用户名: 密码: 验证码:
中国岩石风化对大气CO_2的汇效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石的风化作用同时参与了短时间尺度和长时间尺度的全球碳循环,科学揭示岩石风化对碳循环影响的机制和程度,对于全球碳循环研究、全球变化研究有重要意义,不仅可以部分地解决“遗漏汇”问题,还能为完善碳循环模型作贡献。
     本文首先评述了当前岩溶、岩石风化以及碳循环的研究现状和存在问题,探讨了硅酸盐岩和碳酸盐岩在不同时间尺度上的碳汇意义,全面分析了影响岩石风化的多种因素及其控制机理。针对传统岩溶研究在区域尺度研究上的不足,将遥感和GIS方法引入数据获取、处理及分析过程中,实现了数据和研究成果从点源向区域面上的尺度转化。为此,作者详细讨论了从多波段遥感数据提取地质信息以及空间数据的插值、订正等方法,并进行了相应的实验研究。
     在此基础上,作者一方面依据成熟的GEM-CO_2模型,对中国的岩石风化的碳汇效应进行了完整而全面的估算,对其空间分布格局进行了深入分析,填补了我国在岩石风化的碳汇效应估算方面的空白;另一方面,作者基于桂林岩溶试验场十余年来的连续定点观测数据,选取平均气温、降水、土壤呼吸和NPP为影响因素,经过观测数据的极差标准化,基于反应面分析模型的模型原型选择;变量的共线性诊断;及参数估计与显著性分析等过程,建立了碳酸盐岩溶蚀速率模型。显著性检验表明,该模型具有良好的拟合优度,并且99.5%的显著性水平下仍然显著成立。为将此模型推广应用到珠江流域,使用遥感数据和TEPC模型计算得到珠江流域NPP以及土壤呼吸强度数据。同时利用本文第三章计算的气候数据,最终计算得到中国珠江流域的溶蚀率以及碳汇的空间分布及值域。对热带亚热带岩溶的典型区域—珠江流域岩溶作用的碳汇效应进行的实验表明:珠江流域年溶蚀量为8159612.303t碳酸钙,碳979153.48t,其中1/2的碳,约489576.74t来自大气或土壤CO_2。通过和其它模型的对比,各模型估算的结果数量级相同,说明本文建立的热带亚热带岩溶区溶蚀率模型是可信的。
Rock weathering caused by the carbonic acid reaction with minerals to produce dissolved bicarbonates which are carried by rivers to the oceans is an important part in carbon cycle. The process causes significant carbon dioxide consumption, the accurate calculation of which may partly explains the missing sink of carbon and may do some contribution to the research in Global Change.
    The CO2 uptake by carbonate dissolution (which is also called karstification) on the continents is counterbalanced by the CO2 release by carbonate precipitation in the ocean. The same is not true for silicate weathering. Silicate weathering is more important than carbonate weathering as a long-term control on atmospheric CO2.
    Rock weathering is controlled by a great range of factors which includes rock property, climatic conditions, CO2 concentration in atmosphere/soil, vegetation and so on. Analyses of the influences of factors to rock weathering show that sometimes the weathering process may be controlled mainly by one factor, but in most cases rock weathering is controlled by all factors integratedly.
    A global erosion model (GEM-CO2) developed by Amiotte Suchet allows to calculate the flux of atmospheric/soil CO2 consumed by chemical erosion of continental rocks. In the thesis, the CO2 consumption by rock weathering in China is estimated based on GEM-CO2 and the Chinese Resources and Environment Database, and its distribution is show in a GRID map with a spatial resolution of 1000m*1000m. The total carbon consumption is about 4.72*107TC/a, about 52.65% of which are caused by carbonate and 47.35% of which are caused by silicate. The model results are close to previous estimation by other researches. The flux of CO2 consumed by rock weathering increases where carbonate rock outcrops are more abundant and when drainage intensity increases. The results show that the main consumption of CO2 is localized in Guangxi province, Guizhou province, Chongqin, North Hubei province, and Southwest of Hunan province, because of large area with a high proportion of carbonate rocks and high humidity.
    
    
    Karstification is a good connector of Geological processes and Biological processes. Many methods are tried in order to accurately estimate the karst solutional speed and then the CO2 consumption by karstification, such as analyzing elements in river, dissolution kinetics, dissolution survey experiments and so on. In the thesis, the karst solutional speed is estimated by a model. Analyses of the influences of some factors to karstification get following conclusions: 1 .Temperature and precipitaion are main climatic factors involving in karstification. There is an obvious positive correlation between the karst solutional speed and precipitation. But it's not the same between the karst solutional speed and temperature. Temperature influences karstification in a more complex way; 2.Biological processes influences karstification through increasing the acidity of water by metabolic outcome, and then accelerating the reaction between water and rock and hastening the releasing of Calcium element from soil. The intensity of biological process can be assessed with the value of NPP(Net Primary Productivity); 3.As part of reactor, the soil CO2 drives karstification, which can be verified by the positive correlation between the concentration of [HCO3 ] in river or in spring and the CO2 concentration in soil. There is a positive correlation between the intensity of soil respiration and the CO2 concentration in soil.Based on above knowledge and data from continuous experiments and observations, a karst solutional speed model in tropic and subtropical zone in China is developed to describe the relationship between karst solutional speed and temperature, precipitation, NPP, and intensity of soil respiration. The data was non-dimensionized to improve the comparability of different parameters. The archetype of the model was selected with Response Surface Analysis. The effect of correlations between independent factors was analyzed. And the regression equation was worked out
引文
[1] Alan L Mayo,Muller A B. 1997. Low temperature diagenetic-metamorphic and magmatic contributions of external CO_2 gas to a shallow groundwater system[J]. Journal of Hydrology, 194: 286~304.
    [2] Amiotte Suchet and Probst, 1993. - Flux de CO_2 consommé par altération chimique continentale: influences du drainage et de la lithologie. C.R. Acad. Sci. Paris, t. 317, Série Ⅱ, :615-622
    [3] Andreas Indermühle, Eric Monnin, Bernhard Staffer, Thomas F. Stocker. 2000. Atmospheric CO_2 concentration from 60 to 20 kyr bp from the Taylor Dome ice core, Antarctica. Geophysical research letters, Vol.27 No.5: 735-738
    [4] Arrhenius, S 1896. On the Influence of Carbonic Acid in the Air upon the Temperature of the Ground. Philosophical Magazine Ser 5, 41 (251): 237-276.
    [5] Art F.White, Alex E.Blum, 1995. Effect of climate on chemical weathering in watersheds.Geochimica et Cosmochimica Acta, 59(9): 1729-1747
    [6] Barnaby W. Rockwell, 1989. Hydrothermal Alteration Mapping Spectral Ratio Feature Space Using TM Reflectance Data. Auroda Mining District, Mineral County, Nevada, Presented ar the Seventh Thematic Conference on Remote Sensing for Exploration Geology. Calgary, Alberta, Canada, October: 2-6.
    [7] Baubron J. C., Allard P., and Toutain J. P.,1990. Diffuse volcanic emissions of carbon dioxide from Vulcano Island, Italy. Nature, Vol.344:51-53
    [8] Becket F, Z.L.Li. 1990. Toward a local split window method over land surface. International Journal of Remote Sensing,Vol. 11 No.3:369-393
    [9] Bengtssen L. 1997. Numerical on climatic change due to human being. Ambio, 26(1): 58-65
    [10] Berner E.K., Berner R.A. 1987. The global water cycle, geochemistry and environment. New Jersey: Prentice-Hall: 1-397
    [11] Berner R A, 1997. Weathering, plants and the long-term carbon cycle. Geochimica et Cosmochimica Acta, Vol.56:3225-3231
    [12] Berner R A, Berner E K, 1997. Silicate weathering and climate. Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press: 354-364
    [13] Berner R A. 1990. Atmospheric carbon dioxide level over Pherozoic time. Science, 249:1382-1386
    [14] Berner R A. 1991. A model for atmosphereic CO2 over Phanerozoic time. Amer. J. Sci. Vol.291: 339-376
    [15] Berner R A. and Antonio C. Lasaga. 1989. Modeling the Geochemical Carbon Cycle. Scientific American 260(3): 74-81
    [16] Berner Robert A. 1994. Geocarb Ⅱ: a revised model of atmospheric CO_2 over Phanerozoic time.Amer. J. Sci. Vol.294:56-91
    [17] Berner Robert A. 1997. Weathering, plants and the long-term carbon cycle. Geochimica et Cosmochimica Acta, Vol.56:3225-3231
    [18] Berner, R.A., Lasaga, A.C. and R.M. Garrels.1983. The Carbonate-Silicate Geochemical Cycle and its Effect on atmospheric CO_2. American Journal of Sciencies, 283:641-683.
    [19] Berry, William D. and Stanley Feldman. 1985. Multiple Regression in Practice. Beverly, 1985.
    
    
    [20] Bolin B., Degens E.T., Kempe S., Ketner P., 1979. The global carbon cycle. Scope Rep. 103, J. Wigley & Sons Chiehester- New York- Brisbane- Toronto
    [21] Brian P. Hausback, Farrar C., David Pieri, 1998. Monitoring of volcanogenic CO_2-induced tree kills with AVIRIS image data at Mammoth mountain, California. http://makalu.jpl.na sa .gov/docs/workshops/98_docs/25.pdf
    [22] Bricker O.P. and Rice K, 1989. Acidic deposition to streams. Environmental Science and Technology, 23:379-385
    [23] C.托格,袁道先,1987.溶蚀空间的形成及中国与世界其他地区碳酸盐岩近期溶蚀量的对比分析.中国岩溶6(2):131-136
    [24] Cao Jianhua, Wang Fuxing, 1998. Reform on the subsurface of carbonate rock by crustose lichens and their environmental significance. Acta Geologica Sinica, 72(1)
    [25] Cao Jianhua, Wang Fuxing. 1998. Reform of carbonate rock subsurface by Crustose Lichens and its environmental significance[J].Acta Geologica Sinica, 72(1): 94~99
    [26] Chamberlin, T. C., 1906. On a possible reversal of deep-sea circulation and its influence on geologic climates. J. Geology 14, 363-373.
    [27] Chappellaz J et al. 1990. Ice-core record of armospheric methane over the past 160,000 years. Nature, 345:127-131
    [28] Chavez P.S. Jr., etc, 1989. Extracting Spectral Contrast in Landsat Thematic Mapper Image Data Using Selective Principle Component Analysis, Photogrammetrie Engineering and Remote Sensing, 55(3): 339-348
    [29] Chedin A., M.A.Scott, C.Wahiche, and P.Moulinier,1985. The improved initialization inversion method: a high resolution physical method for temperature retrievals from the Trios-N series. Journal of Climate and Applied. Meteorology.,Vol.24:124-143
    [30] Chen Z H, Wang B S, Zhang H D. The Productivity of the Lower Subtropical Evergreen Broad leaved Forest. Guangzhou: Guangdong Higher Education Press, 1996.
    [31] Chiodini G., Cioni R., Raco B., et al., 1998. Soil CO_2 flux measurements in volcanic and geothermal areas. Applied Geochemistry, 13(5): 543-552
    [32] Cobel J., 1959. Erosion en Terrain Caleaire. Annales de Geographic, v67: 97-120
    [33] Coll C, Caselles V, Sobrino A, et al. 1994. On the atmospheric dependence of the split-window equation for land surface temperature. International Journal of Remote Sensing, 15:105-122
    [34] Component Images Based on Log Redidual ATM Image Data, Presented at the Tenth Thematic Conference on Geologic Remote Sensing. San Antonio, Texas, USA, 9-12 May, 1994.
    [35] Cronan, C.S., J.T. Piampiano, and H.H. Patterson. 1999. Influence of land use and hydrology on exports of carbon and nitrogen in a Maine River Basin. Journal of Environmental Quality 28: 953-961.
    [36] Crosta A.P. & Marcia Obara, 1996. The use of geosean AMSS data for gold exploration in Rio Itapicuro Greenstone Belt, Brazil. Presented at the eleventh thematic conference and workshios on applied geologic remote sensing , Las Vegas, Nevada, 27-29
    [37] Crosta Alvaro P., Antonio Rabelo, 1993. Assessing Landsat/TM for
    
    hydrothermal alteration mapping in central western Brazil. Presented at the ninth thematic conference on geologic remote sensing, Pasadena, California, USA: 8-11
    [38] Crowley, J. K. 1993. Mapping playa evaporate mineral with AVIRIS data: A first report from Death Valley, California: Remote Sensing of Environment, Vol.44, Nos. 2-3
    [39] Davidson G.R.,1995. The stable isotopic coposition and measurement of carbon in soil CO_2. Geochim et Cosmochim Acta, 59(12): 2485-2489
    [40] Deering, D. W., 1978, Rangeland reflectance characteristics measured by aircraft and spacecraft sensors, Ph.D. Dissertation, Texas A & M University, College Station, TX: 338
    [41] Dreybrodt W, Buhmann D. 1991. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 90:107-122
    [42] Edmond J M, Huh Y., 1997. Chemical weathering yields from basement and orogenic terrains in hot and cold climates. Ruddiman W F, ed. Tectonic Uplift and Climate Change. New York: Plenum Press: 303-349
    [43] Elizabeth R. James, Michael Manga,and Timothy P.Rose. 1999. CO_2 degassing in the Oregon Cascades.Geology, v27n9:823-826
    [44] Etchanchu D., 1988. Geochimie des eaux du Bassin de la Garonne, Transfert de Matieres Dissoutes et Particulaires vers 1 Ocean Atlantique, Thesis de Doctorat, Universite Paul Sabatier, Toulouse: 178
    [45] Etheridge, D.M., L.P. Steele, R.L. Langenfelds and R.J. Francey 1996. Natural and anthropogenic changes in atmospheric CO_2 over the last 1000 years from air in Arctic ice and firn. J. Geophys. Res. 101, 4115-4128
    [46] Falkowski, P., Scholes, R. J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Hgberg, P., Linder, S., Mackenzie, F. T., Moore Ⅲ, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W. 2000. The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System. Science 290:291-296
    [47] Farrar C.D., et al., 1995. Forest-killing diffuse CO_2 emission at Mammoth mountain as a sign of magmatic unrest. Nature, 376:675-678
    [48] Fernando António Leal Pacheco, & Cornelis H. Van der Weijden.2000.Mineral weathering rates and groundwater recharge rates. Journal of Conference Abstracts,Vol.5(2): 629
    [49] Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. and Deck B. 1999. Ice core records of atmospheric CO_2 around the last three glacial terminations. Science 283: 1712-1714.
    [50] Fourier, J B J. 1822. Théorie Analytique de Chaleur (Paris). Translated in 1878 by Alexander Freeman The Analytical Theory of Heat. Cambridge University Press.
    [51] Fran G B, Cracknell A P. 1994. Retrieval of land and sea surface temperature using NOAA-11 AVHRR data in north-eastern Brazil. International Journal of Remote Sensing, 15:1695-1712
    [52] Franke H. W. 1975. Correspondence between Sintering and Corrosion. Ann. Spélé. 30:4665-4675
    [53] Galimov E M,1966. Carbon isotopes of soil CO_2, Geochem. Int. 3:889-897
    
    
    [54] Gams Ivan., 1985. International comparative measurements of surface solution by means of standard limestone tablets. Razprave iv. Razreda Sazu, Zbornik Ivana Rakovca / Ivan Rakovec Volume, ⅩⅩⅥ, 1 sl., Ljubljana, 361-386
    [55] Garrels, R. M. and Mackenzie, F.T.,1971. Evolution of sedimentary rocks. W. W. Norton and Co.Inc., New York: 397
    [56] Goetz. 1998. Scanning the globe with remote sensing. BioScience, 48(1):39~43.
    [57] Goreau T. J.,1990. Balancing atmospheric carbon dioxide. Ambio,19:230-236
    [58] Heimann M. 1995. Dynamics of the carbon cycle. Nature, 375:629-630
    [59] Herman J.W. Lorah M. M.,1987. CO_2 outgassing and calcite precipitation in Falling Spring Creak, USA. Chem. Geol., 62:251-262
    [60] Hills, CA: Sage Publications.
    [61] Hobbs T J. 1995. The use of NOAA AVHRR NDVI data to assess herbage production in the arid rangelands of Central Australia. Int J Remote Sens, 16: 1289~1302.
    [62] Holland D. H., 1978. The chemistry of atmosphere and oceans. Wiley-Intersciences Publishhouse, Chichester, New York: 351
    [63] Houghton J. T., Jenkins G. J., Ephraums J. J., 1990. Climate change. In: The IPCC Scienti-fic assessment. New York: Cambridge University Press, P: 365
    [64] Houghton J. T., Jenkins G. J., Ephraums J. J., 1992. Climate change. In: The supplementary report to the IPCC Scientific assessment. New York: Cambridge University Press, P: 200
    [65] Houghton, J., 1998.戴晓苏,石广玉,董敏,耿全震译.全球变暖.北京:气象出版社,1-239
    [66] http://www.nju.edu.cn/njuc/dikexi/earthscience/chp5/3tan-qq-dh.htm
    [67] Hunt G.R., Salisbury J.W., 1974. Mid-Infrared Spectral Beharior of Igneous Rocks, AFCRL-TR- 74-0625.
    [68] Hunt G.R., Salisbury J.W., 1975. Mid-Infrared Spectral Beharior of Igneous Rocks, AFCRL-TR- 75-0356.
    [69] Hunt G.R., Salisbury J.W., 1976. Mid-Infrared Spectral Beharior of Igneous Rocks, AFCRL-TR- 76-0003.
    [70] Hunt G.R.,1977. Spectral Signatures of Particulate Minerals, in the Visible and Near-Infrared. Geophysics, 42:501-503
    [71] Hunt G.R.,1979. Near-Infrared (1.3βm~2.4μm) Spectra of Alteration Minerals Potential for Use in Remote Sensing. Geophysics, 44:1974-1986
    [72] Husar R B, Stefan R Falke,1996. Uncertainty in the Spatial Interpolation of PM10 Monitoring Data in Southern California. http://capita.wusfl.edu/capita /capitareports/cainterp/cainterp.html
    [73] IGBP,2002. http://www.igbp.kva.se/cgi-bin/php/coreprojects.show.php
    [74] Indermuhle, A., Monnin, E., Stauffer, B. and Stocker, T.F. 2000. Atmospheric CO_2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters 27: 735-738.
    [75] IPCC(Intergovernmental Panel on Climate Change), 2001. Climate change 2001: the scientific basis. Cambridge: Cambridge University Press.
    [76] J. D. Mahlman.Uncertainties in Projections of Human-Caused Climate Warming. Science 1997 November 21; 278:1416-1417
    [77] James I.Drever. 1994. The effect of land plants on weathering rates of silicate
    
    minerals.Geochimica et Cosmochimica Acta, 58 (10): 2325-2332
    [78] Jiang Zhongcheng, Yuan Daoxian, 1999. CO_2 source-sink in karst processes in karst areas of China. Episodes, Vol.22 No.1: 33-35
    [79] Jordan, C. F. 1969. Derivation of leaf area index from quality measurements of light on the forest floor. Ecology, Vol. 50,pp. 663-666
    [80] Kaufman, Y. J., & Tanré, D. 1992. Atmospherically resistant vegetation index-ARVI for EOS/MODIS. IEEE Transactions on Geoscience and Remote Sensing, 30, 261-270
    [81] Keeling, C. D., and T. P. Whorf, 1993. Atmospheric CO_2 records from sites in the SIO air sampling network, in Trends '93: A compendium of Data on Global Change, edited by T. A. Boden, D. P. Kaiser, R. J. Sepanski, and F. W. Stoss: 16~26, Carbon Dioxide Information Analysis Center, Oak Ridge, update at: http://cdiac.esd.ornl.gov/ndps/ndp001.html, 1994.
    [82] Kennedy, Donald. 2001. Breakthrough of the Year. Science, 294:2443-2447
    [83] Kruse F A, Lefkoff A B, Dietz J B. 1993. Expert system-based mineral mapping in Northern Death Valley, California/Nevada, using the airborne visible/infrared imaging spectrometer (AVIRIS). Remote Sensing Environment, 44:309-336
    [84] L.Eklundh, A.Singh, 1993. A comparative analysis of standardized and unstandardised principle components analysis in remote sensing. Int.J.Remote Sensing, 14(7): 1359-1370
    [85] Laerte Guimaraes Ferreira Junior, Paul Roberto Meneses, 1994. Discrimination of Hydrothermally Altered Zones Through Visible-near Infrared Spectrometry and Multispectral Image Processing. Presented at the Tenth hematic Conference on Geologic Remote Sensing, San Antonio, Texas: 9-12
    [86] Lasaga, A.C. and Berner, R.A., 1998, Fundamental aspects of quantitative models for geochemical cycles. Chem. Geol. v 145, p. 161-175.
    [87] Li Bin,Yuan Daoxian. 1996. Carbon cycle and CO_2 source-sink of atmosphere. Carsologica Sinica, 1996(1): 43-49
    [88] Lieth H, Whittaker R H. Modeling the Primary Productivity of the World. Primary Productivity of the Biosphere. New York: Springer- Verlag, 1975.237~263.
    [89] Liu Zaihua, Yuan Daoxian, He Shiyi, et al. 1998.Contribution of carbonate rock weathering to the atmospheric CO_2 sink[A].Proceedings of the 28th IAH Conference[C].Las Vegas, USA: 187~193.
    [90] Loughlin, W.P. 1991. Principle component analysis for alteration mapping. Photog- rammetry and remote sensing, 57(5): 1163-1169
    [91] Ludwig W, Probst J L, 1998. River sediment discharge to the ocean: Present-day controls and global budgets. American Journal of Science, 298:265-295
    [92] Lurin B, Rasool S I, Wolfgang Cramer, et al. 1994. Global terrestrial net primary productivity. IGBP Newsletter, 19:8~11.
    [93] M.Ford and Robert A. Berner. 1993. Enhancement of silicate weathering rates by vascular land plants:quantifying the effect. Chemical Geology, 107:213-215
    [94] Manthripragada Srikanth, John McMahon Moore, Liu Jianguo. 1994. Improved Principle Component Images Based on Log Redidual ATM Image Data, Presented at the Tenth Thematic Conference on Geologic Remote Sensing. San Antonio, Texas, USA: 9-12 May, 1994.
    [95] Mapping GIS Milestones: 1960-1970. http://www.gisdevelopment.net/history
    
    /1960-1970.htm
    [96] Mcfarlance M.F., Laterites,1983. In: Chemical Sediments and Geomorphology: Precipitate and Residual in the Near-Surface Environment. London: Academic Press Inc. Ltd.: 7-58
    [97] McM.Moore, Liu jianguo,et al. 1993. Mineral discrimination by directed band difference techniques using TM and ATM image data. Presented at the ninth thematic conference on geologic remote sensing, Pasadena, California, USA,8-11, February 1993
    [98] Meybeck J M,1987. Elemental mass-balance of surficial rocks estimated from river dissolved loads. American Journal of Science, 287:401-428
    [99] Meybeck J M.,1976. Total mineral dissolved transport by world major rivers. Hydrological-Sciences-Bulletin-des, Sciences Hydrologiques, ⅩⅪ26:265-282
    [100] Meybeck M., 1982. Carbon, nitrogen and phosphorus transported by world rivers. American Journal of Science, 282:401-450
    [101] Meybeck, M. 1986. Composition chimique des ruisseaux non pollués de France. Sci. Géol. Bull. 39,3-77
    [102] Meybeck, M. 1987. Global chemical weathering of surficial rocks estimated from fiver dissolved load. American Journal of Science, 287:401-428
    [103] Miller K G, Faribanks R G, Mountain G S. 1987. Tertiary oxygen isotope synthesis, sea level history and continental margin erosion. Paleoceanography, 2: 1-19
    [104] Neftel A et al. 1982. Ice core sample measurements give atmospheric CO_2 content during the past 40,000years. Nature, 295:220-223
    [105] Neftel, A., H. Oeschger, T. Sta_elbach, and B. Stau_er, 1988. CO_2 record in the Byrd ice core 50,000-5,000 years BP, Nature, 331,609-611
    [106] Okada K, Ohnuma T, Watanabe H.1990. Geologic mapping of Keping Uplift, Northwestern margin of the Tarim Basin based on absorption features using hyper multispectral image data. Proceeding of remote sensing: an operational technology for the mining and petroleum industries, Ⅰ: 190-197
    [107] Ottle C. and Vidal-madjar.1992. Estimation of land surface temperature with NOAA9 data. Remote Sensing Environment, Vol.40, No. 1: 27-41
    [108] P. Boyle. 1977. Options: a Monte Carlo approach. Journal of Financial Economics, 4:323-338, 1977.
    [109] P. Amiotte Suchet,A.Prost and J.L.Probst., 1995. Influence of acid rain on CO_2 consumption by rock weathering: local and global scales. Water, Air and Soil Polution, 85: 1563-1568,
    [110] P.Amiotte Suchet, and J.L.Probst, 1995. A global model for present-day atmosperic/soil CO_2 consumption by chemical erosion of continental rocks(GEM-CO_2). Tellus, 47B, 273-280
    [111] P.Amiotte Suchet, and J.L.Probst. 1993. Modelling of atmospheric CO_2 consumption by chemical weathering of rocks:Application to the Garonne,Congo and Amazon basins. Chemical Geology, Vol. 107:205-210
    [112] Pacala, S. W., G. C. Hurtt, D. Baker, P. Peylin, R.A. Houghton, R.A. Birdsey, L. Heath, G. T. Sundquist, R. F. Stallard, P. Ciais, P. Moorcroft, J. P. Caspersen, E. Shevliakova, B. Moore, G. Kohlmaier, E. Holland, M. Gloor, M. E. Harmon, S. M. Fan, J. L. Sarmiento, C. L. Goodale, D. Schimel, C. B. Field. 2001. Consistent Land- and atmosphere-based U.S. carbon sink estimates. Science,
    
    292: 2316-2320.
    [113] Pacheco, F.A.L. & Van der Weijden, C. H. 1996. Contributions of Water-Rock Interactions to the Composition of Groundwater in Areas with Sizeable Anthropogenie Input. A Case Study of the Waters of the Fundo area, Central Portugal. Water Resources Research, Vol. 32, No. 12, p. 3553-3570
    [114] Paine S G., Linggood F V and Sehimmer F et al.,1933. The relationship of microorganisms to the decay of stone. Philosophical Transations of Royal Society, 22:97-127
    [115] Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., and Stievenard, M. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429-436.
    [116] Price J C. 1983. Estimating surface temperature from satellite thermal infrared data- a simple formulation for the atmospheric effect. Remote Sensing Environment, Vol. 13:353-361
    [117] Price J C. 1984. Land surface temperature measurements from the split window channels of the NOAA-7 AVHRR. Journal of Geophysics Research,Vol.79: 5039-5044
    [118] Prince S D. 1991. Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988. Int J Remote Sens, 12(6): 1301-1311.
    [119] Probst J.L., 1992. Géochimie et hydrologic de 1'Vrosion continentale-Mécanismes, bilan global actuel et fluctuations au cours des 500 derniers millions d'années. Sci. Géol.,Mém.,94,Strasbourg: 167
    [120] Probst J.L., Amiotte Suchet P. and Tardy Y., 1992. Global continental erosion and fluctuations of atmospheric CO_2 consumed during the last 100 years. In: Y. K. Kharaka and A.Maest (editors), Proc. 7th Int. Symp. W.R.I., Park City, Utah, U.S.A., July 13-18, 1992. Balkema, Rotterdam: P483-486
    [121] Probst J.L., Mortatti J. and Tardy Y., 1994. Carbon river fluxes and global weathering CO_2 consumption in the Congo and Amazon river basins. Applied Geochemistry 9:1-13
    [122] Probst J.L.,2000. IGCP Project Final Report 2000 for Project No 404. http://131.128.30.145/ja/IGCP404.htm
    [123] Puckett, L.J., and Bricker O.P., 1992. Factors controlling the major ion chemistry of streams in the Blue Ridge and Valley physiographic provinces of Virginia and Maryland: Hydrological Processes, v6: 79- 98.
    [124] R. M. Garrels and A. Lerman, 1984. Coupling of the sedimentary sulfur and carbon cycles-an improved model. Amer. J. Sci., 284: 989-1007
    [125] Raymo M E,Ruddiman W F, Froelich P N. 1988. Influence of late Cenozoic mountain building on ocean geochemical cycles. Geology, 16:649-653
    [126] Raymo M E. 1991. Geochemical evidence supporting T.C. Chamberlin's theory of glaciation. Geology, 19:344-347
    [127] Raymo M E., Ruddiman W F. 1992. Tectonic forcing of late Cenozoic climate. Nature, 359:117-122
    [128] Roger A K, Ronald L B, George R F, et al., 1996. Effect of land use changes on sediment transoort in Goodwin reek. Water Resource Research, 32(10):
    
    3189-3196
    [129]Roger G.Barry.,著,安顺清,王长根译,1988.山地气候和天气.北京:气象出版社.
    [130]Rotty R. M., 1983. Distribution and changes in industrial carbon dioxide production. Journal of Geophysics Research, 88:1301-1308
    [131]Rowan L.C. Watlaufer P H, Goetz A F H, Billingsley F C, Stewart J H.1974. Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by use of computer-enhanced ERTS images. U S Geological Survey, 1974, Prof. Paper 883
    [132]Ruimy A, Saugier B. 1994. Methodology for estimation of terrestrial net primary production from remotely sensed data. J Geophysical Research, 97:18 515~18 521.
    [133]Sarmiento J. L. and Sundquist E. T., 1992. Revised budget for oceanic uptake of anthropogenic carbon dioxide. Nature, 356:589-593
    [134]Schimel D, House J, Hibbard K, Bousquet P, Ciais P, Peylin P, Apps M, Baker D, Bondeau A, Brasswell R, Canadell J, Churkina G, Cramer W, Denning S, Field C, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo J, Moore Ⅲ B, Murdiyarso D, Noble I, Pacala S, Prentice C, Raupach M, Rayner P, Scholes B, Steffen W, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169-172
    [135]Schwartzman D.W. and Vol.k T., 1991. Biotic enhancement of weathering and surface temperatures on earth since the origin of life. Paleogeo. Paleoclim. Paleoecol.90,357-371
    [136]Schwartzman D.W. and Vol.k T. 1989. Biotc enhancement of weathering and the habitability of Earth. Nature 340,457-460
    [137]Semi K., Probst J.L., Etcheber H., and A. Bazerbachi,1993. Dissolved river transport in the Garonne Basin-Seasonal and interannual variations. In: EUG Ⅶ, Strasbourg, abstract supplement No. 1 to Tarra Nova, 5:633
    [138]Sharp, M., M. Tranter, G.H. Brown and M. Skidmore, 1995. Rates of chemical denudation and CO_2 drawdown in a glacis-covered alpine catchment. Geology, 23, 61-64.
    [139]Sharp, M., M. Tranter, G.H. Brown and M. Skidmore,1995. Rates of chemical denudation and CO_2 drawdown in a glacier-covered alpine catchment, Geology, 23: 61-64.
    [140]Simith T M, Shugart H H. 1993. The transient response of terrestrial carbon storage to a perturbed climate.Nature, 361:523-525
    [141]Solomon D K, Cerling T E., 1987. The annual carbon dioxide cycle in a montane soil: observation, modeling, and implication for weathering. Water Resources Research, 23(12): 2257-2265
    [142]Sorey M. L., Evans W. C., Kennedy B. M., Farrar C. D., Hainsworth L. J., and Hausback B., 1998. Carbon dioxide and helium emissions from a reservoir of magmatic gas beneath Mammoth Mountain, California. Journal of Geophysical Reseach, Vol. 103:15303-15323.
    [143]Stallard R.F.,1980. Major element geochemistry of the Amazon River system. PhD. Thesis, MIT-WHOI Joint Program in Oceanography, Cambridge MA.: 362
    [144]Stallard, R. F., 1992, Tectonic Processes, continental freeboard, and the rate-controlling step for continental denudation, in Global Biogeochemical
    
    Cycles, Butcher, S. S., Charleson, R. J., Orions, G. H., and others, editors, International Geophysics Series 50: San Diego, California, Academic Press, 93-121,379 pages
    [145] Steven C. Wofsy, 2001. CLIMATE CHANGE: Enhanced: Where Has All the Carbon Gone?. Science 292:2261
    [146] Summerfield M.A, Hulton N. J., 1994. Natural controls of fluvial denudation rates in major workd drainage basins. Journal of Geophysical Research, 99(B7): p13871-13883
    [147] Sundquist E.T. 1985. Geological perspectives on Carbon dioxide and the atmospheric CO_2: Natural variations Archeon to the present. Geophysical Monograph # 32, American Geophysical Union, Washington D.C., 198 p.: 5-59.
    [148] Susskind J, Rosenfield, and D Reuter,. 1984. Remote sensing of weather and climate parameters from HIRS2/MSU on IROS-N. Journal of Geophysics Research, Vol. 89: 4677-4697.
    [149] Sweeting,M.M. 1980. Karst and climate-a review Z. Geomorpt Suppl-Bd. 36.
    [150] Tans P. P., Fung I. Y., Takahashi T., 1990. Observational constraints on the global atmospheric CO_2 budget. Science, 247:1431-1438
    [151] The Kyoto Protocol, 2002. http://unfccc.int/text/resource/process/components/response/respkp, html
    [152] Trudgill S.T., 1985. Limestone geomorphology. London: Longman Inc: P 10-35
    [153] Turc, L., 1963. Evaluation des besoins en eau d'irrigation, évapotranspiration potentielle, formulation simplifié et mise à. jour. Ann. Agron., 12:13-49.
    [154] United Nations, 1997. Kyoto Protocol to the United Nations Framework Convention on climate Change. FCCC/Cp/1997/L.7/Add.1.Conference of the Parties, Third Session. Kyoto: 1-10 December, 1997
    [155] Viles H A, 1984. Biokarst: review and prospect. Progress in Physical Geology, 8:532-542
    [156] W. Dreybrodt, 1990. The role of Dissolution Kinetics in the Development of Karst Aquifers in Limestone: A Model Simulation of Karst Evolution, J. of Geology 98, 639-655.
    [157] W. Dreybrodt, D. Buhmann, J. Michaelis, and E. Usdowski, 1992. Geochemically controlled calcite precipitation by CO_2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions, Chem. Geol. 97: 285-294,
    [158] Walker B. and Steffen W., 1997. Components and dreivers of global change. Global Change IGBP Science.1997(1): 6-7
    [159] Walker J.C.G, Hays P B, Kasting J F. 1981. A negative feedback mechanism for the long-term stabilization of the Earth's surface temperature. J. Geophys. Res, 86:9776-9782
    [160] Wan Z and H R Dozier. 1996. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sensing, Vol.34No.4:980-996
    [161] Wan Z., Z.L.Li. 1997. A physics-based algorithm for retrieving land temperature from EOS/MODIS data, IEEE Trans. Geosci. Remote Sensing, Vol.305 NO.4:980-996
    [162] Wang P Q, Jiang D X, Fu B H., 1995. Geologic interpretation and evaluation of JERS-1 SAR/OPS data in Tarim Basin, China. Final report of JERS-1/ERS-1
    
    system verification program, Ⅰ: 332-397
    [163] White A F, Blum A E,1995. Effects of climate on chemical weathering in watersheds. Geo et Cosmochim Acta, 59:1729-1747
    [164] White W.B. 1984. Rate processes: chemical kinetics and karst landform development. In: LaFleru RG(ed). Groundwater as a geomorphic agent. Allen and Unwin, London Boston Sydney,: 227-248
    [165] White W.B., 1977. Role of solution kinetics in the development of karst aquifers. In: J.S.Tolson & F.L.Doyle(eds), Karst Hydrology, Intern. Assoc. Hydrogeol. Memoir, 1977,12:503-517
    [166] Wigley T.M.L,Schimel D S eds. 2000. The carbon cycle. Cambridge: Cambridge university Press: 9-10
    [167] Wolfgang Ludwig, Philippe Amiotte-Suchet, Guy Munhoven, Jean-Luc Probst., 1998. Atmospheric CO_2 consumption by continental erosion--present-day controls and implications for the last glacial maximum. Global and Planetary Change., 16-17:108-119
    [168] Woodwell G D,maekenzie F T, Houghton R A, et al. 1998. Biotic feedbacks in the warming of the earth. Climate change, 40:495-518
    [169] Xu Shengyou,He Shiyi. 1996. The CO_2 regime of soil profile and its drive to dissolution of carbonate rock. Carsologiea Sinica,1996(1): 50-57
    [170] Yapp C.J.,Poths H. Ancient atmospheric CO_2 pressures inferred from natural geothites. Nature,1992,355:342-344
    [171] Yoshimura K,Inokura Y. The geochemical cycle of carbon dioxide in a carbonate rock area. Aldyoshi-dai Plateay, Yamaguchi, Southwestern Japan.[A] In:Proc.30th Int.Geol[C].1997, 24:114-126
    [172] Yuan D. The carbon cycle in karst. Z.Geomorph.N.F.,1997,108:91-102
    [173] Yuan Daoxian and Liu Zaihua, 1999. Global Karst Correlation. http://www.vsppub.com/books/earth/bk-GloKarCor.html
    [174] Zaihua Liu, Wolfgang Dreybrodt. 1997. Dissolution kinetics of calcium carbonate minerals in H_2O-CO_2 solutions in turbulent flow:The role of the diffusion boundary layer and the slow reaction H_1O+CO_2=H~++HCO_3~-. Geochimica et Cosmochimica Acta, Vol.61 No.14:2879-2889
    [175] Zhang Shouyue, Jin Yuzhang, Andrej Mihevc. 1999. Carbon Dioxide in Soil Air of Slovenia and China Karst. http://www.glnet.edu.cn/KDL/IGCP/IGCP379/1999/part3.htm #part3-1-8
    [176] Zimov, S.A., Davidov, S.P., Zimova, G.M., Davidova, A.I., Chapin, F.S., Ⅲ, Chapin, M.C. and Reynolds, J.F. 1999. Contribution of disturbance to increasing seasonal amplitude of atmospheric CO_2. Science 284: 1973-1976.
    [177] 白占国,万国江.1998.贵州碳酸盐岩区域的侵蚀速率及环境效应研究.土壤侵蚀与水土保持学报,4(1):1-5
    [178] 曹建华,2001岩溶土壤系统中生物作用与有机碳转移对CaCO_3—CO_2—H_2O体系的调节与控制.南京农业大学博士论文
    [179] 曹建华,潘根兴,袁道先,1999.桂林岩溶洼地生态系统中大气CO_2动态及环境意义.地质评论,45(1):105-111
    [180] 曹建华,王福星,黄俊发等,1993.桂林地区石灰岩表面生物岩溶溶蚀作用.中国岩溶,20(4):383-390
    [181] 曹建华,袁道先,潘根兴,林玉石.2001.降雨对土壤CO_2动态的影响及岩溶效
    
    应模拟研究.西南师范大学学报(自然科学版),26卷专辑:13-19
    [182]陈洪滨.1999.利用高频微波被动遥感探测大气.遥感技术与应用,Vol.14,No.2,1999
    [183]陈鸿汉,董英,张永祥.济南泉域岩溶系统碳循环.中国岩溶,1998,Vol.17 No.4,p319-324
    [184]陈华慧.1984.遥感地质学.北京:地质出版社:129-164
    [185]陈骏,杨杰东,李春雷.2001.大陆风化与全球气候变化.地球科学进展,Vol.16 NO.3
    [186]陈利军,刘高焕,励惠国,2002.中国植被净第一性生产力遥感动态监测.遥感学报,6(2):129-134
    [187]陈乾,李兰芳.1997.用GMS卫星资料反演复杂地形下的降水率.水科学进展,Vol.8,No.4,
    [188]陈述彭,童庆禧,郭华东,1998.遥感信息机理研究.北京:科学出版社,
    [189]陈治平,1985.中国喀斯特地带性因素初探.见:中国地理学会地貌专业委员会编.喀斯特地貌与洞穴.北京:科学出版社:1-8
    [190]丰茂森,1991.遥感图像数字处理.北京:地质出版社,1991
    [191]傅抱璞,虞静明,卢其尧,1996.山地气候资源与开发利用.南京,南京大学出版社.
    [192]高道德,张世从,毕坤,盛学庸,董存忠,吴宗茂,聂跃平,1985..黔南岩溶研究.贵阳:贵州人民出版社,1985:60
    [193]高素华,潘亚茹,郭建平,1994.气候变化对植物气候生产力的影响.气象,20(1):30-33
    [194]龚自珍,黄庆达,1984.碳酸盐岩岩块野外溶蚀速度试验.中国岩溶,1984(2):17-26
    [195]贵港市地方志编纂委员会编,1993.贵港县志:P51
    [196]郭华东,1991.雷达地质及其进展.郭华东.雷达图像分析及地质应用.北京:科学出版社,P1-10.王翠珍,郭华东,2000.极化雷达目标分解方法用于岩性分类.遥感学报,4(3):219-224.
    [197]郭华东,1995.新疆北部地质矿产遥感.北京:科学出版社
    [198]郭华东,1995.新疆北部固体地球科学系列书新疆北部地质矿产遥感.北京:科学出版社:p239
    [199]何师意,潘根兴,曹建华,陶于祥,滕永忠,2000.表层岩溶生态系统碳循环特征研究.第四纪研究,2000(4):383-390
    [200]胡著智,王慧麟,陈钦峦,1999.遥感技术与地学应用.南京:南京大学出版社:p6-11
    [201]黄尚瑜,宋焕荣,1987.碳酸盐岩的溶蚀与环境温度.中国岩溶,6(4):287-296
    [202]蒋忠诚,1999.岩溶动力系统中的元素迁移.地理学报,54(5):438-444
    [203]蒋忠诚,蒋小珍,雷明堂.2000.运用GIS和溶蚀试验数据估算中国岩溶区大气CO_2的汇.中国岩溶,Vol.19 NO.3
    [204]蒋忠诚,袁道先,1999.表层岩溶带的岩溶动力学特征及其环境和资源意义.地球学报,20(3)
    [205]蒋忠诚.2000.中国南方表层岩溶系统的碳循环及其生态效应.第四纪研究,20(4):316-324
    
    
    [206]乐昌硕,1984.高等学校教材 岩石学.武汉:武汉地质学院:1
    [207]黎廷宇,王世杰,郑乐平,2001.黔中碳酸盐岩和非碳酸盐岩上覆土壤CO_2来源的对比研究.中国科学D辑,31(9)
    [208]李彬,袁道先.1995.碳酸盐岩区域.见:万国江等.碳酸盐岩与环境(卷一).北京:地震出版社:1-15
    [209]李果,孙家抦.1994.东南极拉斯曼丘陵米勒半岛遥感影象岩性自动分类初探.南极研究(中文版),6(4)
    [210]李钜章,林钧枢,房金福,1994.喀斯特溶蚀强度分析与估算.地理研究,Vol.13 No.3:90-97
    [211]李新,程国栋,卢玲,2000.空间内插方法比较.地球科学进展,15(3)
    [212]李兆元,傅抱璞,1984.秦岭山地的气候特点.山地气候文集,山地气候文集编委会,北京:气象出版社.
    [213]刘锦丽,窦贤康.1999.降水分布的空基遥感.遥感技术与应用,Vol.14,No.4,
    [214]刘明柱,张永祥,陈鸿汉,1999.吉林省吊水壶岩溶区碳循环研究.中国岩溶,18(2):129-134
    [215]刘瑞云,范天锡.1996.利用NOAA卫星资料反演最高地表温度.南京气象学院学报,19(1):106-110
    [216]刘绍辉,方精云,清田信.1998.北京山地温带森林的土壤呼吸.植物生态学报22(2):119-126
    [217]刘素红,1999.多波段遥感数据向量空间分析方法及其在岩性信息分离中的应用.北京:中国科学院遥感应用研究所博士论文:p10
    [218]刘再华,2000.碳酸盐岩岩溶作用对大气CO_2沉降的贡献.中国岩溶,2000年12月,Vol.19 NO.4
    [219]刘再华,1992.桂林岩溶水文地质试验场岩溶水文地球化学的研究.中国岩溶,11(2):209-217
    [220]刘再华,W.Dreybrodt.1998a.流动CO_2—H_2O系统中方解石溶解、沉积的速率控制机理.地质学报,72(4):340-348
    [221]刘再华,W.Dreybrodt,1998b.DBL理论模型及方解石溶解,沉积速率预报.中国岩溶,Vol.17 No.1:1-7
    [222]刘再华,何师意,袁道先,赵景波,1998.土壤中的CO_2及其对岩溶作用的驱动.水文地质工程地质,1998(4):42-45
    [223]卢耀如,1965.中国南方岩溶发育基本规律的初步研究.地质学报,45(1)
    [224]卢耀如等,1973.中国岩溶(喀斯特)发育规律及其若干水文地质工程地质条件.地质学报,1973(1)
    [225]马建文,1987.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1997,1(3):208-213
    [226]马建文,1998.基于背景的岩性目标提取.北京:中国科学院遥感应用研究所博士论文
    [227]马建文.1997.利用TM数据快速提取含矿蚀变带方法研究.遥感学报,1(3):208-213
    
    
    [228]南京大学地球科学网络版,2001.http://www.nju.edu.cn/njuc/dikexi/earthscience/chp5/3tan-qq-dh.htm
    [229]潘根兴,曹建华,周运超.2000.土壤碳及其在地球表层系统碳循环中的意义.第四纪研究,2000(4):325-334
    [230]潘根兴,曹建华.1999.表层带岩溶作用:以土壤为媒介的地球表层生态系统过程.中国岩溶,1999(4):288-296
    [231]潘根兴,何师意,曹建华,陶于祥,孙玉华,2001.桂林丫吉村表层带岩溶土壤系统中δ~(13)C值的变异.科学通报,48(22):1919-1922
    [232]潘根兴,滕永中.土壤-灰岩岩溶系统中水文地球化学动力学过程模拟及其意义.地球化学,2000(3):272-276
    [233]朴春河.1998.岩石矿物风化过程中CO_2的吸收和释放.见:陈述彭编,地球系统科学—中国进展与世纪展望.北京:中国科学技术出版社:659
    [234]任美锷,刘振中,1983.岩溶学概论.北京:商务印书馆.
    [235]邵芸等.多极化雷达图像的地质应用.郭华东.机载雷达应用试验研究,北京:中国科学技术出版社,1992.93-102.
    [236]斯维廷,M.M.喀斯特与气候,地理译报,1982
    [237]碳的地球化学循环中的地质过程(图)http://www.uta.edu/geology/geo11425 earth_system/1425chap8.htm
    [238]唐灿,周平根.1999.北京典型溶洞区土壤中的CO_2及其对岩溶作用的驱动.中国岩溶,18(3):23-217
    [239]陶于祥,潘根兴,孙玉华,滕永忠,韩富顺.1998.土壤有机碳地球化学及其与岩溶作用的关系——以桂林丫吉村岩溶试验场为例.火山地质与矿产 1998(1)
    [240]童庆禧.遥感信息机理.见:陈述彭编,地球系统科学—中国进展与世纪展望.北京:中国科学技术出版社,1998:162
    [241]万国江,白占国.1998.论碳酸盐岩侵蚀与环境变化—以黔中地区为例.第四纪研究,(3):279
    [242]万国江,王仕禄,2000.我国南方岩溶区和北方黄土区的大气CO_2效应.第四纪研究,Vol.20 No.4:p305-315
    [243]万军伟,晁念英,沈继方,蔡金燕.1999.湖北清江罗家坳河间地块岩溶系统碳循环研究.中国岩溶,Vol.18 No.2,p123-128
    [244]王飞燕,王富葆,王雪瑜,1991.地貌学与第四纪地质学.
    [245]王明星.全球碳循环.见:陈述彭编,地球系统科学—中国进展与世纪展望.北京:中国科学技术出版社,1998:780
    [246]魏俊超.1998.见:陈述彭编,地球系统科学—中国进展与世纪展望.北京:中国科学技术出版社:220
    [247]翁金桃,1987.桂林岩溶与碳酸盐岩.重庆:重庆出版社.
    [248]翁金桃.1995.碳酸岩盐对全球碳循环的影响.地球科学进展,10(2):154-158
    [249]现代地理学辞典,左大康主编.1990.北京:商务印书馆
    [250]谢宇平,1994.第四纪地质学与地貌学.北京:地质出版社:27
    [251]徐胜友,蒋忠诚.1997.我国岩溶作用与大气温室气体CO_2源汇关系的初步估算.科学通报,1997(9):953-955
    
    
    [252]杨景春,1985.地貌学教程.北京:高等教育出版社:74
    [253]杨立铮,卫迦,1996.岩溶系统碳循环及其环境效应.见:袁道先,谢云鹤主编.岩溶与人类生存,环境,资源和灾害.桂林:广西师范大学出版社:34-43
    [254]袁道先,2001.地球系统的碳循环和资源环境效应.第四纪研究,Vol.21 No.3,p:223-232
    [255]袁道先,1988.岩溶环境学.重庆:重庆科技出版社:70
    [256]袁道先,1993a.中国岩溶学.北京:地质出版社:1
    [257]袁道先,1993b.碳循环与全球岩溶.第四纪研究,1993(1):1-6
    [258]袁道先,1999.对地球系统科学的几点认识.高校地质学报,1999,5(1):1-6
    [259]袁道先,2000.IGCP379“岩溶作用与碳循环”在中国的研究进展.水文地质工程地质,2000(1):49-51
    [260]袁道先,戴爱德,蔡伍田等.1996.中国南方裸露岩溶蜂丛山区岩溶水文系统及其数学模型的研究—以桂林丫吉村为例.桂林:广西师范大学出版社:22-27
    [261]袁道先.1999.“岩溶作用与碳循环”研究进展.地球科学进展,Vol.14 No.5
    [262]袁道先.IGCP379“岩溶作用与碳循环”在中国的研究进展.水文地质工程地质,2000(1):49-51
    [263]张娜,2001,景观尺度生态系统生产力过程模型研究.以长白山为例,中国科学院地理科学与资源研究所博士论文.
    [264]张仁华.1996.实验遥感模型及地面基础.北京:科学出版社,1996:211-215
    [265]张永祥,董英,陈鸿汉,李绪谦,黄继国.1997.北方半干旱区不同岩溶系统的碳循环研究.中国岩溶,Vol.16 No.4:296-303
    [266]张之淦,1966.白云岩岩溶发育的某些问题.第一届全国水文地质工程地质学术会议论文选编.北京:中国工业出版社,第2辑:99-101
    [267]张志强,孙成权,1999.全球变化研究十年新进展.科学通报,Vol.44 No.5:464-477
    [268]赵景波.2000.西安灞河流域现代岩溶作用与CO_2吸收量.第四纪研究,20(4):367-373
    [269]赵其国,1997。土壤圈在全球变化中的意义与研究内容。地学前缘,4(2):153—162
    [270]郑乐平.1999.黔中岩溶地区土壤CO_2的稳定碳同位素组成研究.中国科学D辑,Vol.29 No.6:514-519
    [271]郑媛媛,冯志娴.1998.用可见光与红外云图谱资料综合作降雨量估算的试验.热带气象学报,Vol.14,No.3,
    [272]中国科学院《中国自然地理》编辑委员会,1980.《中国自然地理地貌》北京:科学出版社
    [273]中国科学院地质研究所岩溶组,1979.中国岩溶研究.北京:科学出版社.
    [274]周芳,陈世益,1994.广西贵港红土风化壳的地球化学特征.中南矿冶学院学报,25(2)
    [275]朱元竞,李万彪.1998.GMS-5估计可降水量的研究.应用气象学报,Vol.9,No.1,
    [276]朱远峰,1993.中国岩溶科学的发展及岩溶地区资源开发与环境保护研究.地球科学进展,8(4):23-29
    
    
    [277]资源与环境信息系统国家重点实验室,2001.中科院实施科技创新战略行动计划首批启动五项知识创新工程重大项目(背景材料).http://www.lreis.ac.cn/cdi/cdi_30.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700