil [J]. Soil Science and Plant Nutrition, 1970,16:238-244
    Van der Gon H A C D, Neue H U. Infuence of organic matter incorporation on the methane emission from a wetland rice field [J]. Global Biogeochemical Cycles,1995,9:11-22
    van Zwieten L, Kimber S, Downie A, et al. A glasshouse study on the interaction of low meneral ash biochar with N in a Sandy soil [J]. Australian Journal of Soil Research,2010,48:569-576
    van Zwieten L, Kimbr S, Morris S, et al. Influence of biochars on flux of N2O and CO2 from Ferrosl [J]. Australian Journal of Soil Research,2010,48:555-568
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass-C [J]. Soil biology and biochemistry,1987,19:703-707
    Vasquez-Murrieta M S, Cruz-Mondragon C, Trujillo-Tapia N, et al. Nitrous oxide production of heavy metal contaminated soil [J]. Soil biology and biochemistry,2006,38:931-940
    Wackernagel M, Rees W E. Our ecological footprint:Reducing human impact on the Earth [M]. Gabriola Island:New Society Publishers,1996
    Wang J, Zhang M, Xiong Z, et al. Effects of biochar addition on N2O and CO2 emissions from two paddy soils [J]. Biology and Fertility of soils,2011,47:887-896
    Wardle D A, Nilsson M C, Zackrisson O. Fire-derived charcoal causes loss of forest humus. Science,2008, 320:629
    Wu H B, Guo Z T, Peng C H. Land use induced changes of organic carbon storage in soils of China [J]. Glob Change Biology,2003,9:305-315
    Liu X Y, Li L Q, Bian R J, et al. Effect of biochar amendment on soil silicon availability and rice uptake [J]. Journal of Plant Nutrition and Soil Science,2013,000:1-6
    Xie Z B, Xu Y, Liu G, et al. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emisssions and soil organic carbon dynamics in two paddy soils of China [J]. Plant and Soil,2013, 370:527-540
    Xie Z B, Zhu J G, Liu G, et al. Soil organic carbon stocks in China and changes from 1980s to 2000s. Global Change Biology,2007,13:1989-2007
    Yagi K, Tsuruta H K, Minami K. Effect of water management on methane emissions from a Japanese rice paddy field:automated methane monitoring [J]. Global Biogeochemical Cycles,1996,10:255-267
    Yan X Y, Akiyama H, Yagi K, et al. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines [J]. Global Biogeochemical Cycles,2009,23, GB2002, doi:10.1029/2008GB003299.
    Yan X Y, Ohara T, Akimoto H. Development of region-specific emission factors and estimation of methane emission from rice fields in the East, Southeast and South Asian countries [J]. Global Change Biology,2003,9,237-254.
    Yanai Y, Toyota K, Okazaki M. Effect of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science and Plant Nutrition,2007, 53:181-188
    Yang Y H, Mohammat A, Feng J M, et al. Storage, patterns and environmental controls of soil organic carbon in China [J]. Biogeochemstry,2007,84:131-141
    Yu D S, Shi X Z, Wang H J, et al. National scale analysis of soil organic carbon storage in China based on Chinese soil taxonomy [J]. Pedosphere,2007,17:11-18
    Zhang A F, Bian R J, Hussain, Q. et al. Change in net global wanning potential of a rice-wheat cropping system with biochar soil amendment in a rice paddy from China. Agriculture, Ecosystems and Environment,2013,19:37-45
    Zhang A F, Bian R J, Pan G X, et al. Effect of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy:A field study of 2 consecutive rice growing cycles [J]. Field Crops Research,2012,127:153-160
    Zhang P J, Zheng J F, Pan G X, et al. Changes in microbial community structure and function within particle size fractions of a paddy soil under different long-term fertilization treatments from the Tai Lake region, China [J]. Colloids and Surfaces B:Biointerfaces,2007,58:264-270
    Zimmerman A. Abiotic and microbial oxidation of laboratory-produced black carbon (biochar) [J]. Environmental Science and Technology,2010,44:1295-1301
    Zou J, Huang Y, Jiang J, et al.3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochem Cycl,2005,19, GB2021, doi:10.1029/2004 GB 002401
    Zou J, Huang Y, Qin Y, et al. Changes in fertilizer-induced direct N2O emissions from paddy fields during rice-growing season in China between 1950s and 1990s [J]. Global Change Biology,2009,15:229-242.
    蔡祖聪,钦绳武.华北潮土长期试验中的作物产量、氮肥利用率及其环境效应[J].土壤学报2006,43:885-891
    蔡祖聪.中国稻田甲烷排放研究进展[J].土壤,1999,5:266-26
    陈桂秋,黄道友,苏以荣,等.红壤丘陵区土地不同利用方式对土壤有机质的影响[J].农业环境科学学报,2005,24:256-260
    程琨,潘根兴,田有国,等.中国农田表土有机碳含量变化特征一基于国家耕地土壤监测数据[J].农业环境科学学报,2009,28(12):2476-2481
    程先富,史学正,于东升,等.江西兴国县农田土壤固碳潜力20 a变化研究[J].应用与环境生物学报,2007,13(1):37-40
    仇焕广,莫海霞,白军飞,等.中国农村畜禽粪便处理方式及其影响因素[J].中国农村经济,2012,3:77-87
    邓美华,谢迎新,熊正琴,等.长江三角洲氮收支的估算及其环境影响[J].环境科学学报,2007,27:1709-1716
    杜丽君,金涛,阮雷雷,等.鄂南4种典型土地利用方式红壤C02排放及其影响因素[J].环境科学,2007,28:1607-1613
    冯伟,潘根兴,强胜,等.长期不同施肥方式对稻油轮作田土壤杂草种子库多样性的影响[J].生物多样性,2006,14(6):461-469
    付琳琳.生物质炭施用下稻田土壤有机碳组分、腐殖质组分及团聚体特征研究[D].南京农业大学硕士学位论文,2013
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    韩冰,王效科,欧阳志云,等.辽宁省农田土壤碳库分布及变化的模拟分析[J].生态学报,2003, 23:(07):1321-1327
    韩冰,王效科,欧阳志云.中国农田生态系统土壤碳库的饱和水平及其固碳潜力[J].农村生态环境,2005,21(4):6-11
    韩广轩,朱波,江长胜.川中丘陵区水稻田土壤呼吸及其影响因素[J].植物生态学报,2006,30(3):450-456
    侯鹏程,徐向东,潘根兴.不同土地利用方式对农田表土有机碳库的影响—以太湖地区吴江市为例[J].南京农业大学学报,2007,30:68-72
    黄耀,孙文娟.近20年来我国耕地土壤有机碳含量的变化趋势[J].科学通报,2006,7:8-21
    计军平,马晓明.碳足迹的概念和核算方法研究进展[J].生态经济学,2011,4:76-80
    减惠林,张效朴,何电源.我国南方水稻土供硅能力的研究[J].土壤学报,1982,19:131-140
    雷相东,彭长辉,田大伦,等.整合分析(Meta-analysis)方法及其在全球变化中的应用研究[J].科学通报,2006,51:2587-2597
    李本银,汪鹏,吴晓晨,等.长期肥料试验对土壤和水稻微量元素
    及重金属含量的影响[J].土壤学报,2009,46:281-288
    李长生.土壤碳库量之减少,中国农业之隐患:中美农业生态系统碳循环比较研究[J].第四纪研究,2000,20:345-350
    李正东,李懋,潘根兴,等.作物秸秆还田的新问题—对河南商丘地区农民的问卷调查[J].中国农业科学,2013,出版中
    李志鹏,潘根兴,张旭辉.改种玉米连续3年后稻田土壤有机碳分布和13C自然丰度变化[J].土壤学报,2007,44:244-251
    李忠佩,吴大付.红壤水稻土有机碳库的平衡值确定及固碳潜力分析[J].土壤学报,2006,43(1):46-52
    林葆,林继雄,李家康.长期施肥的作物产量和土壤肥力变化[M].北京:中国农业科技出版社,1996:1-179,
    凌启鸿.论水稻生产在我国南方经济发达地区可持续发展中的不可替代作用[J].科技导报,2004,3:42-45
    刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17:469-476
    刘守龙,童成立,吴金水,等.稻田土壤有机碳变化的模拟:SCNC模型检验[J].农业环境科学学报,2006,25(5):1228-1233
    刘晓雨,潘根兴,李恋卿,等.太湖地区水稻土长期不同施肥条件下油菜季土壤呼吸C02排放[J].农业环境科学学报,28(12):2506-2511
    娄运生,李忠佩,张桃林.不同利用方式对红壤C02排放的影响[J].生态学报,2004,24:978-983
    卢蒙.氮输入对生态系统碳、氮循环的影响:整合分析[D].博士学位论文,2009,pp14-19
    陆志敏,潘根兴,郑聚锋,等.不同状态样品培养下太湖地区黄泥土好气呼吸与C02产生潜力[J].生物环境,2007,16(3):987-989
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000
    吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,2007,31:205-218
    马骥.大陆农户秸秆就地焚烧的原因:成本收益比较与约束条件分析—以河南省开封县杜良乡为例[J].农业技术经济,2009,2:77-84
    马俊永,李科江,曹彩云,等.有机-无机肥长期配施对潮土土壤肥力和作物产量的影响[J].植物营养与肥料学报,2007,13(2):236-241
    潘根兴,周萍,张旭辉,等.不同施肥对水稻土作物碳同化与土壤碳固定的影响—以太湖地区黄泥土肥料长期试验为例[J].生态学报,2006,26:3705-3710
    潘根兴,张阿凤,邹建文,等.农业废弃物生物黑炭转化还田作为低碳农业途径的探讨生态与农村环境学报,2010,26(4):394-400
    潘根兴.中国土壤有机碳、无机碳库量研究[J].科技通报,1999,15:330-332
    钱加荣,穆月英,陈阜,等.我国农业技术补贴政策及其实施效果研究-以秸秆还田补贴为例[J].中国农业大学学报,2011,16(2):165-171
    秦晓波,李玉娥,刘克樱,等.长期施肥对湖南稻田甲烷排放的影响[J].中国农业气,2006,27(1):19-22
    曲晶晶.生物黑炭稻田施用下的土壤固碳减排效应及其对水稻生产力的影响[D].南京农业大学硕士学位论文,2012
    沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998:1-484
    宋长春,张丽华,王毅勇,等.淡水沼泽湿地CO2、CH4和N2O排放通量年际变化及其对氮输入的响应[J].环境科学,2006,27:2369-2375
    孙波,朱兆良,牛栋.农田长期生态过程的长期试验研究进展与展望[J].土壤,2007,39(6):849-854
    孙玉桃,廖育林,郑圣先,等.谢坚长期施肥对双季稻种植下土壤有机碳库和固碳量的影响[J].应用生态学报,2013,24:732-740
    唐英平,尹云锋,高人,等.林地和水田土壤呼吸的对比研究[J].热带地理,2008,28:109-113
    王成己,潘根兴,田有国,等.不同施肥下农田表土有机碳含量变化分析:基于中国农业生态系统长期试验资料[J].中国科学:生命科学,2010,40:650-657
    王成己,潘根兴,田有国.保护性耕作下农田表土有机碳含量变化特征分析—基于中国农业生态系统长期试验资料[J].农业环境科学学报,2009,28:2464-2475
    王明星,李晶,郑循华.稻田甲烷排放及产生、转化、输送机理[J].大气科学,1998,22:600-612
    王绍强,周成虎,李克让.中国土壤有机碳库及空间分布特征分析[J].地理学报,2000,55:533-544
    王绍强,周成虎.中国陆地土壤有机碳库的估算[J].地理研究,1999,18:349-355
    王效科,李长生.中国农业土壤N2O排放量估算[J].环境科学学报,2000,20:483-488
    邬刚.不同施肥模式下施用生物黑炭对旱地土壤性质、玉米生长和温室气体排放影响的研究[D].南京农业大学硕士学位论文,2012
    吴乐知,蔡祖聪.基于长期试验资料对中国农田表土有机碳含量变化的估算[J].生态环境,2007,16(6):1768-1774
    吴萍萍,刘金剑,周毅,等.长期不同施肥制度对红壤稻田肥料利用率的影响[J].植物营养与肥料学报,2008,14(2):277-283
    夏冬前,吴国成,刘振.秸秆焚烧对大气环境质量的影响[J].干旱环境监测,2005,19:91-94
    熊正琴,邢光熹,沈光裕,等.太湖地区湖、河和井水中氮污染状况的研究[J].农村生态环境,2002,18(2):29-33
    徐胜祥,史学正,赵永存,等.不同耕作措施下江苏省稻田土壤固碳潜力的模拟研究[J].土壤,2012,44(2):253-259
    许泉,芮雯奕,何航,等.不同利用方式下中国农田土壤有机碳密度特征及区域差异[J].中国农业科学,2006,39(12):2505-2510
    许信旺,潘根兴,汪艳林,等.中国农田耕层土壤有机碳变化特征及控制因素[J].地理研究,2009,28:601-612
    于寒青,孙楠,吕家珑,等.红壤地区三种母质土壤熟化过程中有机质的变化特征[J].植物营养与肥料学报,2010,16(1):92-98
    宇万太,姜子绍,周桦,等.不同施肥制度对作物产量及肥料贡献率的影响[J].中国生态农业学报,2007,15:54-58
    张阿凤,潘根兴,李恋卿.生物黑炭及其增汇减排与改良土壤意义[J].农业环境科学学报,2009,28(12):2459-2463
    张斌,刘晓雨,潘根兴,等.施用生物质炭后稻田土壤性质、水稻产量和痕量温室气体排放的变化[J].中国农业科学,2012,45(23):4844-4853
    张琪,李恋卿,潘根兴,等.近20年来宜兴市域水稻土有机碳动态及其驱动因素[J].第四纪研究,2004,24(2):236-242
    赵纪新,李日强.浅析我国秸秆资源的综合利用现状[J].科技情报开发与经济,2010,20:189-191
    赵宁,余顺章.Meta-analysis:一种新的定量综合方法[J].中国慢性病预防与控制,1993,1(6):277-281
    赵生才.我国农田土壤碳库演变机制及发展趋势—第236次香山科学会议侧记[J].地球科学进展,2005,20:587-590
    郑凤英,彭少麟.植物生理生态指标对大气CO2浓度倍增响应的整合分析[J].植物学报,2001, 43(11):1101-1109
    郑聚锋,张旭辉,潘根兴,等.水稻土基底呼吸与C02排放强度的日动态及长期不同施肥下的变化[J].植物营养与肥料学报,2006,12:485-494
    郑利霞,刘学军,张福锁.大气有机氮沉降研究进展[J].生态学报,2007,27:328-334
    周萍,宋国菡,潘根兴,等.南方三种典型水稻土长期试验下有机碳积累机制研究Ⅰ.团聚体保护作用[J].土壤学报,2008,45:1063-1070
    周卫军,王凯荣,张光远,等.施肥进步在红壤稻作区水稻增产中的贡献及其对土壤肥力的影响[J].土壤通报,2002,33:197-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700