用户名: 密码: 验证码:
熔盐电解制备Mg-Zr和Mg-Zn-Zr合金工艺及阴极过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆是镁合金中的主要合金化元素之一,其在镁合金中有着强烈的品粒细化作用。传统的制备含锆镁合金的方法有对掺法和热还原法等,由于金属锆的熔点很高且在镁合金中溶解度较小,致使含锆的镁合金制备存在工艺操作比较复杂,生产成本较高等弊端。本课题以金属化合物为原料采用熔盐电解的方法在低温条件下直接制备镁锆合金和镁锌锆合金,并研究了镁锆合金和镁锌锆合金的电化学形成过程及锆离子在实验体系下的电化学还原机理。
     首先,采用循环伏安法和方波伏安法等电化学方法研究了在MgCl2-KCl-K2ZrF6熔盐体系中Zr(Ⅳ)离子在钼电极上的电化学还原过程。循环伏安实验结果表明Zr(Ⅳ)离子的还原过程是通过两步电子转移反应完成的。为了进一步研究Zr(Ⅳ)离子的电子转移过程,通过方波伏安法对电子转移数的计算,证明其电化学反应历程是:Zr(Ⅳ)+ 2e→Zr(Ⅱ);Zr(Ⅱ)+2e→Zr.在上述熔盐体系中添加Zr02的循环伏安曲线表明在熔盐电解过程中添加Zr02促进Zr(Ⅳ)离子的还原过程。
     在MgCl2-KCl-KF-K2ZrF6-ZrO2熔盐体系中制备镁锆合金,通过对原料配比、电流密度和电解温度等电解工艺参数的研究,确定了采用熔盐电解法制备镁锆合金的较佳工艺条件。在较佳工艺条件下可得到锆的质量含量为0.8%的Mg-Zr合金。XRD分析结果表明合金中含有Mg相和Zr相。通过扫描电镜及EDS能谱分析可以看出锆元素在合金内部多以单质锆的形式存在,这与XRD的分析结果相一致,面扫描显示合金内部化学成分均匀。从合金的金相照片可以看出锆对镁合金的晶粒细化作用明显,品粒大小由100~2001μm细化到10~501μm。
     其次,采用循环伏安法和计时电流法研究在低温熔融MgCl2-KCl熔盐体系中Mg2+、Zr(Ⅳ)和Zn2+离子在钼电极上的电化学还原过程。循环伏安法实验结果表明Mg2+、Zr(Ⅳ)和Zn2+离子在钼电极上的析出电位分别为:1.8V、1.3V和0.7V。通过计时电流法进一步证实了上述循环伏安的实验结果。
     在MgCl2-KCl-KF-ZnCl2-K2ZrF6-ZrO2熔盐体系中制备镁锌锆合金,通过对电流密度和电解温度等电解工艺参数的研究,确定了熔盐电解法制备镁锌锆合金的较佳工艺条件。XRD分析结果表明合金中含有Mg相、Mg7Zn3相和Zr相。EDS分析表明Mg7Zn3合金化合物和单质锆在合金中均分布在晶界处。面扫描可以看出合金内部化学成分均匀。
Zirconium, which is one of the main alloying elements, exhibits obvious grain refining in the magnesium alloys. The traditional preparation methods mainly include metal casting and thermoreduction. Because of high melting point of zirconium metal and its low solubility in magnesium alloy, there are many disadvantages like complex technical operation and high production cost if use these two methods for preparation magnesium alloys containing zirconium. In this paper, we have studied preparation of Mg-Zr and Mg-Zn-Zr alloys in molten salt at low temperature. The formation process and electrochemical reduction mechanism have been investigated using these elements' compounds as raw materials.
     Cyclic voltammetry, square wave voltammetry and other electrochemical methods have been used in the MgCl2-KCl-K2ZrF6 molten salt to investigate the reduction mechanism of Zr (Ⅳ) ion in the Mo cathode. Cyclic voltammetry results show that Zr (IV) ion reduction is two steps of electron transfer process and the addition of ZrO2 promote the reduction of Zr (Ⅳ) ions. For further study of the electron transfer process of Zr (IV) ion, quare wave voltammetry has been used to calculate the electron transfer number. The value of electron transfer number proves the reduction processes are Zr (IV)+2e= Zr (II); Zr (II)+2e= Zr.
     In the MgCl2-KCl-KF-K2ZrF6-ZrO2 electrolysis system, the optimum conditions of proparation Mg-Zr alloys has been determined by investigation of the ratio of raw materials, current density and electrolysis temperature. The Mg-Zr alloy which is obtained in the optimal conditions contained 0.8% zirconium in the alloy. XRD analysis showed that these alloys contain Mg phase and Zr phase. Scanning electron microscopy and EDS spectrum analysis indicate that Zr element exist in the form of simple substance. This result is consistent with that of XRD analysis. The surface scanning show that internal chemical composition is homogeneous in the alloys. From metallographic photographs, we can see that Zr brings good grain refinement in magnesium alloys. The grain size was dwindled from 100-200μm to 10~50μm.
     In another section, we have investigated electrochemical reduction process of Mg+2, Zr (IV) and Zn+2 ions in the Mo electrode by cyclic voltammetry and chronoamperometry in MgCl2-KCl melt at low temperature. The deposition potentials of Mg+2, Zr (IV) and Zn+2 ions on molybdenum electrode were detected at 1.8V,1.3V and 0.7V, respectively. Mg-Zn-Zr alloys are prepared by electrolysis in MgCl2-KCl-KF-ZnCl2-K2ZrF6-ZrO2 melt. The optimum proparation conditions have been determined by investigation of electrolytic parameters like current density and electrolysis temperature. In these alloys, Mg phase, Mg7Zn3 phase and Zr phase were observed by XRD. These phases Mg7Zn3 and Zr metal mainly exist in the grain boundaries. From surface scan we can see that the internal every chemical composition distribute homogeneity in the alloys.
引文
[1]姜锋,尹志民,李汉广.铝钪中间和金额制备方法[J].稀土,2001,22(1):41-44页
    [2]张明杰,王兆文.熔盐电化学原理与应用[M].北京:化学工业出版社,2006:237页
    [3]徐如人,庞文琴.无机合成与制备化学[M].高等教育出版社,2001:194页
    [4]谢刚.熔盐电解理论与应用[M].冶金工业出版社,1998:148-151页
    [5]于旭光,邱竹贤.熔盐电解制取Al-Si合金[J].东北大学学报.2004,25(5):421-423页
    [6]段淑珍,乔芝郁.熔盐化学原理和应用[M].北京:冶金工业出版社,1990:337-338页,393页
    [7]刘勉光,王若愚,潘金龙.有色金属进展[J].1992,3(2):1-3页
    [8]徐如人,庞文琴.无机合成与制备化学[M].高等教育出版社,2001:195-196页
    [9]陈增.熔盐电解法制备镁合金的研究[D].哈尔滨工程大学博士学位论文,2008:21-23页
    [10]Daisuke Kyoi, Tetsuo Sakai, Naoyuki Kitamura, Atsushi Ueda,Shigeo Tanase. Synthesis of FCC Mg-Zr and Mg-Hf hydrides using GPa hydrogenpressure method and their hydrogen-desorption properties[J]. Journal of Alloys and Compounds,2008,463: 311-316P
    [11]李晴宇,杜继红,奚正平.金属锆的熔盐电脱氧制备[J].稀有金属材料与工程,2007,36(3):390-393页
    [12]刘建民,鲁雄刚,李谦,陈朝轶,程红伟,周国治.熔盐电解制备难熔金属的现状与展望[J].稀有金属快报,2006,25(9):1-6页
    [13]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2006:160页
    [14]Peng Q M, Wu Y M, Fang D Q, et al. Microstructures and properties of Mg-7Gd alloy containing Y[J]. Journal of Alloys and Compounds,2007,430:252-256P
    [15]Housh S.and Mikucki B. Selection and Application of Magnesium and Magnesium.Alloys, Metals Handbook, ed, vol.9ASM.1990:455-479P
    [16]Li Y and Jones H. Material Science and Technology.1996,12(8):651-661 P.
    [17]张津,章宗和等.镁合金及应用[M].北京:化学工业出版社,2004:283-307页,1 5-36页
    [18]丁文江等著.镁合金科学与技术[M].北京,科学出版社2007.1:17页
    [19]刘英等.镁合金的研究进展和应用前景[J].轻金属.2002(8):56-72页
    [20]李明照,马非.镁合金的应用[D],华北工学院学报,2005,26(2):153-156页
    [21]钟皓,刘培英.镁及镁合金在航空航天的应用及前景[J].航空工程及维修.2002(04):41-42页
    [22]房灿峰,张兴国,于延浩.镁合金的性能.成形技术及其应用研究[J].金属热处理.2006,31(3):12-16页
    [23]崔红卫Ba、Ca、Sr对镁合金组织和性能的影响[D].山东大学硕士学校论文,2002,12:2001页
    [24]Pekguleryuz M.O.and Mordike B.L. and Hehman F.Magnesium.Alloys and Their Applications[J]. GM Informations, erlag,1998(10):13-220P
    [25]波尔米尔I.J.著,陈昌麒,邹愉译.轻合金[M].北京:国防工业出版社,1985:154页
    [26]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2006:101-102页
    [27]Housh S.and Mikucki B. Selection and Application of Magnesium and Magnesium.Alloys, Metals Handbook, ed, vol.9ASM.1990:455-479P
    [28]Lee S, Kim D H.Metall Material.TransA,1998,29 (A):1221-1253P
    [29]Li Y and Jones H. Material Science and Technology.1996,12(8):651-661 P.
    [30]Aida T, Hatta H, Ramesh C S. Workability and Mechanical Properties of Light thanwater Mg-Li Alloys.Proceeding of 3rd international Magnesium conference.1997: 144-152P.
    [31]Abhijit Dutta, P Prabhakar, D Anil Kumar.Superplastic Behavior of Mg-8Li-6.5Al alloy[J]. Manufacturing Technology,2000:459-463P.
    [32]叶久新,陈明安.镁合金及其成型技术在工业中的应用[J].湖南大学学报.2002,29(3):112-120页
    [33]王晓磊.熔盐电解制取Mg-Li-Zr合金[D].哈尔滨工程大学硕士学位论文,2007: 14-15页
    [34]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2006:102-103页
    [35]Aghion E, BronfinB.Magnesium alloys development towards the 21 cen-tury[J]. Material Science and technology.2000,351:19-29P
    [36]Prasad Y V R K, Seshacharyu lu T. Modelling of hot deformation for micr-ostructural control[J]. International Materials Review,1998, (43):243-259P
    [37]余琨,黎文献.变形镁合金的研究、丌发及应用[J].中国有色金属学报,2003(4):277-283页
    [38]曹富荣.超轻镁合金研究历史和现状[J].东北大学报.1996,2(5):3-5页
    [39]乐启炽,张新建,崔建忠.镁合金及其成形工艺与应用状况[J].材料导报,2002,12(12):10-15页
    [40]黄瑞芬.镁合金的研究应用及其发展[J].科技与经济2006(Ⅱ):58-59页
    [41]钟皓,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002(2):4-23页
    [42]Yang-Do Kim, Nam-Hyun Kang, H-Guk Jo, Kyung-Hyun Kim, In-Bae Kim.Aging Behavior of Mg-Y-Zr and Mg-Nd-Zr Cast Alloys[J]. J..Mater.sci. technol. Vol.24 No1, 2008.
    [43]熊炳昆,杨新民,罗方承.锆铪及其化合物应用[M].北京,冶金工业出版社,2002:260-267页
    [44]吴延科,李庆彬,徐志高,王力军,熊炳昆.金属锆的制备方法[J].稀有金属,2009,33(4):462-466页
    [45]彭坤,谢佑卿.金属Zr的电子结构和物理性质[J].中国有色金属学报,1999,9(4):700-704页
    [46]林振汉著.有色金属提取手册.锆铪[M].北京:冶金工业出版社,2002:3-13页,11-128页
    [47]Xu.D.K, Tang.W.N, Liu.L. Effect of Y concentration on the micros tructure and mechanical properties of as-cast Mg-Zn-Y-Zr alloys[J]. Journal of Alloys and Compounds,1998,42(2):29-134P
    [48]丁文江等著.镁合金科学与技术[M].北京,科学出版社.2007.1:17页
    [49]Yang-Do Kim, Nam-Hyun Kang, H-Guk Jo, Kyung-Hyun Kim, In-Bae Kim.Aging Behavior of Mg-Y-Zr and Mg-Nd-Zr Cast Alloys[J]. J..Mater.sci. technol.2008,24(1).
    [50]S. OZBILEN. Fractography and transmission electron microscopy analysis of an Al-Li-Cu-Mg-Zr alloy displaying an improved fracture toughness[J]. Journal of Materials Science 1997,32:4127-4131P
    [51]Jitka Pelcova, Bohumil Smola, Ivana Stulikova, Influence of processing technology on phase transformations in a rare-earth-containing Mg-Zn-Zr alloy Materials[J]. Science and Engineering, Elsevier, B.V.2006.
    [52]M. Hiimiiltinen, K. Zeng. Thermodynamic Evaluation of the Mg-Zr System[J]. Elsevier Science.1998,22(3):375-380P
    [53]蔚成全,赵维民,黄春瑛,史中方.镁及镁合金晶粒细化的方法研究[J].2008中国铸造活动周论文集,2008:671-677页
    [54]黎业生,董定乾,刘赣伟,李洪.镁合金晶粒细化剂研发现状及展望[J].江西理工大学学报,2007,28(4):145-154页
    [55]许并社,李明照.镁冶炼与镁合金熔炼工艺[M].北京:化学工业出版社,2006:182-184页
    [56]陈增,张密林,吕艳卓,韩伟,唐定骧.锆在镁及镁合金中的作用[J],铸造技术,2007,28(6):820-822,846页
    [57]Tamura T, Kono N, Motegi T, et al. Grain refining mechanism and casting structure of Mg-Zr alloy[J]. Journal of Japan Institute of Light Metals,1998,48(4):185P
    [58]陈建军,杨庆山.镁热还原K2ZrF6制备镁锆中间合金[J].金属材料与冶金工程:2007,35(5):15-17页
    [59]Zeng Chen, Milin Zhang, Wei Han, Xiaolei Wang, Dingxiang Tang. Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl[J]. Alloys And Compounds 3 May 2007.
    [60]钟皓,刘培英.镁及镁合金在航空航天的应用及前景[J].航空工程及维修.2002(04):41-42页
    [61]张洪杰,孟健,唐定骧.高性能镁-稀土结构材料的研制、丌发与应用[J].中国稀土学报.2004,22(1):40-47页
    [62]李明照,马非.镁合金的应用[D],华北工学院学报,2005,26(2):153-156页
    [63]陈增.熔盐电解法制备镁合金的研究[D].哈尔滨工程大学硕士学位论文,2008:24页
    [64]周明付.高锆镁锆中间合金工艺研究[J].湖南有色金属.2003,19(4):32-35页
    [65]M. Shahzad, L. Wagner. The role of Zr-rich cores in strength differential effect in an extruded Mg-Zn-Zr alloy [J]. Journal of Alloys and Compounds,2009(06):123P
    [66]褚衍龙.熔盐电解制备Mg-Li-Pr合金及熔盐物理化学性质的研究.[D].哈尔滨工程大学硕士学位论文,2009:16-17页
    [67]陈增.熔盐电解法制备镁合金的研究[D].哈尔滨工程大学博士学位论文,2008:27-28页
    [68]Arroyave.R, Liu.Z.K. Thermodynamic modelling of the Zn-Zr system [J]. Computer Coupling of Phase Diagrams and Thermochemistry,2006 (30):1-10P
    [69]Yoshiharu Sakamura, Tadashi Inoue, Takashi Iwai, Hirotake Moriyama Chlorination of UO2, PuO2 and rare earth oxides using ZrCl4 in LiCl-KCl eutectic melt[J]. Journal of Nuclear Materials,2005,340:39-51P
    [70]H. Groult, A. Barhoun, H. El Ghallali, S. Borensztjan and F. Lantelmea, Study of the Electrochemical Reduction of Zr4+ Ions in Molten Alkali Fluorides[J], Journal of The Electrochemical Society,2008,155 (2):E19P
    [71]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007:41-42页
    [72]Cotarta A, Bouteillon J, Poignet J C, et al. Preparation and characterization of chromium depositionts obtained from molten salts using pulsed currents[J]. Journal of Applied Electrochemistry,2001,31:987-995P
    [73]Qiu G H, Wang D, Jin X B, et al. A direct electrochemical route from oxide precursors to the terbium-nickel intermetallic compound TbNis[J]. Electrochimica Acta,2006, 51(26):5785-5793P
    [74]Volkovicha V A, Griffiths T R, Thied R C, et al. Behaviour of molybdenum in pyrochemical reprocessing:A spectroscopic study of the chlorination of molybdenum and its oxides in chloride melts[J]. Journal of Nuclear Materials,2003,323:93-100P
    [75]Iizuka M, Uozumi K, Inoue T, et al. Behaviour of plutonium and americium at liquid cadmium chthode in molten LiCl-KCl electrolyte[J]. Journal of Nuclear Materials,2001, 299:32-42P
    [76]胡会利,李宁.电化学测量[M].北京:国防工业出版社,2007:205页
    [77]段淑珍,乔芝郁.熔盐化学原理和应用[M].北京:冶金工业出版社,1990:337-338页,393页
    [78]Polyakova L P, Taxil P, Polyakov E G. Electrochemical behaviour and codeposition of titanium and niobium in chloride-fluoride melts[J]. Journal of Alloys and Compounds, 2003,359:244-255P
    [79]Iida T, Nohira T, Ito Y. Electrochemical formation of Sm-Co alloys by cedeposition of Sm and Co in a molten LiCl-KCl-SmCl3-CoCl2 systtem[J]. Ecletrochimica Acta.2003, 48:2517-2521P
    [80]Ebe H, Ueda M, Ohtsuka T. Electrodeposition of Sb, Bi, Te, and their alloys in AlCl3-NaCl-KCl molten salt[J]. Electrochimica Acta,2007,53:100-105P
    [81]查全性.电极过程动力学导论[M].科学出版社,2002:325页
    [82]Zeng Chen, Milin Zhang, Wei Han, Xiaolei Wang, Dingxiang Tang. Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl[J]. Alloys And Compounds 3 May 2007.
    [83]柯山,杨绮琴,刘冠昆.尿素熔体中Cu-Ti合金电沉积研究[J].电镀与涂饰,1996,15(2):1-4页
    [84]陈必清,刘青,王建朝等.低温熔盐中Ni(Ⅱ), Co(Ⅱ)诱导稀土共沉积的电化学行为[J].青海师范大学学报,2006,3:34-67页
    [85]丘丌容,杨绮琴.尿素熔体中镧钴电解共沉积的研究[J].中国稀土学报,14(1):20-22页
    [86]童叶翔,刘鹏,刘莉治等.尿素-NaBr低温熔盐中Fe2+和Sm3+的电化学行为及其诱导共沉积[J].中国稀土学报,2002,20(1):11-15页
    [87]Rao G M. Electrochemical studies of magnesium ions in magnesium chloride containing chloride melt at 710±10℃[J]. Journal of Electroanalytical Chemistry,1988, 249:191-203P
    [88]陈必清,王建朝,刘青等.低温熔盐中Yb-Ni合金膜的电沉积研究[J].武汉理工大学学报,2006,28(8):5-8页
    [89]曹经倩.镍铬合金共沉积的电化学研究[J].材料保护,1998,26(1):11-15页
    [90]郭乃名,熊申海,过家驹.熔盐中Al-Ti合金共沉积的电极过程[J].化工冶金, 1997,18(4):318-321页
    [91]Konishi H, Nohira T, Ito Y. Formation of Dy-Fe alloy films by molten salt electrochemical process[J]. Electrochimica Acta,2002,47:3533-3539P
    [92]Kubota T, Iida T, Nohira T, et al. Formation and phase control of Co-Gd alloy films by molten salt electrochemical process[J]. Journal of Alloys and Compounds,2004,379: 256-261P
    [93]Mansfeld F, Perez. Surface modification of aluminum alloys in molten salts containing CeCl3[J]. Thin Solid Films,1995,270:417-421P
    [94]Ueda M, Kigawa H, Ohtsuka T. Co-deposition of Al-Cr-Ni alloys using constant potential and potential pulse techniques in AlCl3-NaCl-KCl molten salt[J]. Electrochimica Acta,2007,52:2515-2519P
    [95]Castrillejo Y, Bermejo M R, Barrado A I, et al. Electrochemical behaviour of dysprosium in the eutectic LiCl-KCl at W and Al electrodes[J]. Eceltrochemica Acta, 2005,50:2047-2057P
    [96]Castrilejo Y, Bermejo M R, Barrado E, et al. Electrochemical behaviour of erbium in the eutectic LiCl-KCl at W and Al electrodes[J]. Electrochimica Acta.2006,51: 1941-1951P
    [97]刘冠昆,童叶翔,洪惠婵等.氯化物熔体中钇离子在铁电极上的电还原[J].物理化学学报,1998,14(5):463-466页
    [98]童叶翔,杨绮琴,刘冠昆等.氯化物熔体中镨钴合金形成的电化学研究[J].中山大学学报,1997,36(2):118-121页
    [99]Ronghua Zhang, Xuetong Zhang, Shumin. Hu High temperature and pressure chemical sensors based on Zr/ZrO2 electrode prepared by nanostructured ZrO2 film at Zr wire. Sensors and Actuators B:Chemical,2010,149:143-154P
    [100]Jianfeng Wang, Huiyan Wua, Zhongxiao Song, Kewei Xu a, Chunliang Liu. Microstructure and discharge properties of Mg-Zr-O protective films in plasma display panel[J]. Applied Surface Science,2009,256:603-607P
    [101]熊炳昆,杨新民,罗方承.锆铪及其化合物应用[M].北京,冶金工业出版社,2002
    [102]M. KAWASE, Y. ITO. The electroformation of Zr metal, Zr-Al alloy and carbon films on ceramic[J]. Journal of Applied Electrochemistry,2003,33:785-793P
    [103]戴兴福,张明杰,谭亚菊.熔盐电解法制取高浓度铝锂合金[J].轻金属,1998,1:38-41页
    [104]A.и.别略耶夫.熔盐物理化学[M].北京:中国工业出版社.1963:230页
    [105]徐建华,陈建华,邱仕麟.电解法制取铝锶合金的研究[J].轻金属,2001,8:36-38页
    [106]H. Groult, A. Barhoun, H. El Ghallali, S. Borensztjan, F. Lantelme. Study of the Electrochemical Reduction of Zr4+ Ions in Molten Alkali Fluorides[J]. Journal of The Electrochemical Society,2008,155 (2):E19-E25P
    [107]Yang B G, Qiu Z X, Gao B L, et al. Electrolytic prepration of Al-Ca master alloy on liquid Al cathode[J]. Transactions of Nonferrous Metals Society of China,2000,10(2): 246-249P
    [108]Zhang X, Jiao S Q, Xiao S J, et al. Electrochemical behaviour of magnesium and aluminium ions in alkali chloride melt[J]. Materials Science Forum,2005,488-489: 811-814P
    [109]Wu.W, Wang.Y, Zeng.L.X, Chen.Z. Material Science and technology.Lett.22 (2003):445-447P
    [110]张永建编著.镁电解生产工艺学[M],中南大学出版社.2006.8:100-123页
    [111]M. Hiimiiltinen, K. Zeng. Thermodynamic Evaluation of the Mg-Zr System[J]. Calphad, Elsevier Science Ltd.1998,22(3):375P
    [112]Ma Qian,D.H. StJohn,M.T.Frost. Characteristic zirconium-rich coring structures in Mg-Zr alloys[J]. Scripta Materialia,2002,46 (2002):649P.
    [113]陈建军,杨庆山.镁热还原K2ZrF6制备镁锆中间合金[J].金属材料与冶金工程.2007,35(5):15-17,42页
    [114]张静,潘复生,郭正晓.含锆镁合金系中的合金相[J].兵器材料科学与工程,2002,25(6):50-56页
    [115]孔志刚,刘泓波,张虎.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报.2004,30(10):972页
    [116]Yang-Do Kim, Nam-Hyun Kang, H-Guk Jo, Kyung-Hyun Kim, In-Bae Kim.Aging Behavior of Mg-Y-Zr and Mg-Nd-Zr Cast Alloys[J]. J..Mater.sci. technol.2008.24(1)
    [117]D.K. Xu,, L. Liu,, Y.B. Xu, E. H. Han. The relationship between macro-fracture modes and roles of different deformation mechanisms for the as-extruded Mg-Zn-Zr alloy[J]. Scripta Materialia,2008,58:1098-1101P
    [118]H. Groult, A. Barhoun, H. El Ghallali, S. Borensztjan,, F. Lantelme. Study of the Electrochemical Reduction of Zr4+ Ions in Molten Alkali Fluorides[J]. Journal of The Electrochemical Society,2008,155(2):E19-E25P
    [119]Ilia Valov, Dimitar Stoychev, Ts. Marinova. Study of the kinetics of processes during electrochemical deposition of zirconia from nonaqueous electrolytes[J]. Electrochimica Acta,2002,47:4419-4431P
    [120]Yong De Yan, Mi Lin Zhang, Yun Xue,Wei Han, Dian Xue Cao, Shu QuanWei. Study on the preparation of Mg-Li-Zn alloys by electrochemical codepositionfrom LiCl-KCl-MgCl2-ZnCI2 melts[J]. Electrochimica Acta,2009,54:3387-3393P
    [121]Jian-Wei Chang, Xing-Wu Guo, Peng-Huai Fu, Li-Ming Peng, Wen-Jiang Ding. Effect of heat treatment on corrosion and electrochemical behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J]. Electrochimica Acta,2007,52:3160-3167P
    [122]Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa, Mamoru Mabuchi, Kenji Higashi. Realization of high-strain-rate superplasticity at low temperatures in a Mg-Zn-Zr alloy[J]. Materials Science and Engineering A,2001,307:119-128P
    [123]Z.H. Huang, S.M. Liang, R.S. Chen, E.H. Han. Solidification pathways and constituent phases of Mg-Zn-Y-Zr alloys[J]. Journal of Alloys and Compounds,2009, 468:170-178P
    [124]R. Arroyave, Z.K. Liu. Thermodynamic modelling of the Zn-Zr system[J]. Computer Coupling of Phase Diagrams and Thermochemistry,2006,30:1-13P
    [125]Jitka Pelcov'a, Bohumil Smola, Ivana Stul'ikov'a. Influence of processing technology on phase transformations in a rare-earth-containing Mg-Zn-Zr alloy[J]. Materials Science and Engineering A,2007,462:334-338P
    [126]GAO Jia-cheng, WU Sha, QIAO Li-ying, WANG Yong. Corrosion behavior of Mg and Mg-Zn alloys in simulated body fluid[J]. Trans. Nonferrous Met. Soc.China,2008, 18:588-592P
    [127]Ya Zhang, Xiaoqing Zeng, Chen Lu, Wenjiang Ding. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy [J]. Materials Science and Engineering A,2006,428:91-97P
    [128]Fu Penghuai, Peng Liming, Jiang Haiyan, Chang Jianwei, Zhai Chunquan. Effects of heat treatments on the microstructures and mechanical properties of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J]. Materials Science and Engineering A,2008,486: 183-192P
    [129]R. Arroyave, A. van de Walle, Z.-K. Liu. First-principles calculations of the Zn-Zr system[J]. Acta Materialia,2006,54:473-482P
    [130]Ding Wenjiang, Li Daquan, Wang Qudong, Li Qiang. Microstructure and mechanical properties of hot-rolled Mg-Zn-Nd-Zr alloys[J]. Materials Science and Engineering A, 2008,483-184:228-230P
    [131]Z.P. Luo, D.Y. Song, S.Q. Zhang. Strengthening effects of rare earths on wrought Mg-Zn-Zr-RE alloys[J]. Journal of Alloys and Compounds,1995,230:109-114P
    [132]胡珊玲,张小联,邱承洲,彭光怀.稀土镁锆中间合金中锆的测定[J].江西有色金属,2008,22(4):45-46页
    [133]D.H. Bae, Y. Kim, I.J. Kim. Thermally stable quasicrystalline phase in a superplastic Mg-Zn-Y-Zr alloy[J]. Materials Letters,2006,60:2190-2193P
    [134]S.M. He, L.M. Peng, X.Q. Zeng, W.J. Ding, Y.P. Zhu. Comparison of the microstructure and mechanical properties of a ZK60 alloy with and without 1.3 wt.% gadolinium addition[J]. Materials Science and Engineering A,2006,433:175-181P
    [135]Fang Xiya, Yi Danqing, Luo Wenhai, Wang Bin, Zhang Xiaojuan, Zheng Feng. Effects of yttrium on recrystallization and grain growth of Mg-4.9Zn-0.7Zr alloy[J]. Journal of fare earths,2008,26(3):392-396P
    [136]A. Das*, G. Liu, Z. Fan. Investigation on the microstructural refinement of an Mg-6 wt.% Zn alloy[J]. Materials Science and Engineering A,2006,419:349-356P
    [137]Ke Liua,b, Jinghuai Zhang, L.L. Rokhlin, F.M. Elkin, Dingxiang Tang, Jian Meng. Microstructures and mechanical properties of extruded Mg-8Gd-0.4Zr alloys containing Zn[J]. Materials Science and Engineering A,2009,505:13-19P
    [138]V.M. Skripnyuk, E. Rabkin, Y. Estrin, R. Lapovok. The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt%Zn-0.71 wt% Zr (ZK60) alloy[J]. Acta Materialia,2004,52:405-414P
    [139]Jian-Wei Chang, Peng-Huai Fu, Xing-Wu Guo, Li-Ming Peng, Wen-Jiang Ding. The effects of heat treatment and zirconium on the corrosion behaviour of Mg-3Nd-0.2Zn-0.4Zr (wt.%) alloy[J]. Corrosion Science,2007,49:2612-2627P
    [140]罗治平,张少卿.Mg-Zr, Mg-Zn及Mg-Zn-Zr合金的微观结构[J].金属学报,1993,29(4):A176-A182页
    [141]D.K. Xu, L. Liu, Y.B. Xu, E.H. Han. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy[J]. Acta Materialia,2008,56:985-994P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700