用户名: 密码: 验证码:
Pickering乳液模板法制备结构可控的多孔聚合物微球和整体柱
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔聚合物材料(如多孔聚合物微球和多孔整体柱材料)由于其独特的结构赋予了其特殊的物理化学性能和应用价值。因而,多孔聚合物材料一直是材料工作者研究和关注的焦点。本课题以Pickering乳液模板法为手段,以制备不同结构多孔或者多核聚合物微球以及多孔聚合物整体柱为主线,论文主要包含了以下六个部分。第一章为绪论,概述了Pickering乳液以及多孔聚合物材料的研究进展。第二章阐述两步法制备了多重Pickering乳液,并在此基础上聚合制备了结构可控的多孔微球。第三章探索一步法制备多重乳液,然后通过溶剂原位挥发制备多孔PLGA微球。第四章尝试用单重乳液模板聚合制备复杂结构微球。第五章采用粒子与表面活性剂为复合稳定剂,协同稳定制备高内相乳液。第六章研究了粒子与表面活性剂复合稳定的高内相乳液及其多孔材料的应用。本课题主要的研究内容和结果如下:
     1.首次通过简单地调控初乳水油比制备结构可控的多孔聚苯乙烯微球。采用疏水粒子和亲水粒子作为初乳油包水和复乳水包油的粒子乳化剂,采用两步法制备了稳定的水包油包水(W/O/W)的多重Pickering乳液。通过聚合油相中的苯乙烯单体得到了多孔聚苯乙烯微球。通过扫描电镜(SEM)及X射线能量分散谱(EDS)对微球的内部结构以及纳米粒子的位置进行了表征。结果表明聚合后粒子仍保留在微球的孔壁和外表面,构成杂化多孔微球。通过简单调节初乳水相和油相的体积比,其他条件不变,可以得到内部孔洞疏密程度不一的多孔微球,同时高的水油比还可以实现内部孔洞从闭孔结构向开孔结构的转变。
     2.首次一步法制备多重乳液及多孔PLGA微球。我们用自制的亲水SiO2纳米粒子作为水包油的稳定粒子,一步手摇制备了水包油包水的多重Pickering乳液,油相是PLGA的二氯甲烷溶液。通过对PLGA的分子结构、PLGA在油相中含量、SiO2纳米粒子在水相中的浓度以及油水比等因素的研究,发现只有上述影响因素在一定的范围内才能制备出多重乳液。通过油相二氯甲烷的挥发,我们制备了多孔的PLGA微球。乳液模板的类型直接影响挥发产物的形貌,只有多重乳液模板挥发后才能获得多孔微球。
     3.首次用单重Pickering乳液模板制备多核结构微球。以木质素胶体粒子作为水包油的稳定剂,制备了稳定的水包油单重Pickering乳液。油相为苯乙烯、二乙烯苯和十六烷的混合油相,另外再向混合油相中添加疏水纳米粒子作为成核剂。聚合反应开始后,聚苯乙烯分子由于不与十六烷互溶而发生相分离。此时,聚合物一方面在疏水粒子表面富集另一方面往乳滴的油水界面迁移。最后形成大空心球里面包裹很多小球的多核结构微球。疏水粒子和十六烷的含量对内部多核结构有重大的影响,而交联剂主要影响微球的机械性能。整个微球的尺寸则通过木质素粒子的浓度来调控。改变成核粒子的种类可以制备不同核心的多核微球,在油相中添加疏水四氧化三铁纳米粒子聚合制备了具有磁响应性的多核微球。
     4.首次利用粒子和表面活性剂作为复合稳定剂协同制备高内相乳液。采用疏水H30粒子和亲油的表面活性剂司班85作为复合稳定剂制备了不同油相的油包水高内相乳液。本工作选用的粒子和表面活性剂单独使用时均不能较好地制备油包水的高内相乳液,而粒子与表面活性剂的复合体系则能稳定体积分数高达98%的高内相乳液。通过对其乳液和聚合物形貌的分析得出,粒子稳定的大乳滴和表面活性剂稳定的小乳滴共存于整个乳液体系中。表面活性剂可能部分吸附到粒子表面而提高粒子的乳化能力。此外,粒子使连续相粘度增大促进乳化剂形成油包水的液滴。正是这种协同作用在高内相乳液的制备过程中起到了关键作用。通过对聚合物结构观察发现,使用这种粒子与表面活性剂的复合乳化剂能制备出不同孔结构的多孔材料。
     5.首次利用高内相乳液模板一步制备了多孔抗菌水凝胶。采用亲水N20纳米粒子和亲水的吐温80表面活性剂作为稳定剂制备水包油的高内相乳液。油相是抗菌性的易挥发的艾叶油,聚合水相单体一步制备多孔载油水凝胶,避免了油相的浪费。研究发现,粒子和表面活性剂在连续相中的质量分数不仅可以影响水凝胶的孔洞结构,而且显著影响了其力学性能。对载油水凝胶进行体外模拟释放和抗菌活性研究,结果发现其具有很好的缓释效果和非常优异的抗菌性能。
Porous polymer materials (such as multihollow polymer microspheres and porousmonoliths) have attracted more and more attention because of their special physical andchemical properties and applications endowed by their unique structure. This thesis describedthe development of new strategies for the preparation of different structure of porous ormulticore polymer microspheres and the porous polymer monoliths based on the Pickeringemulsion templates. The paper mainly includes the following six parts. The first chapter is theintroduction, summarizes the Pickering emulsion and the research progress of porous polymermaterials. The second chapter focuses on the fabrication of controllable multihollowmicrospheres based on the two-step multiple Pickering emulsion templates. The third chapterexplores one step method to prepare multiple emulsions and the fabrication of porous PLGAmicrospheres. The fourth chapter tries to use single emulsion template to manufacturepolymer microspheres with complex multicore structure. The fifth investigates usingcostabilizer of particles and surfactant to synergistically stabilize high internal phase emulsion.The last studies the costabilizer of particles and surfactant stablilized high internal phaseemulsion and the application of the emulsion-templated porous materials.
     The main research contents and results of this thesis are as follows:
     1. Fabrication of controllable multihollow polystyrene microspheres by simply adjustingthe volume ratios of inner water phase to oil phase. Hydrophobic and hydrophilic particleswere employed as emulsifiers for the primary W1/O and outer O/W2emulsion, respectively.Stable water-in-oil-in-water (W/O/W) multiple emulsions were prepared by two-step method.Multihollow polystyrene microspheres were obtained by polymering the styrene monomer inoil phase based on the multiple Pickering emulsion templates. The internal structure of themicrospheres and the location of the nanoparticles have been characterized by scanningelectron microscopy (SEM) and X-ray energy dispersive spectrum (EDS). The results showedthat the nanoparticles mainly located on the inner void wall and the outer surface of themicrospheres. By simple adjustment of volume ratios of internal water phase to oil phase, thenumber of voids in porous microspheres can be controlled. Moreover, high ratio of W1:O canalso make the internal pores change from the closed structure to interconnected pore structure.
     2. One step preparation of multiple emulsion and porous PLGA microspheres. We usesynthetic hydrophilic SiO2nanoparticles as stabilizer of oil-in-water emulsions, and PLGAsolution of methylene chloride as oil phase. W/O/W Pickering emulsion was one stepprepared by hand shaking the water and oil phase. We systematically investigated the influences of molecular structure of the PLGA, PLGA content in the oil phase, SiO2nanoparticles concentration in water phase and volume ratio of water to oil on the doubleemulsion formation and consequently on the structure of the PLGA microspheres. Opticalmicroscope and scanning electron microscope (SEM) were adopted to survey themicrospheres prepared under different conditions. The results showed that the multipleemulsions can only be obtained under proper conditions. Moreover, the emulsion templatesdirectly affect the morphology of the volatile products. Porous microspheres can be attainedonly after the volatilization of multiple emulsion templates.
     3. Fabrication of multi-core microspheres based on single Pickering emulsionpolymerization combining phase separation and nanoparticle nucleation. In this study,rattle-like polymer microspheres with multicores encapsulated in hollow spheres are facilelyfabricated via oil-in-water Pickering emulsion polymerization for the first time. Pickeringemulsions were stabilized by hydrophilic lignin nanoparticles. The oil phase containshydrophobic nanoparticles dispersed in polymerizable monomer, styrene and unpolymerizablesolvent, hexadecane. The multicore rattle-like microspheres are directly produced after thepolymerization of monomers in the oil droplets. The key point of this one-pot method for therattle-like microspheres lies in the nucleation of hydrophobic nanoparticles and the phaseseparation between the resulting polystyrene and hexadecane. We have systematicallyinvestigated the influences of the contents of hydrophobic nanoparticles, hexadecane,cross-linker and lignin particles on the structure and morphology of rattle-like microspheres.It is proven that the number and size of core, the shell thickness, size of rattle-likemicrosphere can be easily controlled by adjusting the various parameters. Moreover, specialfunctionalization of the rattle-like microspheres can be developed easily by adding differenthydrophobic nanoparticles in the oil phase. This work opens up a new route to fabricatemulti-level capsules or spheres.
     4. Fabrication of Pickering high internal phase emulsions (HIPEs) with ultrahigh internalphase fraction by using hydrophobic silica nanoparticles (H30) and nonionic surfactant ofSpan85as a dual emulsifier system. Water-in-hexane (W/O) HIPEs stabilized by a mixture ofH30and Span85were investigated. Increasing Span85concentration in mixture would resultin the appearance of smaller droplets of several to tens of micrometers in the HIPEs while apopulation of large droplets of hundreds of micrometers would appear with increasing H30concentration. Furthermore, the influences of Span85and H30on the formation of HIPEswere investigated from the polymerized HIPEs (polyHIPEs) synthesized through these HIPEstemplates using styrene as the oil phase. The synergism between particles and surfactant exists and plays a crucial role in the stability of HIPEs. This research opens up a new insight into thefabrication of Pickering HIPEs with an ultrahigh internal phase fraction. Moreover, porousmonoliths with different pore structure can be obtained from the co-emulsifier stabilizedHIPEs.
     5. One-pot prepared Artemisia argyi oil (AAO)-loaded macroporous antibacterialhydrogels through polymerizing oil-in-water Pickering high internal phase emulsions (HIPEs).The HIPEs were stabilized by hydrophilic silica nanoparticles (N20) with adding surfactantTween80. The void interconnectivity and pore size of the hydrogels could be tailored readilyby varying the N20nanoparticle and Tween80concentrations. The mechanical property ofthe porous hydrogels was related to the pore structure of the materials. The in vitro release ofthe AAO-loaded hydrogels with different inner morphologies was evaluated and showedcontrolled release activity. The antibacterial activity of the AAO-loaded hydrogel wasevaluated and exhibited excellent and long-term antibacterial activity.
引文
[1] Fornasieri G., Badaire S., Backov R., et al. Mesoporous and Homothetic Silica Capsulesin Reverse‐Emulsion Microreactors [J]. Advanced Materials,2004,16(13):1094-7.
    [2] Kim S.E., Park J.H., Cho Y.W., et al. Porous chitosan scaffold containing microspheresloaded with transforming growth factor-β1: implications for cartilage tissue engineering [J].Journal of Controlled Release,2003,91(3):365-74.
    [3] Kirkland J., Truszkowski F., Dilks Jr C., et al. Superficially porous silica microspheres forfast high-performance liquid chromatography of macromolecules [J]. Journal ofChromatography A,2000,890(1):3-13.
    [4] Martinez C.J., Hockey B., Montgomery C.B., et al. Porous tin oxide nanostructuredmicrospheres for sensor applications [J]. Langmuir,2005,21(17):7937-44.
    [5] Pan H., Qian J., Cui Y., et al. Hollow anatase TiO2porous microspheres with V-shapedchannels and exposed (101) facets: Anisotropic etching and photovoltaic properties [J].Journal of Materials Chemistry,2012,22(13):6002-9.
    [6] Pan J.H., Zhang X., Du A.J., et al. Self-etching reconstruction of hierarchicallymesoporous F-TiO2hollow microspherical photocatalyst for concurrent membrane waterpurifications [J]. Journal of the American Chemical Society,2008,130(34):11256-7.
    [7] Patel B., Gupta V., Ahsan F. PEG–PLGA based large porous particles for pulmonarydelivery of a highly soluble drug, low molecular weight heparin [J]. Journal of ControlledRelease,2012,162(2):310-20.
    [8] Stout R.W., Leibu H.J., Rousak A.T., et al. New porous organic microspheres forhigh-performance liquid chromatography [J]. Journal of Chromatography A,1989,476(21-35.
    [9] Winnik F.M., Morneau A., Ziolo R.F., et al. Template-controlled synthesis ofsuperparamagnetic goethite within macroporous polymeric microspheres [J]. Langmuir,1995,11(10):3660-6.
    [10]Yu Y., Chen C.H., Shi Y. A Tin‐Based Amorphous Oxide Composite with a Porous,Spherical, Multideck‐Cage Morphology as a Highly Reversible Anode Material forLithium‐Ion Batteries [J]. Advanced Materials,2007,19(7):993-7.
    [11] Ziolo R.F., Giannelis E.P., Weinstein B.A., et al. Matrix-mediated synthesis ofnanocrystalline γ-Fe2O3: a new optically transparent magnetic material [J]. Science,1992,257(5067):219-23.
    [12]Yang S., Liu H., Zhang Z. Fabrication of novel multihollow superparamagneticmagnetite/polystyrene nanocomposite microspheres via water-in-oil-in-water doubleemulsions [J]. Langmuir,2008,24(18):10395-401.
    [13]Chen T., Colver P.J., Bon S.A. Organic–Inorganic Hybrid Hollow Spheres Prepared fromTiO2‐Stabilized Pickering Emulsion Polymerization [J]. Advanced Materials,2007,19(17):2286-9.
    [14]Ning Y., Wang C., Ngai T., et al. Hollow magnetic Janus microspheres templated fromdouble Pickering emulsions [J]. RSC Advances,2012,2(13):5510-2.
    [15]Zhang H., Cooper A.I. Synthesis and applications of emulsion-templated porous materials[J]. Soft Matter,2005,1(2):107-13.
    [16]Kimmins S.D., Cameron N.R. Functional porous polymers by emulsion templating:recent advances [J]. Advanced Functional Materials,2011,21(2):211-25.
    [17]Menner A., Ikem V., Salgueiro M., et al. High internal phase emulsion templates solelystabilised by functionalised titania nanoparticles [J]. Chemical Communications,2007,41):4274-6.
    [18]Zhou S., Bismarck A., Steinke J.H. Interconnected macroporous glycidylmethacrylate-grafted dextran hydrogels synthesised from hydroxyapatite nanoparticlestabilised high internal phase emulsion templates [J]. Journal of Materials Chemistry,2012,22(36):18824-9.
    [19]Ramsden W. Separation of Solids in the Surface-Layers of Solutionsand'Suspensions'(Observations on Surface-Membranes, Bubbles, Emulsions, and MechanicalCoagulation).--Preliminary Account [J]. Proceedings of the Royal Society of London,1903,156-64.
    [20]Pickering S.U. Cxcvi.—emulsions [J]. Journal of the Chemical Society, Transactions,1907,91(2001-21.
    [21]Sullivan A.P., Kilpatrick P.K. The effects of inorganic solid particles on water and crudeoil emulsion stability [J]. Industrial&engineering chemistry research,2002,41(14):3389-404.
    [22]Castaldi F.J. Tank‐based bioremediation of petroleum waste sludges [J]. Environmentalprogress,2003,22(1):25-36.
    [23]Henglein A. Small-particle research: physicochemical properties of extremely smallcolloidal metal and semiconductor particles [J]. Chemical Reviews,1989,89(8):1861-73.
    [24]Binks B.P. Particles as surfactants—similarities and differences [J]. Current Opinion inColloid&Interface Science,2002,7(1):21-41.
    [25]张婉萍,郭奕光. Pickering乳化剂在化妆品中的应用[J].日用化学品科学,2006,29(9):
    [26]Velev O., Furusawa K., Nagayama K. Assembly of latex particles by using emulsiondroplets as templates.1. Microstructured hollow spheres [J]. Langmuir,1996,12(10):2374-84.
    [27]Velev O., Nagayama K. Assembly of latex particles by using emulsion droplets.3.Reverse (water in oil) system [J]. Langmuir,1997,13(6):1856-9.
    [28]Dinsmore A., Hsu M.F., Nikolaides M., et al. Colloidosomes: selectively permeablecapsules composed of colloidal particles [J]. Science,2002,298(5595):1006-9.
    [29]Hsu M.F., Nikolaides M.G., Dinsmore A.D., et al. Self-assembled shells composed ofcolloidal particles: fabrication and characterization [J]. Langmuir,2005,21(7):2963-70.
    [30]Noble P.F., Cayre O.J., Alargova R.G., et al. Fabrication of―hairy‖colloidosomes withshells of polymeric microrods [J]. Journal of the American Chemical Society,2004,126(26):8092-3.
    [31]Duan H., Wang D., Sobal N.S., et al. Magnetic colloidosomes derived from nanoparticleinterfacial self-assembly [J]. Nano letters,2005,5(5):949-52.
    [32]Tarimala S., Ranabothu S.R., Vernetti J.P., et al. Mobility and in situ aggregation ofcharged microparticles at oil-water interfaces [J]. Langmuir,2004,20(13):5171-3.
    [33]Dai L.L., Sharma R., Wu C.-y. Self-assembled structure of nanoparticles at a liquid-liquidinterface [J]. Langmuir,2005,21(7):2641-3.
    [34]Wu C.-y., Tarimala S., Dai L.L. Dynamics of charged microparticles at oil-waterinterfaces [J]. Langmuir,2006,22(5):2112-6.
    [35]Chevalier Y., Bolzinger M.-A. Emulsions stabilized with solid nanoparticles: Pickeringemulsions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2013,439(23-34.
    [36]Binks B.P., Murakami R., Armes S.P., et al. Temperature‐Induced Inversion ofNanoparticle‐Stabilized Emulsions [J]. Angewandte Chemie,2005,117(30):4873-6.
    [37]Binks B., Lumsdon S. Influence of particle wettability on the type and stability ofsurfactant-free emulsions [J]. Langmuir,2000,16(23):8622-31.
    [38]Aveyard R., Binks B.P., Clint J.H. Emulsions stabilised solely by colloidal particles [J].Advances in Colloid and Interface Science,2003,100(503-46.
    [39]Yongjun H., Suitao Q., Shiyong Z. Nanoparticle-stabilized emulsions and theirapplications in preparation of nanostructures [J]. PROGRESS IN CHEMISTRY-BEIJING-,2007,19(9):1443.
    [40]Pieranski P. Two-dimensional interfacial colloidal crystals [J]. Physical Review Letters,1980,45(569-72.
    [41]Binks B., Lumsdon S. Pickering emulsions stabilized by monodisperse latex particles:effects of particle size [J]. Langmuir,2001,17(15):4540-7.
    [42]Binks B.P., Philip J., Rodrigues J.A. Inversion of silica-stabilized emulsions induced byparticle concentration [J]. Langmuir,2005,21(8):3296-302.
    [43]Aveyard R., Clint J.H., Horozov T.S. Aspects of the stabilisation of emulsions by solidparticles: Effects of line tension and monolayer curvature energy [J]. Physical ChemistryChemical Physics,2003,5(11):2398-409.
    [44]Schulman J., Leja J. Control of contact angles at the oil-water-solid interfaces. Emulsionsstabilized by solid particles (BaSO4)[J]. Transactions of the Faraday Society,1954,50(598-605.
    [45]Yan N., Gray M.R., Masliyah J.H. On water-in-oil emulsions stabilized by fine solids [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2001,193(1):97-107.
    [46]Stiller S., Gers-Barlag H., Lergenmueller M., et al. Investigation of the stability inemulsions stabilized with different surface modified titanium dioxides [J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2004,232(2):261-7.
    [47]Binks B., Lumsdon S. Effects of oil type and aqueous phase composition on oil–watermixtures containing particles of intermediate hydrophobicity [J]. Physical ChemistryChemical Physics,2000,2(13):2959-67.
    [48]Briggs T. Emulsions with finely divided solids [J]. Industrial&Engineering Chemistry,1921,13(11):1008-10.
    [49]Binks B., Lumsdon S. Stability of oil-in-water emulsions stabilised by silica particles [J].Physical Chemistry Chemical Physics,1999,1(12):3007-16.
    [50]Ashby N., Binks B. Pickering emulsions stabilised by Laponite clay particles [J].Physical Chemistry Chemical Physics,2000,2(24):5640-6.
    [51]Yan N., Masliyah J.H. Effect of pH on adsorption and desorption of clay particles at oil–water interface [J]. Journal of colloid and interface science,1996,181(1):20-7.
    [52]Ngai T., Behrens S.H., Auweter H. Novel emulsions stabilized by pH and temperaturesensitive microgels [J]. Chemical Communications,2005,3):331-3.
    [53]Wei Z., Wang C., Zou S., et al. Chitosan nanoparticles as particular emulsifier forpreparation of novel pH-responsive Pickering emulsions and PLGA microcapsules [J].Polymer,2012,53(6):1229-35.
    [54]Wei Z., Yang Y., Yang R., et al. Alkaline lignin extracted from furfural residues forpH-responsive Pickering emulsions and their recyclable polymerization [J]. Green Chemistry,2012,14(11):3230-6.
    [55]Binks B., Rodrigues J. Types of phase inversion of silica particle stabilized emulsionscontaining triglyceride oil [J]. Langmuir,2003,19(12):4905-12.
    [56]Hong L., Jiang S., Granick S. Simple method to produce Janus colloidal particles in largequantity [J]. Langmuir,2006,22(23):9495-9.
    [57]Zhang J., Jin J., Zhao H. Surface-Initiated Free Radical Polymerization at the LiquidLiquid Interface: A One-Step Approach for the Synthesis of Amphiphilic Janus Silica Particles[J]. Langmuir,2009,25(11):6431-7.
    [58]Studart A.R., Gonzenbach U.T., Tervoort E., et al. Processing routes to macroporousceramics: a review [J]. Journal of the American Ceramic Society,2006,89(6):1771-89.
    [59]Ikem V.O., Menner A., Bismarck A. High internal phase emulsions stabilized solely byfunctionalized silica particles [J]. Angewandte Chemie International Edition,2008,47(43):8277-9.
    [60]Yang Y., Wei Z., Wang C., et al. Lignin-based Pickering HIPEs for macroporous foamsand their enhanced adsorption of copper (II) ions [J]. Chem Commun,2013,49(64):7144-6.
    [61]Gao Q., Wang C., Liu H., et al. Dual nanocomposite multihollow polymer microspheresprepared by suspension polymerization based on a multiple pickering emulsion [J]. PolymerChemistry,2010,1(1):75-7.
    [62]Türkmen D., Yavuz H., Denizli A. Synthesis of tentacle type magnetic beads asimmobilized metal chelate affinity support for cytochrome c adsorption [J].International journal of biological macromolecules,2006,38(2):126-33.
    [63]Unsal E., aml S., Tuncel M., et al. Monodisperse–porous particles with differentpolarities by―modified seeded polymerization‖and their use as chromatographic packing inHPLC [J]. Reactive and Functional Polymers,2004,61(3):353-68.
    [64]Sieben S., Bergemann C., Lübbe A., et al. Comparison of different particles and methodsfor magnetic isolation of circulating tumor cells [J]. Journal of magnetism and magneticmaterials,2001,225(1):175-9.
    [65]Coutinho F., Carvalho D., La Torre Aponte M., et al. Pellicular ion exchange resins basedon divinylbenzene and2-vinylpyridine [J]. Polymer,2001,42(1):43-8.
    [66]Coutinho F., Rezende S.M., Soares B.G. Characterization of sulfonated poly (styrene–divinylbenzene) and poly (divinylbenzene) and its application as catalysts in esterificationreaction [J]. Journal of applied polymer science,2006,102(4):3616-27.
    [67]Gong B., Li L., Zhu J. Preparation of strong anion-exchange chromatographic packingsbased on monodisperse polymeric beads and their application in the separation ofbiopolymers [J]. Analytical and bioanalytical chemistry,2005,382(7):1590-4.
    [68]Unsal E., Caml S., Irmak T., et al. Monodisperse poly (styrene-co-divinylbenzene)particles (3.2μm) with relatively small pore size as HPLC packing material [J].Chromatographia,2004,60(9-10):553-60.
    [69]Macintyre F.S., Sherrington D.C., Tetley L. Synthesis of ultrahigh surface areamonodisperse porous polymer nanospheres [J]. Macromolecules,2006,39(16):5381-4.
    [70]Macintyre F.S., Sherrington D.C. Control of porous morphology in suspensionpolymerized poly (divinylbenzene) resins using oligomeric porogens [J]. Macromolecules,2004,37(20):7628-36.
    [71]Wu L., Pang G.-c. High-speed large scale chromatographic purification of plasmid DNAwith a novel giant-pore stationary phase [J]. Chromatographia,2007,66(3-4):151-7.
    [72]Okubo M., Konishi Y., Minami H. Production of hollow polymer particles by suspensionpolymerizations for divinylbenzene/toluene droplets dissolving various polymers [J]. Colloidand Polymer Science,2000,278(7):659-64.
    [73]Kobayashi H., Miyanaga E., Okubo M. Preparation of multihollow polymer particles byseeded emulsion polymerization using seed particles with incorporated nonionic emulsifier [J].Langmuir,2007,23(17):8703-8.
    [74]Fujibayashi T., Komatsu Y., Konishi N., et al. Effect of Polymer Polarity on the Shape of―Golf Ball-like‖Particles Prepared by Seeded Dispersion Polymerization [J]. Industrial&engineering chemistry research,2008,47(17):6445-9.
    [75]Fan J.-B., Huang C., Jiang L., et al. Nanoporous microspheres: from controllablesynthesis to healthcare applications [J]. Journal of Materials Chemistry B,2013,1(17):2222-35.
    [76]Kim J.-W., Joe Y.-G., Suh K.-D. Poly (methyl methacrylate) hollow particles bywater-in-oil-in-water emulsion polymerization [J]. Colloid and Polymer Science,1999,277(2-3):252-6.
    [77]Chen C.-H., Shah R.K., Abate A.R., et al. Janus particles templated from double emulsiondroplets generated using microfluidics [J]. Langmuir,2009,25(8):4320-3.
    [78]Nie Z., Li W., Seo M., et al. Janus and ternary particles generated by microfluidicsynthesis: design, synthesis, and self-assembly [J]. Journal of the American Chemical Society,2006,128(29):9408-12.
    [79]Utada A.S., Lorenceau E., Link D.R., et al. Monodisperse double emulsions generatedfrom a microcapillary device [J]. Science,2005,308(5721):537-41.
    [80]Duncanson W.J., Lin T., Abate A.R., et al. Microfluidic synthesis of advancedmicroparticles for encapsulation and controlled release [J]. Lab Chip,2012,12(12):2135-45.
    [81]Duncanson W.J., Zieringer M., Wagner O., et al. Microfluidic synthesis of monodisperseporous microspheres with size-tunable pores [J]. Soft Matter,2012,8(41):10636-40.
    [82]Ning Y., Wang C., Ngai T., et al. Fabrication of Tunable Janus Microspheres with DualAnisotropy of Porosity and Magnetism [J]. Langmuir,2013,29(17):5138-44.
    [83]Ruckenstein E., Kim K.J. Polymerization in gel‐like emulsions [J]. Journal of appliedpolymer science,1988,36(4):907-23.
    [84]Yang J., Yang G., Liu H., et al. Preparation and characterization of porous poly (vinyl ester) resin monoliths as separation media [J]. Journal of applied polymer science,2011,119(1):412-8.
    [85]Brun N., Babeau Garcia A., Deleuze H., et al. Enzyme-based hybrid macroporous foams as highly efficient biocatalysts obtained through integrative chemistry [J]. Chemistry of Materials,2010,22(16):4555-62.
    [86]Pulko I., Wall J., Krajnc P., et al. Ultra-High Surface Area Functional Porous Polymers by Emulsion Templating and Hypercrosslinking:Efficient Nucleophilic Catalyst Supports [J]. Chemistry-A European Journal,2010,16(8):2350-4.
    [87]Yao C., Qi L., Qiao J., et al. High-performance affinity monolith chromatography for chiral separation and determination of enzyme kinetic constants [J]. Talanta,2010,82(4):1332-7.
    [88]Barby D., Haq Z. European Patent60138[M]. March.1982.
    [89]Cameron N., Sherrington D., Albiston L., et al. Study of the formation of the open-cellular morphology of poly (styrene/divinylbenzene) polyHIPE materials by cryo-SEM [J]. Colloid and Polymer Science,1996,274(6):592-5.
    [90]Krajnc P., Stefanec D., Pulko I. Acrylic Acid "Reversed" PolyHIPEs [J]. Macromolecular rapid communications,2005,26(16):1289-93.
    [91]KovacˇicˇS., Stefanec D., Krajnc P. Highly porous open-cellular monoliths from2-hydroxyethyl methacrylate based high internal phase emulsions (HIPEs):Preparation and void size tuning [J]. Macromolecules,2007,40(22):8056-60.
    [92]Butler R., Hopkinson I., Cooper A. Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions [J]. Journal of the American Chemical Society,2003,125(47):14473-81.
    [93]Barbetta A., Carnachan R.J., Smith K.H., et al. Porous polymers by emulsion templating; proceedings of the Macromolecular Symposia, F,2005[C]. Wiley Online Library.
    [94]Cameron N.R., Sherrington D.C. Synthesis and characterization of poly (aryl ether sulfone) polyHIPE materials [J]. Macromolecules,1997,30(19):5860-9.
    [95]Williams J.M., Wrobleski D.A. Spatial distribution of the phases in water-in-oil emulsions. Open and closed microcellular foams from cross-linked polystyrene [J]. Langmuir,1988,4(3):656-62.
    [96]Zhang S., Chen J., Perchyonok V.T. Stability of high internal phase emulsions with solecationic surfactant and its tailoring morphology of porous polymers based on the emulsions[J]. Polymer,2009,50(7):1723-31.
    [97]Barbetta A., Cameron N.R. Morphology and surface area of emulsion-derived (PolyHIPE)solid foams prepared with oil-phase soluble porogenic solvents: Three-component surfactantsystem [J]. Macromolecules,2004,37(9):3202-13.
    [98]Sergienko A.Y., Tai H., Narkis M., et al. Polymerized high internal phase emulsionscontaining a porogen: Specific surface area and sorption [J]. Journal of applied polymerscience,2004,94(5):2233-9.
    [99]Cameron N.R., Barbetta A. The influence of porogen type on the porosity, surface areaand morphology of poly (divinylbenzene) PolyHIPE foams [J]. Journal of MaterialsChemistry,2000,10(11):2466-71.
    [100] Menner A., Verdejo R., Shaffer M., et al. Particle-stabilized surfactant-free mediuminternal phase emulsions as templates for porous nanocomposite materials:poly-pickering-foams [J]. Langmuir,2007,23(5):2398-403.
    [101] Zhang S., Chen J. PMMA based foams made via surfactant-free high internal phaseemulsion templates [J]. Chemical Communications,2009,16):2217-9.
    [102] Li Z., Ming T., Wang J., et al. High internal phase emulsions stabilized solely bymicrogel particles [J]. Angewandte Chemie International Edition,2009,48(45):8490-3.
    [103] B ker A., He J., Emrick T., et al. Self-assembly of nanoparticles at interfaces [J]. SoftMatter,2007,3(10):1231-48.
    [104] Yow H.N., Routh A.F. Formation of liquid core–polymer shell microcapsules [J].Soft Matter,2006,2(11):940-9.
    [105] Lensen D., Vriezema D.M., van Hest J. Polymeric microcapsules for syntheticapplications [J]. Macromolecular bioscience,2008,8(11):991-1005.
    [106] Ozcan S., Tor A., Aydin M.E., et al. Sorption of phenol from aqueous solution bynovel magnetic polysulfone microcapsules containing Cyanex923[J]. Reactive andFunctional Polymers,2012,72(7):451-7.
    [107] Alcázar á., De Lucas A., Carmona M., et al. Synthesis of sulphonated microcapsulesof P (St–DVB) containing di (2-ethylhexyl) phosphoric acid [J]. Reactive and FunctionalPolymers,2011,71(8):891-8.
    [108] Chandrawati R., van Koeverden M.P., Lomas H., et al. Multicompartment particleassemblies for bioinspired encapsulated reactions [J]. The Journal of Physical ChemistryLetters,2011,2(20):2639-49.
    [109] Zhao Y., Jiang L. Hollow micro/nanomaterials with multilevel interior structures [J].Advanced Materials,2009,21(36):3621-38.
    [110] Okubo M., Ito A., Hashiba A. Production of submicron-sized multihollow polymerparticles having high transition temperatures by the stepwise alkali/acid method [J]. Colloidand Polymer Science,1996,274(5):428-32.
    [111] Okada M., Matoba T., Okubo M. Influence of nonionic emulsifier included insidecarboxylated polymer particles on the formation of multihollow structure by the alkali/coolingmethod [J]. Colloid and Polymer Science,2003,282(2):193-7.
    [112] Kobayashi H., Suzuki T., Moritaka M., et al. Preparation of multihollow polystyreneparticles by seeded emulsion polymerization using seed particles with incorporated nonionicemulsifier: effect of temperature [J]. Colloid and Polymer Science,2009,287(3):251-7.
    [113] Ge X., Wang M., Wang H., et al. Novel walnut-like multihollow polymer particles:synthesis and morphology control [J]. Langmuir,2009,26(3):1635-41.
    [114] Kim S.H., Weitz D.A. One‐Step Emulsification of Multiple Concentric Shells withCapillary Microfluidic Devices [J]. Angewandte Chemie,2011,123(37):8890-3.
    [115] Miesch C., Kosif I., Lee E., et al. Nanoparticle‐Stabilized Double Emulsions andCompressed Droplets [J]. Angewandte Chemie International Edition,2012,51(1):145-9.
    [116] Liu H., Wang C., Zou S., et al. Simple, reversible emulsion system switched by pHon the basis of chitosan without any hydrophobic modification [J]. Langmuir,2012,28(30):11017-24.
    [117] Yang Y., Wang C., Tong Z. Facile, controlled, large scale fabrication of novel capsuleclusters [J]. RSC Advances,2013,3(14):4514-7.
    [118] Koo H.Y., Chang S.T., Choi W.S., et al. Emulsion-based synthesis of reversiblyswellable, magnetic nanoparticle-embedded polymer microcapsules [J]. Chemistry ofMaterials,2006,18(14):3308-13.
    [119] Lu X., Yu Y., Chen L., et al. Aniline dimer–COOH assisted preparation ofwell-dispersed polyaniline–Fe3O4nanoparticles [J]. Nanotechnology,2005,16(9):1660.
    [120] Oledzka E., Kong X., Narine S. Synthesis and characterization of novel lipidfunctionalized poly (ε‐caprolactone) s [J]. Journal of applied polymer science,2011,119(3):1848-56.
    [121] Yu Q., Najun L., Qingfeng X., et al. Synthesis and characterization of a newamphiphilic copolymer containing multihydroxyl segments for drug carrier [J]. Journal ofapplied polymer science,2011,121(5):2843-50.
    [122] Sahoo S., Sasmal A., Sahoo D., et al. Synthesis and characterization of chitosan‐polycaprolactone blended with organoclay for control release of doxycycline [J]. Journal ofapplied polymer science,2010,118(6):3167-75.
    [123] Athanasiou K.A., Niederauer G.G., Agrawal C. Sterilization, toxicity,biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers [J].Biomaterials,1996,17(2):93-102.
    [124] Rezwan K., Chen Q., Blaker J., et al. Biodegradable and bioactive porouspolymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials,2006,27(18):3413-31.
    [125] Kim T.K., Yoon J.J., Lee D.S., et al. Gas foamed open porous biodegradablepolymeric microspheres [J]. Biomaterials,2006,27(2):152-9.
    [126] Borden M., El-Amin S., Attawia M., et al. Structural and human cellular assessmentof a novel microsphere-based tissue engineered scaffold for bone repair [J]. Biomaterials,2003,24(4):597-609.
    [127] Shi X., Chen S., Zhou J., et al. Directing Osteogenesis of Stem Cells with Drug‐Laden, Polymer‐Microsphere‐Based Micropatterns Generated by Teflon MicrofluidicChips [J]. Advanced Functional Materials,2012,22(18):3799-807.
    [128] Kim H.K., Chung H.J., Park T.G. Biodegradable polymeric microspheres with―open/closed‖pores for sustained release of human growth hormone [J]. Journal ofControlled Release,2006,112(2):167-74.
    [129] Garti N. Double emulsions—scope, limitations and new achievements [J]. Colloidsand Surfaces A: Physicochemical and Engineering Aspects,1997,123(233-46.
    [130] Garti N., Aserin A. Double emulsions stabilized by macromolecular surfactants [J].Advances in Colloid and Interface Science,1996,65(37-69.
    [131] Ficheux M.-F., Bonakdar L., Leal-Calderon F., et al. Some stability criteria fordouble emulsions [J]. Langmuir,1998,14(10):2702-6.
    [132] St ber W., Fink A., Bohn E. Controlled growth of monodisperse silica spheres in themicron size range [J]. Journal of colloid and interface science,1968,26(1):62-9.
    [133] Cheng D., Cao X., Gao H., et al. Superficially porous poly (lactic-co-glycolicacid)/calcium carbonate microsphere developed by spontaneous pore-forming method forbone repair [J]. RSC Advances,2013,3(19):6871-8.
    [134] Lou X.W.D., Archer L.A., Yang Z. Hollow Micro‐/Nanostructures: Synthesis andApplications [J]. Advanced Materials,2008,20(21):3987-4019.
    [135] Liu J., Qiao S.Z., Budi Hartono S., et al. Monodisperse yolk–shell nanoparticles witha hierarchical porous structure for delivery vehicles and nanoreactors [J]. AngewandteChemie,2010,122(29):5101-5.
    [136] Chen Y., Chen H., Zeng D., et al. Core/shell structured hollow mesoporousnanocapsules: a potential platform for simultaneous cell imaging and anticancer drug delivery[J]. ACS nano,2010,4(10):6001-13.
    [137] Chen J.S., Li C.M., Zhou W.W., et al. One-pot formation of SnO2hollownanospheres and α-Fe2O3@SnO2nanorattles with large void space and their lithiumstorage properties [J]. Nanoscale,2009,1(2):280-5.
    [138] Li Y., Yao L., Song Y., et al. Core–shell structured microcapsular-like Ru@SiO2reactor for efficient generation of COx-free hydrogen through ammonia decomposition [J].Chemical Communications,2010,46(29):5298-300.
    [139] Zhang N., Fu X., Xu Y.-J. A facile and green approach to synthesize Pt@CeO2nanocomposite with tunable core-shell and yolk-shell structure and its application as a visiblelight photocatalyst [J]. Journal of Materials Chemistry,2011,21(22):8152-8.
    [140] Chen Y., Chen H., Guo L., et al. Hollow/rattle-type mesoporous nanostructures by astructural difference-based selective etching strategy [J]. ACS nano,2009,4(1):529-39.
    [141] Wu X.J., Xu D. Soft template synthesis of yolk/silica shell particles [J]. AdvancedMaterials,2010,22(13):1516-20.
    [142] Yin Y., Rioux R.M., Erdonmez C.K., et al. Formation of hollow nanocrystals throughthe nanoscale Kirkendall effect [J]. Science,2004,304(5671):711-4.
    [143] Liu B., Zeng H.C. Symmetric and asymmetric Ostwald ripening in the fabrication ofhomogeneous core–shell semiconductors [J]. Small,2005,1(5):566-71.
    [144] Wang W., Xie R., Ju X.-J., et al. Controllable microfluidic production ofmulticomponent multiple emulsions [J]. Lab Chip,2011,11(9):1587-92.
    [145] Yang Y., Ning Y., Wang C., et al. Capsule clusters fabricated by polymerization basedon capsule-in-water-in-oil Pickering emulsions [J]. Polymer Chemistry,2013,4(21):5407-15.
    [146] Zambrano N., Tyrode E., Mira I., et al. Emulsion catastrophic inversion fromabnormal to normal morphology.1. Effect of the water-to-oil ratio rate of change on thedynamic inversion frontier [J]. Industrial&engineering chemistry research,2003,42(1):50-6.
    [147] Rondon-Gonzalez M., Madariaga L.F., Sadtler V., et al. Emulsion catastrophicinversion from abnormal to normal morphology.6. Effect of the phase viscosity on theinversion produced by continuous stirring [J]. Industrial&engineering chemistry research,2007,46(11):3595-601.
    [148] Shang X.-y., Zhu Z.-k., Yin J., et al. Compatibility of soluble polyimide/silica hybridsinduced by a coupling agent [J]. Chemistry of Materials,2002,14(1):71-7.
    [149] Zhang J., Qiu S., Zhu Y., et al. Facile fabrication of Janus magnetic microcapsulesvia double in situ miniemulsion polymerization [J]. Polymer Chemistry,2013,4(5):1459-66.
    [150] Solans C., Esquena J., Azemar N. Highly concentrated (gel) emulsions, versatilereaction media [J]. Current Opinion in Colloid&Interface Science,2003,8(2):156-63.
    [151] Barbetta A., Dentini M., De Vecchis M.S., et al. Scaffolds based on biopolymericfoams [J]. Advanced Functional Materials,2005,15(1):118-24.
    [152] Zhang H., Hussain I., Brust M., et al. Emulsion‐Templated Gold Beads Using GoldNanoparticles as Building Blocks [J]. Advanced Materials,2004,16(1):27-30.
    [153] Dunstan T.S., Fletcher P.D. Compartmentalization and separation of aqueous reagentsin the water droplets of water-in-oil high internal phase emulsions [J]. Langmuir,2011,27(7):3409-15.
    [154] Desforges A., Backov R., Deleuze H., et al. Generation of Palladium Nanoparticleswithin Macrocellular Polymeric Supports: Application to Heterogeneous Catalysis of theSuzuki–Miyaura Coupling Reaction [J]. Advanced Functional Materials,2005,15(10):1689-95.
    [155] Su F., Bray C.L., Tan B., et al. Rapid and Reversible Hydrogen Storage in ClathrateHydrates Using Emulsion‐Templated Polymers [J]. Advanced Materials,2008,20(14):2663-6.
    [156] Kunieda H., Solans C., Shida N., et al. The formation of gel-emulsions in awater/nonionic surfactant/oil system [J]. Colloids and surfaces,1987,24(2):225-37.
    [157] Babak V.G., StébéM.-J. Highly concentrated emulsions: physicochemical principlesof formulation [J]. Journal of dispersion science and technology,2002,23(1-3):1-22.
    [158] Binks B.P. Macroporous Silica From Solid‐Stabilized Emulsion Templates [J].Advanced Materials,2002,14(24):1824-7.
    [159] Neirinck B., Fransaer J., Van der Biest O., et al. Production of porous materialsthrough consolidation of Pickering emulsions [J]. Advanced engineering materials,2007,9(1‐2):57-9.
    [160] Ikem V.O., Menner A., Bismarck A. High-porosity macroporous polymers sythesizedfrom titania-particle-stabilized medium and high internal phase emulsions [J]. Langmuir,2010,26(11):8836-41.
    [161] Vílchez A., Rodríguez-Abreu C., Esquena J., et al. Macroporous polymers obtainedin highly concentrated emulsions stabilized solely with magnetic nanoparticles [J]. Langmuir,2011,27(21):13342-52.
    [162] Binks B.P., Desforges A., Duff D.G. Synergistic stabilization of emulsions by amixture of surface-active nanoparticles and surfactant [J]. Langmuir,2007,23(3):1098-106.
    [163] Binks B.P., Rodrigues J.A., Frith W.J. Synergistic interaction in emulsions stabilizedby a mixture of silica nanoparticles and cationic surfactant [J]. Langmuir,2007,23(7):3626-36.
    [164] Ikem V.O., Menner A., Horozov T.S., et al. Highly permeable macroporous polymerssynthesized from pickering medium and high internal phase emulsion templates [J]. AdvancedMaterials,2010,22(32):3588-92.
    [165] Wong L.L.C., Ikem V.O., Menner A., et al. Macroporous polymers with hierarchicalpore structure from emulsion templates stabilised by both particles and surfactants [J].Macromolecular rapid communications,2011,32(19):1563-8.
    [166] Hou Q., Paul A., Shakesheff K.M. Injectable scaffolds for tissue regeneration [J].Journal of Materials Chemistry,2004,14(13):1915-23.
    [167] Hollister S.J. Scaffold design and manufacturing: from concept to clinic [J].Advanced Materials,2009,21(32‐33):3330-42.
    [168] Trongsatitkul T., Budhlall B.M. Microgels or microcapsules? Role of morphology onthe release kinetics of thermoresponsive PNIPAm-co-PEGMa hydrogels [J]. PolymerChemistry,2013,4(5):1502-16.
    [169] Yang B., Zhang Y., Zhang X., et al. Facilely prepared inexpensive and biocompatibleself-healing hydrogel: a new injectable cell therapy carrier [J]. Polymer Chemistry,2012,3(12):3235-8.
    [170] Butler R., Davies C.M., Cooper A.I. Emulsion templating using high internal phasesupercritical fluid emulsions [J]. Advanced Materials,2001,13(19):1459-63.
    [171] Arditty S., Whitby C.P., Binks B.P., et al. Some general features of limitedcoalescence in solid-stabilized emulsions [J]. The European Physical Journal E,2003,11(3):273-81.
    [172] David D., Silverstein M.S. Porous polyurethanes synthesized within high internalphase emulsions [J]. Journal of Polymer Science Part A: Polymer Chemistry,2009,47(21):5806-14.
    [173] Hermant M. Conductive Pickering-poly (high internal phase emulsion) compositefoams prepared with low loadings of single-walled carbon nanotubes [J]. ChemicalCommunications,2009,19):2738-40.
    [174] Chen Q., Cao X., Liu H., et al. pH-responsive high internal phase emulsionsstabilized by core cross-linked star (CCS) polymers [J]. Polymer Chemistry,2013,4(15):4092-102.
    [175] Hua Y., Zhang S., Zhu Y., et al. Hydrophilic polymer foams with well‐definedopen‐cell structure prepared from pickering high internal phase emulsions [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2013,51(10):2181-7.
    [176] Ravindra S., Murali Mohan Y., Narayana Reddy N., et al. Fabrication of antibacterialcotton fibres loaded with silver nanoparticles via―Green Approach‖[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2010,367(1):31-40.
    [177] Wu T., Xie A.-G., Tan S.-Z., et al. Antimicrobial effects of quaternary phosphoniumsalt intercalated clay minerals on Escherichia coli and Staphylococci aureus[J]. Colloids and Surfaces B: Biointerfaces,2011,86(1):232-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700