用户名: 密码: 验证码:
钴镍矿微生物浸出液萃取除杂过程乳化物形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪90年代以来,生物冶金方法广泛应用于原生低品位硫化铜矿中铜的浸出,并逐渐扩展到浸出硫化钴镍矿中的钴、镍。一般而言微生物浸出液中有价金属离子浓度较低,通常采用溶剂萃取法来分离微生物浸出液中有价金属离子。然而在工业生产过程中,采用溶剂萃取法分离溶液中金属离子时经常产生界面乳化物,会造成有机相大量流失、分相时间延长等问题,给生产带来很大困扰。目前对于微生物浸出液在萃取分离过程中界面乳化的研究很少。为了提高萃取效率和减少有机相流失,解决微生物浸出液萃取过程中界面乳化问题已迫在眉睫。
     本研究从微生物浸出液基本特征出发,结合引发界面乳化物产生的其它主要影响因素,如固体微粒、胶体和杂质离子等,采用红外光谱、Zeta电位、SEM等测试手段,通过扩展DLVO理论和交流阻抗测试进行分析,研究了细菌、细菌与固体微粒吸附以及细菌与杂质离子共存时形成界面乳化物的稳定性及其影响原因。
     微生物浸出液中含有大量浸矿细菌,细菌对水相性质和乳化均产生影响。水相中细菌浓度的增加会增大水相粘度、密度和降低水相表面张力。水相中有机相含量随pH值升高、细菌浓度增加和电解质浓度降低而升高。随着pH值增加水相中有机相含量由0.07%(v/v)增加到0.14%(v/v),由于pH值影响了细菌表面氢键的形成和吸附电势。水相中细菌浓度由2.4x107个/mL增加到7.2x107个/mL时,水相中有机相含量由0.064%(v/v)增加到0.078%(v/v),与细菌表面亲疏水基团有关。采用离子可透过模型模拟细菌表面双电层结构发现,随着pH值增大,细菌吸附电势增加,增大了细菌对带电基团的吸附。
     溶液pH、细菌浓度和电解质浓度对细菌生长及其表面性质有影响。不同pH、细菌浓度和电解质浓度下,细菌在三种固体微粒(矿石、黄钾铁矾和二氧化硅)表面的吸附规律为:pH值为2-3时,细菌在矿石颗粒和黄钾铁矾表面吸附率较大,而在二氧化硅表面细菌吸附率随pH值升高略降低,且吸附率很低;随着悬浮液中细菌浓度的增加,细菌在三种固体表面吸附量逐渐趋于饱和;电解质浓度越高,细菌在矿石颗粒表面吸附率越大,而电解质浓度对细菌在黄钾铁矾和二氧化硅表面的吸附率影响较小。依据扩展DLVO理论对细菌与固体微粒之间作用能分析发现,酸碱作用能对细菌与固体微粒间吸附的影响明显大于静电作用能和范德华作用能,并且细菌与矿石颗粒和黄钾铁矾之间受强烈的酸碱吸引能,从而使细菌易于在矿石颗粒和黄钾铁矾表面吸附,而细菌与二氧化硅之间受酸碱排斥能作用,使细菌不易在二氧化硅固体表面吸附。另外,电化学测试发现细菌在固体表面吸附降低了固体电极双电层电容,并解释了实验得到的细菌在固体表面的吸附规律。
     在研究细菌与固体微粒吸附规律基础上,进一步研究了细菌吸附后固体微粒对形成界面乳化物稳定性影响。吸附细菌后的固体微粒萃取分相过程中乳化液滴聚结速度加快,形成界面乳化物稳定性增强。利用扩展DLVO理论计算乳化液滴间作用能,发现细菌在固体微粒表面吸附后,乳化液滴间聚结势垒降低,且液滴间总作用能由排斥能转变吸引能,使形成的乳化液滴聚结速度加快。采用交流阻抗法分析发现,细菌在矿石和黄钾铁矾表面吸附后增加了有机相在固体表面的吸附量,使乳化物中夹带有机相量增加,而有无细菌吸附对二氧化硅表面有机相的吸附量影响较小。当细菌与二氧化硅胶体共存时,萃取分相过程中乳化液滴聚结速度同样明显加快,这是由于细菌表面官能团与二氧化硅胶体表面硅醇基以氢键相连接,降低了硅醇基间形成硅氧烷量,使二氧化硅胶体不能以长链或网状结构存在,从而加快了乳化液滴聚结速度。
     微生物浸出液中杂质离子也是影响界面乳化物形成的重要因素。通常浸出液中含有大量Ca2+、Mg2+等杂质离子,尤其是细菌与Ca2+共存时,细菌在水油界面上的吸附增加了CaSO4晶体在界面上的累积,使形成界面乳化物生成率增加。
     用有机相萃取除铁后白山硫化镍矿微生物浸出液,发现在萃取过程中浸矿细菌、黄钾铁矾和二氧化硅等物质在界面层中逐渐累积,并且萃取过程中P204与Fe3+形成了配合物,降低了界面张力,使萃取分相难度增加。总之,萃取体系中有细菌存在时,细菌吸附增强了形成界面乳化物的稳定性,并使界面乳化层中夹带有机相含量增加。
Bioleaching technology has been widely used in leaching of copper in the primary copper sulfide ores since the1990s. Then, the method was gradually extended to leach the cobalt, nickel from cobalt and nickel sulfide ores. The concentration of valuable metal ions is generally low in bioleaching solution, and solvent extraction was usually adopted to separate the valuable metal ions from the bioleaching solution. However, interfacial emulsion was always produced in the solvent extraction process of industrial production, bringing severe problems such as a loss of extractant and prolonged split phase time and so on. The effect of bacteria and bacteria-mineral absorption on emulsion has not been reported at present. It is imminent to solve interfacial emulsion in the bioleaching solution during the extraction process, which would improve the extraction efficiency and reduce the loss of organic phase.
     This study examined the major factors of causing the interfacial emulsion such as solid particles, colloid and metal ions on the basic characteristics of bioleaching solution. IR, Zeta potential and SEM were used as characterization methods. Extended DLVO theory and Ac impedance test were introduced to study the effect of bacteria, bacteria-solid absorption and bacteria coexist with impurity ions on the emulsion stability was studied.
     There are a large number of bacteria in the bioleaching solution, which influences aqueous phase properties and emulsion of oil-water system. The density and viscosity of aqueous phase increased and surface tension of aqueous phase decreased with bacteria density increasing. And the oil content in water was influenced by solution pH, bacteria density and electrolyte concentration. It was found that the oil content in water increased obviously at high pH, high bacteria density and low electrolyte concentration. The oil content in water increased from0.07%(v/v) to0.14%(v/v) with pH increasing, duo to the formation of hydrogen bonds on the bacteria surface and the adsorption potential. And the oil content in water was increased from0.064%(v/v) to0.078%(v/v) as bacteria density increased from2.4x107cells/mL to7.2x107cells/mL corresponds to the amount of hydrophobic functional groups on the bacteria surface. Ion-permeable model was introduced to simulate the electrical double layer structure of bacteria surface. It was found that the adsorption potential of bacteria surface increased with pH increasing, increasing the adsorption of charged group on bacteria.
     The growth and surface properties of bacteria were affected by environment in the solution. The adsorption behavior of bacteria to solid particles (mineral, jarosite and silica) was investigated under different solution pH, bacteria density and electrolyte concentration. It was found that the absorption rate of bacteria on mineral and jarosite surface was high at pH2-3. While the absorption of bacteria onto silica surface was low and did not change in the pH range. The adsorption quantity of bacteria at solid surface tended towards saturation with bacteria density increasing. The adsorption rate of bacteria onto mineral increased with electrolyte solution concentration increasing, but the adsorption rate of bacteria onto jarosite and silica did not change much. The extended DLVO theory was used to analyze the interaction energy between bacteria and solid particles. It indicated that the influence of acid-base interaction is significantly greater than the electrostatic interaction and Van Der Waals interaction. Bacteria can easily adsorb on the surface of mineral and jarosite because of the strong acid-base attraction interactions between them. Adhesion of bacteria onto silica particles is difficult due to the acid-base repulsion interaction between bacteria and silica. In addition, Ac impedance tests show that solid electric double layer capacitor was decreased by adsorption of bacteria, verifying the law of absorption of bacteria on solid surface obtained from experiments.
     Based on the study on the rules of bacteria-solid adsorption, the effect of bacteria-solid absorption on the emulsion stability was further studied. After bacteria absorbed to the solid particle surface, the coalescence rate of emulsion droplet is accelerated in the extraction process and the stability of interfacial layer was enhanced. Extended DLVO theory can be used to describe the interaction energy between two emulsion droplets. It was found that the coalescence barrier reduced after bacteria adsorbed and the repulsive force between droplets transformed into the attractive force, which speeded up the droplet coalescence. Ac impedance analysis showed that the adsorption of organic phase on the surface of mineral and jarosite increased obviously after bacteria-solid absorption. But the presence or not of bacteria had quite small impact on the absorption of organic on the silica surface. The coalescence rate of emulsion droplet is also significantly accelerated in the extraction process when bacteria and colloidal silica coexist. This is mainly due to the hydrogen bonding between the functional groups located on the surface of bacteria and the silanol groups (Si-O-H) on the colloidal silica surface. It would reduce the amount of siloxane and destroy the long chain or mesh structure of colloidal silica, accelerating the emulsion droplet coalescence.
     In addition, impurity metal ions in bioleaching solution are also an important factor of leading interfacial emulsion formation. There is generally a lot of Ca2+, Mg2+in the leaching solution. When bacteria coexist with Ca2+, the existence of bacteria increased the adsorption of CaSO4crystals on the interface, making the product rate of emulsion increase.
     The emulsification property of nickel sulfide ore bioleaching in baishan was investigated after extraction process. It was found that bacteria, jarosite and silica gradually accumulated in the interface layer. In addition, the results show that the structure and properties of organic phase changed by formation of complexes due to P204combined with Fe3+in the extraction process. The complex reduced the interface tension and increased the difficulty of split phase. The presence of bacteria in the extraction process would enhance the emulsion stability after the bacteria absorption, and result in an increase of organic phase in interfacial emulsion layer.
引文
[1]任鸿九,王力川.有色金属提取冶金手册(铜镍)[M].北京:冶金工业出版社,2000,46-48.
    [2]谢福标.含钻废料回收工艺述评[J].矿冶,2003,12(1):63-66.
    [3]丰成友,张德全,党兴彦.中国钴资源及其开发利用概况[J].矿床地质,2004,23(1):93-100.
    [4]陈松.用金川氧化钴系统萃余液制备电池工业用精制硫酸镍的研究[D].长沙:中南工业大学,1 999.
    [5]崔敏.2011年镍市场回顾及2012年展望[J].有色金属工程,2012,(1):22-23.
    [6]陈立宝,贺跃辉,邓意达.镍钴粉末生产现状及发展趋势[J].粉末冶金技术,2004,22(3):1 73-177.
    [7]吴宗龙.含镍废料的综合利用工艺[J].中国资源综合利用,2003,(4):24-26.
    [8]朱屯.萃取与离子交换[M].北京:冶金工业出版社,2005,12-45.
    [9]刘晓剑.镍钴二次资源回收过程溶液深度净化及材料制备研究[D].长沙:中南工业大学,2007.
    [10]张愈祖,蔡传算.含钴硬质合金废料的综合回收[J].矿冶工程,2000,20(2):34-36.
    [11]彭毅,杨保祥,刘淑清.攀枝花硫钴精矿浸出净化液镍钴分离及钻产品制备的试验研究[J].四川有色金属,2006,(3):26-30.
    [12]Sperline R.P., Song Y., Ma E., et al. Organic Constituents of Cruds in Cu Solvent Extraction Circuits. Separation and Identification of Diluent-Soluble Compounds[J]. Hydrometallurgy,1998,50(1):1-21.
    [13]王红卫.溶剂萃取过程中产生乳化的原因及处理方法[J].有色冶炼,1991,(2):21-23.
    [14]Wu W.Y., Li D., Zhao Z.H., et al. Formation Mechanism of Micro Emulsion on Aluminum and Lanthanum Extraction in P507-HC1 System[J]. J. Rare Earths(China Ed.),2010,28(12):174-178.
    [15]Jaaskelainen E., Paatero E., Nyman B. Adsorption of Hydroxyoxime-Based Extractants on Silic and Mica Particles in Copper Extraction Processes[J]. Hydrometallurgy,1998,49(1):151-160.
    [16]Nordli K.G., Sjoblom J., Kizling J., et al. Water-in-Crude Oil Emulsions from the Norwegian Continental Shelf 4. Monolayer Properties of the Interfacially Active Crude Oil Fraction[J]. Colloids Surf.,1991,57 (1):83-98.
    [17]Yeung A., Dabros T., Czarnecki J., et al. On the Interfacial Properties of Micrometre-Sized Water Droplets in Crude Oil[J]. Proc. R. Soc. London, Ser. A: Math. Phys. Eng. Sci.,1999,455(1990):3709-3723.
    [18]Yarranton H.W., Hussein H., Masliyah J.H. Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations[J]. J. Colloid Interface Sci.,2000, 228(1):52-63.
    [19]McLean J.D., Kilpatrick P.K. Effects of Asphaltene Aggregation in Model Heptane-toluene Mixtures on Stability of Water-in-Oil Emulsions[J]. J. Colloid Interface Sci.,1997,196(1):23-34.
    [20]Taylor C.J., Dieker L.E., Miller K.T., et al. Micromechanical Adhesion Force Measurements between Tetrahydrofuran Hydrate Particles[J]. J. Colloid Interface Sci., 2007,306(2):255-261.
    [21]P.贝歇尔.乳状液理论与实践[M].付鹰译.北京:科学出版社,1964,77-150.
    [22]Gu G.X., Zhou Z.A., Xu Z.H., et al. Role of Fine Kaolinite Clay in Toluene-Diluted Bitumen/Water Emulsion[J]. Colloids Surf., A,2003,215(1-3):141-153.
    [23]Gunter W.D., Zhou Z., Perkins E.H., et al. Modeling Formation Damage Caused by Kaolinite from 25 to 300 Degrees Centigrade in the Oil Sand Reservoirs of Alberta[J]. Soc. Petrol. Eng.,1994,2(2):206-213.
    [24]Ritcey G.M. The Cause and Treatment of Crud in Solvent Extraction Process[J]. Hydrometallurgy,1980,5(2-3):97-107.
    [25]Moyer B.A., Mcdowell W.J. Factors Influencing Phase Disengagement Rates in Solvent Extraction Systems Employing Tertiary Amine Extraction[J]. Sep. Sci. Technol.,1981,16(9):1261-1289.
    [26]Miller G.M., Readett D.J., Hutchinson P. Experience in Operation the Girilambone Copper SX-EW Plant in Changing Chemical Environments[J]. Miner. Eng.,1997, 10(5):467-481.
    [27]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与应用[M].北京:冶金工业出版社,1991,5-81.
    [28]刘谟禧.湿法冶金过程硅的化学[J].矿冶工程,1989,9(2):61-65.
    [29]郝润蓉,方锡义,钮少冲.无机化学丛书第三卷-碳、硅、锗分族[M].北京:科学出版社,1998,221-227.
    [30]Ritcey G.M离子交换、活性炭矿浆法吸附过程中硅中毒以及溶剂萃取过程中硅所引起的乳化(I)[J].湿法冶金,1988,(1):50-55.
    [31]Ritcey G.M离子交换、活性炭矿浆法吸附过程中硅中毒以及溶剂萃取过程中硅 所引起的乳化(II)[J].湿法冶金,1988,(2):37-45.
    [32]宁顺明,陈志飞.P204从低酸浸出液中萃取铟防乳化的研究[J].有色金属(冶炼部分),1998,(4):37-38.
    [33]马荣骏.湿法冶金原理[M].长沙:中南大学出版社,1996,546-590.
    [34]武江,蒋光勤.试论铟生产过程中的乳化问题[J].有色矿冶,2000,16(4):26-28.
    [35]杨桂林,彭福郑,刘志芬,等.稀土萃取分离过程三相乳化物的研究I-无机杂质富集沉淀导致的乳化[J].稀有金属,2007,31(4):547-552.
    [36]宁朋歌,曹宏斌,林晓,等.钒铬萃取分离过程中界面乳化物的形成行为[J].中国有色金属学报,2009,19(4):773-778.
    [37]Ritcey G.M.,聂国林.阳离子对铀萃取回路中界面污物生成的影响[J].湿法冶金,1986,(4):65-69.
    [38]Luan Z.K., Li F., Tang H.X. Studies on Quantitative Model for Species Distribution of Hydroxyl Polyaluminum Chloride[J]. Environ. Sci.,1995,15(1):9-13.
    [39]Tambe D.E., Shrma M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions[J]. J.Colloid Interface Sci.,1993,157(1):244-253.
    [40]Tambe D.E., Sharma M.M. Factors Controlling the Stability of Colloid-Stabized Emulsions III. Measurement of the Rheological Properties of Colloid-Laden Interfaces[J]. J.Colloid Interface Sci.,1995,171(2):456-462.
    [41]Abend S., Bonnke N., Gutschner U., et al. Stabilization of Emulsions by Heterocoagulation of Clay Minerals and Layered Double Hydroxides[J], Colloid Polym. Sci.,1998,276(8):730-737.
    [42]Aveyard R.R., Binks B.P., Clint J.H. Emulsions Stabilised Solely by Colloidal Particles[J]. Adv. Colloid Interface Sci.,2003,100-102(28):503-546.
    [43]Binks B.P., Kirkland M. Interfacial Structure of Solid-Stabilised Emulsions Studied by Scanning Electron Microscopy [J]. Phys. Chem. Chem. Phys.,2002,4(15): 3727-3733.
    [44]Vignati E., Piazza R., Lockhart T.P. Pickering Emulsions:Interfacil Tension Colloidal Layer Morphology and Trapped-Particle Motion[J], Langmuir,2003,19(17): 6650-6656.
    [45]Yan N.X., Gray M.R., Masliyah J.H. On Water-in-Oil Emulsions Stabilized by Fine Solids[J]. Colloids Surf., A,2001,193(1):97-107.
    [46]Yaghi B.M., Benayoune M.A., Al-Bemani. Viscosity of Water-Oil Emulsions with Added Nano-Particles[J]. Pet. Sci. Technol.,2001,19(3-4):373-386.
    [47]Houache O., Yaghi B. Effect of Temperature and Solids on Rheology of Water-in-Oil Emulsions[J]. Pet. Sci. Technol.,2003,21(7-8):1207-1218.
    [48]Yan Y.H., Masliyah J.H. Effect of Oil Viscosity on the Rheology of Oil-in-Water Emulsions with Added Solids[J]. Can. J. Chem. Eng.,1993,71(6):852-858.
    [49]鄢捷年,王富华,范维庆,等.固体颗粒对油水体系的乳化稳定作用[J].油田化学,1995,12(3):191-196.
    [50]Tambe D.E., Sharma M.M. Factors Controlling the Stability of Colloid-Stabilized Emulsions I. An Experimental Investigation [J]. J. Colloid Interface Sci.,1993, 157(1):244-253.
    [51]郑忠.胶体科学导论[M].北京:高等教育出版社,1989,444-458.
    [52]Binks B.P., Lumsdon S.O. Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsion[J]. Langmuir,2000,16(23):8622-8631.
    [53]Menon V.B., Wasan D.T. A Review of the Factors Affecting the Stability of Solids-Stabilized Emulsions [J]. Sep. Sci. Technol.,1988,23(12-13):2131-2142.
    [54]Yan N.X., Elliot J.A.W., Masliyah J.H. Roles of Various Bitumen Components in the Stability of Water-in-Diluted-Bitumen Emulsions[J]. J. Colloid Interface Sci.,1999, 220(2):329-337.
    [55]Sullivan A.P., Kilpatrick P.K. The Effects of Inorganic Solid Particles on Water and Crude Oil Emulsion Stability[J]. Ind. Eng. Chem. Res.,2002,41(14):3389-3404.
    [56]Zaki N.N., Ahmed N.S., Nassar A.M. Sodium Lignin Sulfonate to Stabilize Heavy Crude Oil-in-Water Emulsions for Pipeline Transportation[J]. Pet. Sci. Technol., 2000,18(9-10):1175-1193.
    [57]Gelot A., Friesen W., Hamza H.A. Emulsification of Oil and Water in the Presence of Finely Divided Solids and Surface-Active Agents[J]. Colloids Surf,1984,12: 271-303.
    [58]Binks B.P., Lumsdon S.O. Pickering Emulsion Stabilized by Monodisperse Latex Particles:Effects of Particle Size[J]. Langmuir,2001,17(15):4540-4547.
    [59]Levine S., Sanford E. Stabilisation of Emulsion Droplets by Fine Powers[J]. Can. J. Chem. Eng.,1985,63(2):258-268.
    [60]Bensebaa F., Kotlyar L.S., Sparks, B.D., et al. Organic Coated Solids in Athabasca Bitumen:Characterization and Process Implications[J]. J. Chem. Eng.,2000,78(4): 610-616.
    [61]Kotlyar L.S., Sparks B.D., Woods J.R., et al. Effect of Particle Size on the Flocculation Behaviour of Ultra-fine Clays in Salt Solutions[J]. Clay Miner.,1998, 33(1):103-107.
    [62]Kotlyar L.S., Sparks B.D., Kodama H. Properties of Fines Size Fractions in Relation to Distribution of Humic-inorganic Matter Complexes in Athabasca Oil Sands and Their Relationship to Bitumen Recovery[J]. Appl. Clay Sci.,1988,2:253-271.
    [63]Sztukowski D.M., Yarranton H.W. Characterization and Interfacial Behavior of Oil Sands Solids Implicated in Emulsion Stability[J]. J. Dispers. Sci. Technol.,2004, 25(3):299-310.
    [64]姜英涛.超微粉体稳定的乳化液[J].上海涂料,2005,43(7):50.
    [65]Lueassen-Reynders E.H., van den Tempel M. Stabilization of Water-in-Oil Emulsion by Solid Particle[J]. J. Phys. Chem.,1963,67(3):731-734.
    [66]李财富.非离子表面活性剂稳定的固体石蜡纳米乳液及固体颗粒稳定的Pickering乳液[D].济南:山东大学,2009.
    [67]王劲草,王景权.DR-1乳化液稳定与破乳机理探讨[J].应用能源技术,2004,(3):7-9.
    [68]夏立新,曹国英,陆世维,等.原油乳状液稳定性和破乳研究进展[J].化学研究与应用,2001,4(6):623-627.
    [69]刘晓荣,邱冠周,胡岳华,等.萃取界面乳液的固体微粒稳定机理[J].中南大学学报(自然科学版),2004,35(1):6-10.
    [70]孙悦,羊彦衡,吴国栋,等.苯-水混合液体的乳化机理研究[J].高压物理学报,2002,16(4):283-290.
    [71]Junji Shibata, Sanji Nishimura. The Role of Diluent in Metal Extraction Process[J]. 日本金属学会会报,1990,29(6):453-456.
    [72]Calabrese R.V., Chang T.P.K., Dang P.T. Drop Breakup in Turbulent Stirred-Tank Contactors, Part I:Effect of Dispersed-Phase Viscosity [J]. AIChE Journal,1986, 32(4):657-666.
    [73]Bailey N.T., Mahi P. The Effect of Diluents on the Metal Extracted and Phase Separation in the Extraction of Aluminium with Monononyl Phosphoric Acid[J]. Hydrometallurgy,1987,18(3):351-365.
    [74]罗爱平,张启修.稀释剂对铜萃取剂动力学及相分离性能的影响[J].矿冶工程,1998,18(2):57-60.
    [75]Boualia A., Mellah A., Silem A. The Effect of Rew and Sulfonated Kerosene Type Diluent on the Solvent Extraction of Uranium and Co-solution[J]. Hydrometallurgy, 1990,24(1):1-9.
    [76]冯旭东,林屹,翟福平,等.P204-煤油萃取剂的生物降解性[J].环境科学,2000,21(5):74-76.
    [77]Tachimori S., Izumo M. Radiolysis of DEHPA-CCl4 Solvent Mixture in the Presence of Aqueous Solutions[J]. J. Radioanal Chem.,1981,67(2):327-337.
    [78]许自炎,李玉兰,王家驹,等.HDEHP的α辐解[J].核化学与放射化学,1983,5(3):217-223.
    [79]王家驹,许自炎,李玉兰,等.γ辐照对HDEHP萃取Ce、Am、Sr的影响[J].原子能科学技术,1984,5:76-80.
    [80]Wieszczycka K., Tomczyk W. Degradation of Organothiophos-Phorous Extractant Cyanex 301 [J]. J. Hazard. Mater.,2011,192:530-537.
    [81]Cheng C.Y., Hughes C.A., Barnard K.R., et al. Manganese in Copper Solvent Extraction and Electrowinning[J]. Hydrometallurgy,2000,58(2):135-150.
    [82]马荣骏.溶剂萃取中乳化及三相问题[J].有色金属(冶炼部分),1996,(3):42-45.
    [83]付子忠.溶剂萃取过程中的乳化[J].湿法冶金,1988,(1):56-61.
    [84]李祥人.堆浸-萃取-电积工艺在银山铜矿的应用[J].湿法冶金,1998,68(4):20-22.
    [85]杨佼庸,刘大星.萃取[M].北京:冶金工业出版社,1988,260-272.
    [86]Kolarik Z., Pipkin N. Drop Size Distribution in Stirring Tanks using the Uranyl Nitrate/Tributyl Phosphate Extraction System[J]. Hydrometallurgy,1983,9(3): 371-379.
    [87]Eckert N.L., Gormely L.S. Phase Separation in an Experimental Mixer-Setter [J]. Chem. Eng. Res. Des.,1989,67(2):175-184.
    [88]Moyer B.A., Mcdowell W.J. Factors Influencing Phase Disengagement Rates in Solvent Extraction Systems Employing Tertiary Amine Extraction [J]. Sep. Sci. Technol.,1981,16(9):1261-1289.
    [89]Mortada D., Dalila B. Water pH and Surfactant Addition Effects on the Stability of an Algerian Crude Oil Emulsion[J]. J. Saudi Chem. Soc.,2012,16(3):333-337.
    [90]丁正功.聚驱采出乳化液稳定机理及SCL-1药剂作用机理研究[D].济南:山东大学,2009.
    [91]陈宗淇,王光信,徐桂英.胶体与界面化学[M].北京:高等教育出版社,2001,194-200.
    [92]曹绪龙,李阳,蒋生祥,等.驱油用聚丙烯酰胺溶液的界面扩张流变特征研究[J].石油大学学报(自然科学版),2005,29(2):70-72.
    [93]Lucassen-Reynders E.H. Competitive Adsorption of Emulsifiers 1. Theory for Adsorption of Small and Large Molecules[J]. Colloid Surf. A,1994,91:79-88.
    [94]Paatero E., Sjoblom J. Phase Behaviour in Metal Extaction Systems[J]. Hytrometallurgy,1990,25(2):231-256.
    [95]中垣正幸,严忠等译.膜物理化学[M].北京:科学出版社,1997,8-40.
    [96]夏立新,刘泉,汪舰,等.固体粒子稳定的乳状液研究进展[J].化学研究与应用,2007,19(10):1065-1069.
    [97]夏立新.油水界面膜与乳状液稳定性关系的研究[D].大连:中科院化物所,2003.
    [98]Kang W., Jing G., Zhang H., et al. Influence of Demulsifier on Interfacial Film Between Oil and Water[J]. Colloids Surf. A,2006,272(1-2):27-31.
    [99]刘晓荣,邱冠周,胡岳华,等.BL-SX-EW工艺中萃取界面乳化现象成因研究[J].矿冶工程,2000,20(4):38-41.
    [100]李玲,阮仁满,温建康,等.铜萃取过程中固体微粒对第三相形成的作用分析[J].稀有金属,2008,32(6):748-753.
    [101]Laitala H., Lampi M., Oyi O. Assarel Medet JSC Cu SX-TF-EW Project Inbulgaria. ALTA. Nickel/Cobalt/Copper Conference. Burswood Convention Center Perth, Australia. SX/IX/EW.2011,312.
    [102]ACORGA OPT萃取剂对醛肟:酮肟萃取剂的比较研究.湿法冶金技术研讨会文集,北京意特格冶金技术开发有限责任公司,2012,9-24.
    [103]Miller G. Contamination Management in Solvent Extraction Plants. ALTA. Nickel/Cobalt/Copper Conference. Burswood Convention Center Perth, Australia. SX/IX/EW 2011,1-12.
    [104]Bednarski T., Soderstrom M., Wiggett S. Oxidation in Copper SX Processes. ALTA. Nickel/Cobalt/Copper Conference. Burswood Convention Center Perth, Australia. SX/IX/EW 2011,1-9.
    [105]刘晓荣.铜溶剂萃取界面乳化机理及防治研究[D].长沙:中南工业大学,2001.
    [106]杨洪英,杨立.细菌冶金学[M].北京:化学工业出版社,2006,7-15.
    [107]Yee N., Fein J.B., Daughney C.J. Experimental Study of the pH, Ionic Strength and Reversibility Behavior of Bacteria-Mineral Adsorption[J]. Geochim. Cosmochim. Acta,2000,64(4):609-617.
    [108]Comte S., Guibaud G. Biosorption Properties of Extracellular Polymeric Substances(EPS) Resulting from Activated Sludge According to Their Type:Soluble or Bound[J]. Process Biochem.,2006,41(4):815-823.
    [109]倪丙杰,徐得浅,刘绍根.污泥性质的重要影响物质-胞外聚合物(EPS)[J].环境科学与技术,2006,29(3):108-110.
    [110]Morgan J.M., Forster C.F., Evison L.A. Comparative Study of the Nature of Biopolymers Extracted from Anaerobic and Activated Sludges[J]. Water Res.,1990, 24(6):743-750.
    [111]Brown J.M., Lester J.N. Metal Removal in Activated Sludge:The Role of Bacterial Extracellular Polymers[J]. Water Res.,1979,13(9):817-837.
    [112]蒲晓芬,胡涛,周学东.生物膜胞外聚合物的研究[J].国外医学:口腔医学分册,2005,32(5):339-342.
    [113]陶琴琴,刘峙嵘.湿法冶金中胞外聚合物(EPS)的研究进展[J].湿法冶金,2011,30(1):2-5.
    [114]余润兰,邱冠周,胡岳华,等.浸矿微生物/矿物界面的微观作用机制研究进展[J].湿法冶金,2008,27(2):72-76.
    [115]Sanhueza A., Ferrer I.J., Vargas T., et al. Attachment of Thiobacillus ferrooxidans on Synthetic Pyrite of Varying Structural and Electronic Properties [J]. Hydrometallurgy, 1999,51(10):115-129.
    [116]Sampson M.I. Influence of the Attachment of Acidophilic Bacteria during the Oxidation of Mineral Sulfides[J]. Miner. Eng.,2000,13(4):373-389.
    [117]Somasundaran P., Ren Y.Z., Rao M.Y., et al. Applications of Biological Processes in Mineral Processing[J]. Colloids Surf., A,1998,133(1-2):13-23.
    [118]Ohmura N., Tsugita K., Koizumi, et al. Sulfur-Binding Protein of Flagella of Thiobacillus ferrooxidans[J]. J. Bacteriol.,1996,178(19):5776-5780.
    [119]Natarajan K.A., Namita D. Role of Bacterial Interaction and Bioreagents in Iron Ore Flotation[J]. Int. J. Miner. Process,2001,62(7):143-157.
    [120]欧阳.胞外聚合物对Aferrooxidans菌在黄铜矿与黄铁矿表面吸附影响的研究[D].长沙:中南工业大学,2010.
    [121]Devasia P., Natarajan K.A., Sathyanarayana, et al. Surface Chemistry of Thiobacillus ferrooxidans Relevant to Adhesion on Mineral Surfaces[J]. Appl. Environ. Microbiol., 1993,59(12):4051-4055.
    [122]SchAfer A., Harms H., Zehnder A.J.B. Bacterial Accumulation at the Air-Water Interface[J]. Environ. Sci. Technol.,1998,32(23):3704-3712.
    [123]李安.生物吸附高钙镁矿物的界面作用研究[D].北京:北京科技大学,2011.
    [124]Houdt R.V., Michiels C.W. Role of Bacterial Cell Surface Structures in Escherichia Coli Biofilm Formation[J]. Res. Microbiol.,2005,156(5-6):626-633.
    [125]Blake H.R.C., Shute E.A., Howard G.T. Solubilization of Minerals by Bacteria: Electrophoretic Mobility of Thiobacillus ferrooxidans in the Presence of Iron, Pyrite and Sulfur[J]. Appl. Environ. Microbiol.,1994,60(9):3349-3357.
    [126]Santhiya D., Subramanlan S., Natarajan K.A. Surface Chemical Studies on Galena and Sphalerite in the Presence of Thiobacillus thiooxidans with Reference to Mineral Beneficiation[J]. Miner. Eng.,2000,13(7):747-763.
    [127]傅建华,邱冠周,胡岳华.浸矿细菌表面性质研究[J].金属矿山,2004,9(339):19-25.
    [128]Gehrke T., Telegdi J., Thierry D., et al. Importance of Extracellular Polymeric Substances from Thiobacillus ferrooxidans for Bioleaching[J]. Appl. Environ. Microbiol.1998,64(7):2743-2747.
    [129]贾春云,魏德洲,高淑玲,等.氧化亚铁硫杆菌在硫化矿物表面的吸附[J].金属矿山,2007,8:34-38.
    [130]李润卿.有机结构波谱分析[M].天津:天津大学出版社,2002,299-303.
    [131]Ohshima H. Modified Henry Function for the Electrophoretic Mobility of a Charged Spherical Colloidal Particle Covered with an Ion-Penetrable Uncharged Polymer Layer[J]. J. Colloid Interface Sci.,2002,252(1):119-125.
    [132]Ohshima H. On the General Expression for the Electrophoretic Mobility of a Soft Particle[J]. J. Colloid Interface Sci.,2000,228(1):190-193.
    [133]王兆慧,谢学辉,柳建设.嗜酸氧化亚铁硫杆菌表面双电层电势分布模拟[J].中国有色金属学报,2011,21(6):1485-1490.
    [134]Tan S.N., Chen M. Early Stage Adsorption Behaviour of Acidithiobacillus ferrooxidans on minerals I:An Experimental Approach[J]. Hydrometallurgy,2012, 119-120:87-94.
    [135]Ohmura N., Kitamura K., Saiki H. Selective Adhesion of Thiobacillus ferrooxidans to Pyrite[J]. Appl. Environ. Microbiol.,1993,59(12):4044-4050.
    [136]Sanhueza A., Ferrer I.J., Vargas T., et al. Attachment of Thiobacillus ferrooxidans on Synthetic Pyrite of Varying Structural and Electronic Properties [J]. Hydrometallurgy, 1999,51(1):115-129.
    [137]Dana P.A., George R.R., Harvey S.J., et al. Magnetic Behavior and Infrared Spectra of Jarosite, Basic Iron Sulfate, and Their Chromate Analogs[J]. J. Solid State Chem., 1975,13(1-2):1-13.
    [138]李邦梅.嗜酸氧化亚铁硫杆菌分离鉴定及其与硫化矿物相互作用研究[D].长沙:中南工业大学,2007.
    [139]Van-Oss C.J. Interfacial Forces in Aqueous Media[M]. New York:USA:Marcel Dekker,1994,7-46.
    [140]Bos R., van der Mei H.C., Busscher H.J. Physic-Chemistry of Initial Microbial Adhesive Interactions-its Mechanism and Methods for Study[J]. FEMS Microbiol. Rev.,1999,23:179-230.
    [141]Botero A.E.C., Torem M.L., de Mesquita L.M.S. Surface Chemistry Fundamentals of Biosorption of Rhodococcus opacus and its Effect in Calcite and Magnesite Flotation[J]. Miner. Eng.,2008,21(1):83-92.
    [142]刘怀群,万逸,张盾,等.硫酸盐还原菌的粘附动力学研究[J].腐蚀与防护,2011,32(2):81-85.
    [143]Munoz-Berbel X., Munoz F.J., Vigues N., et al. On-Chip Impedance Measurements to Monitor Biofilm Formation in the Drinking Water Distribution Network[J]. Sens. Actuators B:Chem.,2006,118(1-2):129-134.
    [144]李荻.电化学原理[M].北京:北京航空航天大学出版社,1999,30-58.
    [145]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002,3-20.
    [146]陈家镛,于淑秋,伍志春.湿法冶金中铁的分离与应用[M].北京:冶金工业出版社,1991,77-81.
    [147]马荣骏.萃取冶金[M].北京:冶金工业出版社,2009,235-240.
    [148]Darvishi D., Haghshenas D.F., Alamdari K.E., et al. Synergistic Effect of Cyanex 272 and Cyanex 302 on Separation of Cobalt and Nickel by D2EHPA[J]. Hydrometallurgy,2005,77(3-4):227-238.
    [149]Boualia A., Mellah A., Silem A. The Effect of Rew and Sulfonated Kerosene Type Diluent on the Solvent Extraction of Uranium and Co-Extractable Impurities from Solutions. Part 1. Uanyl Nitrate Solution[J]. Hydrometallurgy,1990,24(1):1-9.
    [150]Velikov K.P., Durst F., Velev O.D. Direct Observation of the Dynamics of Latex Particles Confined inside Thinning Water-Air Film[J]. Langmuir,1998,14(5): 1148-1155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700