用户名: 密码: 验证码:
草原土壤有机碳动力学同位素示踪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对海北高寒草甸生态系统定位研究站和内蒙古草原生态系统定位研究
    站的6个土壤剖面进行了高分辨率薄层取样,测试、分析了样品的根系和有机碳
    含量、有机质的放射性和稳定碳同位素组成、磁化率等,研究了土壤有机碳动力
    学过程,得出如下结论:
     青藏高原高寒草甸土壤有机碳库显著大于内蒙古草原土壤碳库,海北站表层
    土壤(0-10cm)的有机质含量比内蒙古站的相应值高2倍左右。
     高寒草甸土壤剖面有机质由快循环组分、慢循环组分和稳定组分组成;根生
    物量的垂直分布特征是0-60cm贮存的根生物量占整个剖面根生物量的90%左右。
    天然土壤的根系主要分布在表层,向下根系量显著减少;扰动土壤表层根系量较
    少,随深度增加缓慢减少。
     高寒草甸土壤CO_2通量变化于73.3-181 gCm~-2a~-1之间,内蒙古典型草原土壤
    CO_2通量变化于390-866 gCm~-2a~-1(王庚辰等2004),后者是前者的5倍左右。高
    寒草甸表层土壤产生的CO_2是土壤剖面CO_2通量的主要贡献者。土壤CO_2通量
    与海拔高度负相关。
     土壤有机质的δ~13C值随深度增加而增加。其剖面变化可分为快速增加、缓慢
    增加和增加很小或者有轻微波动变化3个阶段。内蒙古站土壤有机质的~13C富集程
    度大于海北站的相应值。
     植被类型制约土壤剖面的有机碳动力学过程。
     土壤磁化率、根生物量在一定程度上可以反映土壤有机碳动力学过程。
     在脆弱的草原地区,严禁过度放牧,加强土壤表层的保护,引种深根系植物,
    增加植被的地下生物量,实现有机物质向深部的转移,减少水土流失等是提高草
    原土壤碳汇能力的有效措施。
High-resolution sampling, measurement and analysis of root content, organic matter content, ~(14)C specific activity, δ~(13)C and magnetic susceptibility of selected all 6 soil profiles in Haibei Research Station of Alpine Meadow Ecosystem in the Tibetan Plateau and Inner Mongolia Grassland Ecosystem Research Station, CAS, were made in an attempt to detect the soil organic carbon dynamics of grassland. The results as follows:The soil organic carbon storage in the alpine meadow in the Tibetan Plateau is pronounced larger than that in Inner Mongolia grassland ecosystem. Organic matter content of topsoil (0-10cm) in Haibei Station is two times higher than that of Inner Mongolia Station.Soil organic matter consists of fast component, slow component and passive component. The vertical distribution of soil root content is that root content(0~60cm) comprises some 90% of root content of total the profiles.The roots of the natural soils are mainly in the upper soil horizons and rapidly decrease with depth; there are less roots in the disturbed soils and gradually decrease with depth.The soil CO_2 flux ranges from 73.3 gC m~(-2)a~(-1) to 181 gC m~(-2)a~(-1) and 390 g m~(-2)a~(-1) to 866 gC m~(-2)a~(-1) (Wang gengchen et al 2004) for the alpine meadow and for Inner Mongolia typical grassland, respectively. The latter is about 5 times as high as the former. The CO_2 emitted from the surface soil comprises an important part for the soil CO_2 flux of the alpine meadow soil profiles.The soil CO_2 flux has negative correlation with elevation.δ~(13)C values of soil organic matter increase with depth. Their vertical changes are divided into three segments: rapidly increase segment, gradually increase segment and
    less increase or slightly fluctuation variable segment. The extent of 13C enrichment of soil organic matter in Inner Mongolia Station is larger than that in Haibei Station.Vegetation types control the soil organic carbon dynamics.Soil organic carbon dynamics can be reflected to some extent by the soil quality magnetic susceptibility and root content.The powerful measures for increasing the capacity of soil reservoir in the flimsy grassland consist of forbiding overgrazing, not disturbing of the surface soil horizons, introducing of deep-rooted plants, and controlling the loss of water and soil.
引文
1.安芷生.古地磁方法在第四纪研究中的应用.地质地球化学,1975,1:1-6
    2.毕宝贵.全球变暖会造成我国北方降水量增加.人民网2005年03月23日
    3.曹广民,李英年,张金霞,赵新全.高寒草甸不同土地利用格局土壤CO_2的释放量.环境科学,2001,22(6):14~19
    4.陈锦石,陈文正(编著).碳同位素地质学概论.北京:地质出版社.1983
    5.陈庆强.华南亚热带山地土壤有机质动态研究(博士后研究工作报告),1999
    6.程根伟,罗辑,等.贡嘎山亚高山林地碳的积累与耗散特征.地理学报,2003,58(2):179~185
    7.戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究.进展与展望.地球科学进展,2004,19(1):120~130
    8.董光荣,等.中国沙漠形成演化、气候变化与沙漠化研究.北京:海洋出版社.2002
    9.方精云,刘国华,徐嵩龄.中国陆地生态系统的碳库.王庚辰,温玉璞主编.见:温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社.1996.109~128
    10 郭继勋,张宏一.羊草草地土壤呼吸与枯枝落叶分解.中国草地,1991(5):39~41
    11.龚子同等著.中国土壤系统分类.北京:科学出版社.1999
    12.黄成敏,龚子同.热带土壤发育过程中土壤磁化率特征研究.海洋地质与第四纪地质,2000,20(4):63~68
    13.乐炎舟,左克成,张金霞,等.海北高寒草甸生态系统定位站的土壤类型及其基本特点.夏武平(主编),高寒草甸生态系统.兰州:甘肃人民出版社.1982.19~33
    14.李博,雍世博,李瑶,刘永江.中国的草原.北京:科学出版社.1990
    15.李华梅,等.午城黄土剖面古地磁研究的初步结果.地球化学,1974,2:93~104
    16.李克让,王绍强,曹明奎.中国植被和土壤碳贮量.中国科学(D辑),2003, 33(1):72~80
    17.李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,22(4):300~302
    18.李英年,王勤学,古松,等.高寒植被类型及其植物生产力的监测.地理学报,2004,59(1):40~48
    19.李永宏.放牧空间梯度上和恢复演替时间梯度上羊草草原的群落特征及其对应性.草原生态系统研究,第4集.北京:科学出版社.1992.1~8
    20.刘东生,等.黄土与环境.北京:科学出版社.1985.62~91
    21.刘良梧,茅昂江.我国土壤放射性碳年龄.土壤学报,2001,38(4):506~512
    22.刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响.生态学报,1997,17(5):469~476
    23.刘秀铭,刘东生,Heller F.中国黄土磁颗粒分析及其古气候意义.中国科学(B),1991,21:639~644
    24 仇士华,陈铁梅,蔡莲珍.中国~(14)C年代学研究.北京:科学出版社.1990.1
    25.沈承德,刘东生,彭少麟,等.鼎湖山自然保护区森林土壤~(14)C测定及~(14)C示踪初步研究.科学通报,1998,43(16):1775~1780
    26.沈承德,孙彦敏,易惟熙,等.鼎湖山森林土壤~(14)C表观年龄及δ~(13)C分布特征.第四纪研究,2000,20(4):335~344
    27.沈承德,易惟熙,孙彦敏,等.退化森林生态系统恢复过程的碳同位素示踪.第四纪研究,2001,21(5):425~460
    28.田中正元(石广玉、李明昌译).地球在变暖.北京:气象出版社.1992.132pp
    29.王庚辰,杜睿,孔琴心,等.中国温带典型草原土壤呼吸特征的实验研究.科学通报,2004,49(7):692~696
    30.王绍强,周成虎,罗承文.中国陆地自然植被碳量空间分布特征探讨.地理科学进展,1999,18(3):238~244
    31.王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349~356
    32.王效科,冯宗炜,欧阳志云.中国森林生态系统的植物碳储量和碳密度研究.应用生态学报,2001,12(1):13~16
    33.王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力.生态学杂志,2000,19(4):72~74
    34.吴乃琴,吕厚远,聂高众,等.C_3、C_4植物及其硅酸体研究的古生态意义.第四纪研究,1992,1992,(3):241~250
    35.吴冬秀,白永飞,韩兴国,张新时,王磊.大气CO_2浓度加倍使羊草草原的根垂直分布发生改变.中国生态系统研究网络第2次学术交流会论文摘要(第1期).2003-03-24
    36.邢长平,沈承德,孙彦敏,等.鼎湖山亚热带森林土壤有机质~(14)C年龄初步研究.地球化学,1998,27(5):493~499
    37.杨福囤,沙渠,张松林.青海高原海北高寒灌丛和高寒草甸初级生产量.夏武平(主编),高寒草甸生态系统.兰州:甘肃人民出版社.1982.44~50
    38.张金霞,曹广民,周党卫,等.退化草地暗沃寒冻雏形土CO_2释放的日变化和季节动态.土壤学报,2001,38(1):32~39
    39.张金霞,曹广民,周党卫,胡启武.高寒矮嵩草草甸生态系统碳素储量及碳素循环.中国生态系统研究网络第2次学术交流会论文摘要(第2期).2003-03-17
    40.中国科学院贵阳地球化学研究所~(14)C实验室.C~(14)年龄测定方法及其应用.北京.科学出版社.1977.3~4
    41.周兴民,李健华.海北高寒草甸生态系统定位站的主要植被类型及其地理分布规律.夏武平(主编),高寒草甸生态系统.兰州:甘肃人民出版社.1982.9~18
    42.朱日祥,朱湘元,丁仲礼,等.150ka以来地球磁场长期变化与环境响应.中国科学(B辑),1995,25(6):639~646
    43. Adams J M, Faire H, Faire-Richard L, et al. Increases in terrestrial carbon storage from the last glacial maximum to the present. Nature, 1990, 348:711~714
    44. Allen A.S, Andrews J A, Finzi A C, et al. Effects of free-air CO_2 enrichment (FACE) on belowground processes in a Pinus taeda forest, Ecological Applications, 2000, 10:437~448
    45. Amundson R, Stem L, Baisden T. et al. The isotopic composition of soil and soil-respired CO_2. Geoderma, 1998, 82:83~114
    46. Atjay G L, Ketner P, Duvigeaud P. Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, et al. eds. The Global Carbon Cycle. SCOPE 13. Chichester: John Wiley & Sons. 1979. 129~182
    47. Baes C F, Goeller H E, Olson J S, et al. Carbon dioxide and climate: the uncontrolled experiment. Am Sci, 1977, 65: 310~320
    48. Balesdent J, Mariotti A, Guillet B. Natural 13C abundance as a tracer for studies of soil organic matter dynamics. Soil Biol.Biochem., 1987, 19: 25~30
    49. Balesdent J, Wagner G H, Mariotti A. Soil organic matter turnover in long-term field experiments as revealed by carbon-13 natural abundance. Soil Sci.Soc.Am.J., 1988,52:118~124
    50. Balesdent J, Girardin C, Mariotti A. Site-related δ13C of tree leaves and soil organic matter in a temperate forest. Ecology, 1993, 74: 1713~1721
    51. Balesdent J, Mariotti A. Messurement of soil organic matter turnover using 13C natural abundance. In: T W Boutton and S I.Yamasaki, editors, Mass spectrometry of soils. Marcel Dekker, New York, USA. 1996. 83~111
    52. Balogh J, Sz Czobel, Juhasz A, et al. Seasonal carbon-balance of a semi-desert temperate grassland ecosystem over a year period. Proceedings of the 7th Hungarian Congress on Plant Physiology. Acta Biologica Szegediensis, 2002, 46(3/4): 221~222
    53. Becker-Heidmann P, Andresen O, Kalmar D, et al. Carbon dynamics in vertisols as revealed by high-resolution sampling. Radiocarbon, 2002,44(1): 63~73
    54. Berg, N. & Matzner, E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ, Rev, 1997, 5: 1-25.
    55. Bohn H. Estimate of organic carbon in world soil. Soil Sci Soc Am J, 1976, 40: 468~470
    56. Bohn H. Estimate of organic carbon in world soil: II. Soil Sci Soc Am J, 1982, 46: 1118~1119
    57. Bolin B. The carbon cycle. Am Sci, 1970, 223: 136~146
    58. Bond W. J., Stock W. D. & Hoffman M. T. Has the Karoo spread? A test for desertification using carbon isotopes from soils. S. Afr. J. Sci. 1994, 90, 391-397.
    59. Boutton T. W., Archer S. R., Midwood A. J., Zitzer S. F. & Bol R. δI3C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 1998,82,5-41.
    60. Boutton T W. Stable carbon isotope ratios of soil organic matterand their use as indicators of vegetation and climate change. In: T W Boutton and S I.Yamasaki, editors, Mass spectrometry of soils. Marcel Dekker, New York, USA. 1996. 47~82
    61. Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. I. Primary and secondary stem growth in arctic shrubs:Implications for community response to environmental change. J. Ecol, 2002,90: 251-267
    62. Burke I C, Laurenroth W K, Milchunas D G. Biogeochemistry of managed grasslands in central North America. In: Paul, E A, Paustian K, Elliott E T, et al. (Eds.). Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America. Boca Raton: CRC Press. 1997. 85~102
    63. Bowman D.M.J.S., Cook GD. Can stable carbon isotopes (δI3C) in soil carbon be used to describe the dynamics of Eucalyptus savanna-rainforest boundaries in the Australian monsoon tropics? Austral Ecology. 2002,27: 94-102
    64. Broecker W.S., and E.A.Olson, Radiocarbon from nuclear tests. Science, 1960, 132:712~721
    65. Campbell C A, Paul E A, Rennie D A, et al. Applicability of the carbon-dating method of analysis to soil humus studies. Soil Science, 1967,104: 217~224
    66. Cao M K, Woodward F I. Dynamics responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249~252
    67. Chen Q Q, Sun Y M, Shen C D, et al. Organic matter turnover rates and CO2 flux from organic matter decomposition of mountain soil profiles in the subtropical area, south China. Catena, 2002,49: 217~229
    68. Cherkinsky A. E, Brovkin V.A. Dynamics of radiocarbon in soils. Radiocarbon, 1993, 35(3): 363~367
    69. Ciais P, et al. A three-dimensional synthesis study of δI3O in atmospheric CO_2.1. Surface fluxes. Journal of Geophysical Research, 1997,102: 5857~5872
    70. Ciais P, Tans P P, White J W C, et al. Partitioning of ocean and land uptake of CO_2 as inferred by δ13C measurements from the NOAA Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. Journal of Geophysical Research, 1995,100: 5051~5070
    71. de Jong E, Kozak L M, Rostad H P W. Effects of parent material and climate on the magnetic susceptibility of Saskatchewan soils, Canadian Journal Of Soil Science, 2000, 80(1): 135-142
    72. Deines P. The isotopic composition of reduced organic carbon. In: Fritz P, et al. (Eds.). In Handbook of Environmenta Isotope Geochemistry, 1. The Terrestrial Environment. Elsevier. 1980. 329~406
    73. Detwiler R P, Hall C A S. Tropical forest and the global carbon cycle. Science, 1988, 239: 42~47
    74. Detwiler R P. Land use change and the global carbon cycle: the role of tropical soils. Biogeochemistry, 1986, 2: 67~93
    75. Ding Z L, Yang S L, Sun J M, et al. Iron geochemistry of loess and red clay deposits in the Chinese Loess Plateau and implications for long-term Asian monsoon evolution in the last 7.0 Ma. Earth and Planetary Science Letters. 2001, 185 (1/2): 99-109
    76. Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems. Science, 1994, 263,185~190
    77. Dong R B, Zhang W G, Lu S G, et al. Effect of reduction associated with organic matter decomposition on magnetic properties of red soils. Pedosphere, 2003, 13(2): 103~110
    78. Douwe D, Nico B, Edzo V. Soil organic carbon dynamics: variability with depth in forested and deforested soils under pasture in Costa Rica. Biogeochemistry, 1997, 39: 343-375
    79. Dzurec R S, Boutton T W, Caldwell M M, et al. Carbon isotope ratios of soil organic matter and their use in assessing community composition changes in Carlew Valley, Utah. Oecologia, 1985, 66: 17~24
    80. Ehleringer J R, Buchmann N, Flanagan L B. Carbon isotope ratios in belowground carbon cycle processes. Ecol. Appl, 2000, 10:412~422
    81. Ehleringer J R. Genera known to possess theCrassulacean Acid Metabolism (CAM) pathway. Hort Science, 1979,14(3): 217~222
    82 Elzein A.and Balesdent J. Mechanistic simulation of vertical distribution of carbon concentrations and residence times in soils. Soil Sci Soc Am J,1995,59:1328~1335
    83. Enting I G, Trudinger C M, Francey R J. A synthesis inversion of the concentration and δ13C of atmospheric CO2. Tellus, 1995,47B: 35~52
    84. Eswaran H, Berg E V D, Reich P. Organic carbon in soils of the world. Soil Sci Soc Am J, 1993,57:192~194
    85. Fan S, Gloor M, Mahlman J, et al. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science, 1998,282:442~446
    86. Fang J Y, Chen A P, Peng C H, et al. Changes in forest biomass carbon storage in China between 1949 and 1998. Science, 2001,292:2320~2322
    87. Frank A B. Carbon dioxide fluxes over a grazed prairie and seeded pasture in the Northern Great Plains. Environmental Pollution, 2002,116: 397~403
    88. Gennadiev A N, Olson K R, Chernyanskii S S, et al. Quantitative assessment of soil erosion and accumulation processes with the help of a technogenic magnetic tracer. Eurasian Soil Science, 2002, 35 (1): 17~29
    89. Gerasimov I P. Nature and Originality of Paleosols. In "Paleopedology" ed. By D. H. Yaalon, Jerusalem. 1970.15~28
    90. Geyh M A, Benzler H H and Roschmann G. Problems of dating Pleistocene and Holocene soils by radiometric methods. In Yaalon D ed., Paleopedology, Origin, Dating and Nature of Paleosols. Jerusalem,Jerusalem University Press. 1971. 63~75
    91. Geyh M A. Moglichkeiten und Grenzen der Radiokohlenstoff Altersbestimmung von Boden-medhodische Probleme. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1970,10:239~241.
    92. Gifford R M. The global carbon cycle: a viewpoint on the missing sink. Aust. J. Plant Physiol., 1994,21:1~15
    93. Gill R A. Biotic controls over the depth destribution of soil organic matter. Doctoral dissertation in Ecology. Colorado State University, Fort Collins, CO. 1998
    94. Gorham, E. Northern peatlands: role in the carbon cycle and probable response to climatic warming. Ecol. Appl. 1991,1:182-195
    95. Goulden, M. L. et al. Sensitivity of boreal forest carbon balance to soil thaw. Science, 1997,279,214-217
    96. Gulliet B, Faivre P, Mariotti A, et al. The 14C dates and 13C/12C ratios of soil organic matter as a means of studying the past vegetation in intertropical regions: examples from Colombia (South America). Palaeogeography, 1988, 65: 51~58
    97. Hanesch M, Scholger R. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environmental Geology, 2002, 42(8): 857~870
    98. Hanesch M, Scholger R. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophysical Journal International, 2005, 161(1): 50~56
    99. Harrison K, Broecker W, Bonani G. The effect of changing land use on soil radiocarbon. Science, 1993,262: 725~726
    100. Henin S, Le Borgne E. International Congress of Soil Science. 1954. 2
    101. Hobbie, S. E., Nadelhoffer, K. J. & Hogberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil, 2002, 242: 163-170
    102. Hobbie, S. E., Schimel, J. P., Trumbore, S. E. & Randerson, J. R. A mechanistic understanding of carbon storage and turnover in high-latitude soils. Glob. Change Biol, 2000, 6: 196-210.
    103. Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol.Monogr, 1996, 66:503-522
    104. Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochem. Cycles, 1998,12: 25~34
    105. Houghton R A. Changes in the storage of terrestrial carbon since 1850. In: Lal R, et al. (Eds.). Soils and Global Change. CRC Press, Inc. 1995.45~65
    106. Houterman, J.C.,Suess, H.E.,Oeschger,H..Reservoir models and production rate variations of natural Radiocarbon.Journal of Geophysical Research. 1973, 78: 1897~1907
    107. Hsieh Y P. Pool size and mean age of stable soil organic carbon in cropland. Soil Sci.Soc Am.J., 1992 56: 460~464
    108. Hsieh Y P. Radiocarbon signatures of turnover rates in active soil organic carbon pools. Soil Sci. Soc. Am. J., 1993, 57:1020~1022
    109 Hsieh Y P. Soil organic carbon pools of two tropical soils inferred by carbon signatures. Soil Sci.Soc.Am.J., 1996,60: 1117~1121
    110. IPCC. Climate change 2001: the scientific basis. Intergovernmental panel on climate change. UK Cambridge Univ. Press. 2001
    111. Jackson R, Schenk H J, Jobbagy E G, et al. Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 2000, 10:470~483
    112. Jenkinson D S, Rayner J H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci., 1977,123: 298~305
    113. Jenkinson D S. The turnover of organic carbon and nitrogen in soil. Philos. Trans. Soc. London, Ser.B, 1990,329: 361~368
    114. Jenny H. Factors of soil formation. New York: Mcgraw-Hill, 1941
    115. Jobbagy E G, Jackson R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications, 2000,10: 423~436
    116. Jonasson, S., Michelsen, A., Schmidt, I. K. & Nielsen, E. V. Responses in microbes and plants to changed temperature, nutrient and light regimes in the arctic. Ecology, 1999, 80: 1828-1843
    117. Jordanova D, Jordanova N. Magnetic characteristics of different soil types from Bulgaria. Studia Geophysica et Geodaetica, 1999,43(3): 303~318
    118. Jordanova D, Yancheva G. Palaeoclimate variability in south-eastern Europe deduced from magnetic susceptibility records of loess/soil sediments Geologica Carpathica, 2000, 51 (3): 199~199
    119. Jordanova N V, Jordanova D V, Veneva L, et al. Magnetic response of soils and vegetation to heavy metal pollution—A case study. Environmental Science & Technology. 2003, 37(19): 4417~4424
    120. Keeling C D and Whorf T P. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. 2004
    121. Keeling C D, Chin J F S, Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO_2 measurements. Nature, 1996, 382: 146-149
    122. Kimble L R J, Stewart B A. World soils as a source or sink for radiatively-active gases. In: Lal R, Kimble J, Levin E. et al. (Eds.). Soils and Global Change. CRC Press, Inc. 1995. 1~7
    123. Lal R. Soil erosion and the global carbon budget. Environment international, 2003, 29, 437~450
    124. Levin I, et al. 25 years of tropospheric 14C observations in central Europe. Radiocarbon, 1985,27: 1~19
    125. Levin I, Kromer B. Twenty years of atmospheric 14CO_2 observations at Schauinsland station, Germany. Radiocarbon, 1997, 39(2): 205~218
    126. Libby W F, Anderson E C, Arnold J R. Age determination by radiocarbon content: world-wide assay of natural radiocarbon. Science, 1949,109: 227~228
    127. Lin G, Ehleringer J R, Rygiewicz P T, et al. Elevated CO2 and temperature impacts on different components of soil CO_2 efflux in Douglas-fir tenacosms. Global Change Biology, 1999, 5: 157~168
    128. Loya W. M. and Grogan P. Carbon conundrum on the tundra. Nature, 2004,431: 406~408
    129. Mack M. C, Schuur E. A. G., Bret-Harte M. S., Shaver G. R. andChapin III F. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. Nature,2004,431:440~443
    130. Manning M R, Melhuish W H Wallace G, et al. The use of radiocarbon measurements in atmospheric studies. Radiocarbon, 1990,32: 37~58
    131. Martin A., Mariotti A., Balesdent J., Lavelle P. & Vuattoux R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol.Biochem. 1990,22,517-23.
    132. Matthews E. Global litter production, pools, and turnover times: Estimates from measurement data and regression models. Journal of Geophysical Research, 1997,102: 18771~18800
    133. McClaran M. P. & McPherson G. R. Can soil organic carbon isotopes be used to describe grass-tree dynamics at a savanna-grassland ecotone and within the savanna? J. Veg.Sci. 1995,6, 857-862.
    134. McKane, R. B. et al. Climatic effects on tundra carbon storage inferred from experimental data and a model. Ecology 1997,78: 1170-1187
    135. McPherson G. R., Boutton T. W. & Midwood A. J. Stable carbon isotopes analysis of soil organic matter illustrates vegetation change at the grassland/woodland boundary in southeastern Arizona, USA. Oecologia. 1993, 93,95-101.
    136. Melillo J M, Aber J D, Linkins A E, et al. Carbon and nitrogen dynamics along the decay continuum: plant litter to soil organic matter. Plant and Soil, 1989, 115: 189~198
    137. Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002,298: 2173~2176
    138. Metting F, Smith J, Amthor J. Science needs and new technology for soil carbon sequestration. In: Rosenberg N, Izaurralde R, Malone E (Eds.). Carbon Sequestration in Soils — Science, Monitoring, and Beyond. Proceedings of the St.Michaels Workshop. Columbus: Battelle Press. 1999.1~34
    139. Mitchell J F B, Manabe S, Meleshko V, et al.. Equilibrium climate change-and its implications for the future. In: Houghton JT, Jenkins GJ, Ephraums JJ eds., Climate change, The IPCC Scientific Assessment, Chapter 5, Cambridge University Press, New York. 1990. 131~172
    140. Molina JAE,Clapp CE,Shaffer MJ,et al NCSOIL,a model of nitrogen and carbon transformations in soil:Description,calibration,and behavior.Soil Sci SocAm J, 1983,47:85-91
    141. Monger H D, Martinez-Rios J J. Inorganic carbon sequestration in grazing lands. In: Follett R F, Kimble J M, Lal R. (Eds.).The Potential of US Grazing Lands to Sequester Carbon and Mitigate the Greenhouse Effect. Lewis Publishers, Boca Raton FL. 2001. 87~118
    142. Mook W G..13C in atmospheric CO_2. Netherlands journal of sea research. 1986, 20 (2/3): 221~223
    143. Neff, J. C. et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon.Nature, 2002, 419: 915-917
    144. Ni J. Carbon storage in terrestrial ecosystems of China: Estimates at different spatial resolutions and their responses to climate change.Climatic Change, 2001, 49(3): 339~358
    145. O Leary M H. Carbon isotope fractionation in plants. Phytochemistry. 1981, 20: 553
    146. O Leary M H. Carbon isotopes in photosynthesis. Biosciences, 1988, 38: 328~336
    147. O'Brien B J, Stout J D. Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biology & Biochemistry, 1978, 10:309~317
    148. O'Brien K. Secular variations in the production of cosmogenic isotopes in the Earth's atmosphere. Journal of Geophysical Research, 1979,84(A2):423~431
    149. OECD. Environmental Performance Reviews: Russian Federation. Paris, OECD Centre for Cooperation with Non-Members, Paris, 1999
    150. Olson K R, Jones R L, Lang J M. Assessment of soil disturbance using magnetic susceptibility and fly ash contents on a Mississippian mound in Illinois. Soil Science, 2004, 169 (10): 737~744
    151. Parton W J, Stewart SWB, Cole C V. Dynamics of carbon, nitrogen, phosphorus and sulfur in cultivated soils. A model. Biogeochemistry, 1988, 5: 109~131
    152. Parton W J, Schimel D S, Cole C V. et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J., 1987, 51: 1173~1179
    153. Parton WJ , Scurlock J M O , Ojima DS ,et al. Observations and modelling of biomass and soil organic matter dynamics for the grasslands biome world - wide. Global Biogeochemical Cycles, 1993 ,7 : 785~809.
    154. Parton WJ . The century model. In : Powlson D S , Smith P , Smith J U , eds. Evaluation of soil organic matter models. Berlin, Heidelberg: Springer-Verlag , 1996.283~291.
    155. Paul E A, Clark F E. Soil Microbiology and Biochemistry. 2nd Edition. San Diego CA: Academic Press. 1996
    156. Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429~436
    157. Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones. Nature, 1982,298:156~159
    158. Post W, Izaurralde R, Mann L, et al. Monitoring and verifying soil organic carbon sequestration. In: Rosenberg N, Izaurralde R, Malone E (Eds.). Carbon Sequestration in Soils — Science, Monitoring, and Beyond. Proceedings of the St.Michaels Workshop. Columbus: Battelle Press. 1999.41~66
    159. PostWP, PastorJ, ZinkePJ, et al. Globalpatternsofsoilnitrogenstorage. Nature, 1985,317:613-616
    160. Potter C S, Klooster S A. Global model estimates of carbon and nitrogen storage in litter and soil pools — response to changes in vegetation quality and biomass allocation. Tellus, 1997,49B: 1~17
    161. Powlson D S. Why evaluate soil organic matter models ? In : Powlson D S , Smith P, Smith J U , eds. Evaluation of Soil Organic Mat2 ter Models. Berlin ,Heidelberg :Springer - Verlag, 1996. 3~11.
    162. Prentice I C, Lioyd J. C-quest in the Amazon basin. Nature, 1998, 396: 619~620
    163. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9(1): 23~26
    164. Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44B(2): 81~99
    165. Rastetter E B, McKane R B, Shaver, G R. Changes in C storage by terrestrial ecosystems: how C-N interactions restrict responses to CO_2 and temperature. Water, Air, and Soil Pollution, 1992, 64: 327~344
    166. Reeder J D, Franks C D, Milchunas D G. Root biomass and microbial processes. In: Follett R F, Kimble J M, Lal R (eds). The potential of U.S. grazing lands to sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton, FL. 2000. 139~166
    167. Reeder J D, Schuman G E. Influence of livestock grazing on C sequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2002,116:457~463
    168. Risser D G, Birney E C, Blocker H.D. et al. The true prairie ecosystem. Hutchinson Ross Publ. Comp. Stroudsburg/Pennsylvania. 1981
    169. Robert B M, Rastetter E B, Shaver G R, et al. Reconstruction and nanlysis of historical changes in carbon storage in Arctic tundra. Ecology, 1997, 78(4): 1188~1198
    170. Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990,248: 1217~1219
    171. Royall D. Particle-size and analytical considerations in the mineral- magnetic interpretation of soil loss from cultivated landscapes. Catena, 2004, 57(2): 189~207
    172. SaineG R. Organic matte as a measure of bulk density of soil. Nature, 1966, 210: 1295~1296
    173. Scharpenseel H W, Becker-Heidmann P. Twenty-five years of radiocarbon dating soil: paradigm of erring and learning. Radiocarbon, 1992, 34(3): 541~549
    174. Scharpenseel H W. Radiocarbon Dating of Soil-Problems, Thoubles, Hopes. In: "Paleopedology" ed. by D. H. Yaalon, Jerusalem. 1970. 77~88
    175. Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochemical Cycles, 1994, 8: 279~293
    176. Schimel D S. Terrestrial ecosystems and the carbon cycle. Global Change Biology, 1995,1:77~91
    177. Schimel J P & Weintraub M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol. Biochem. 2003, 35: 549~563
    178. Schindler D W. Carbon cycling: The mysterious missing sink. Nature, 398: 1999, 105-107
    179. Schlesinger W H. Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348: 1990, 232~234
    180. Schlesinger W H. An overview of the C cycle. In: Lal R, Kimble J, Levin E. et al. (Eds.). Soils and Global Change. CRC Press, Inc. 1995. 9~26
    181. Schlesinger W H. Biogeochemistry: an analysis of global change. Academic Press, San Diego, California, USA. 1997
    182. Schlesinger W H. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 1977, 8: 51~81
    183. Schwartz D, et al. 13 C/12 C ratios of soil organic matter as indicators of vegetation changes in the Congo. Geoderma, 1986,39: 97~103
    184. Serreze, M. C. Observational evidence of recent change in the northern high-latitude environment. Climate. Change, 2000,46: 159-207.
    185. Shang C, Tiessen H. Carbon turnover and carbon-13 natural abundance in organo-mineral fractions of a tropical dry forest soil under cultivation, Soil Science Society of America Journal, 2000, 64(6): 2149~2155
    186. Silvola J, Alm J, Ahlholm U. The effect of plant roots on CO_2 release from peat soil. Suo, 1992,43:259~262
    187. Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology, 2001,82: 3163-3181
    188. Shaver, G. R. et al. Global change and the carbon balance of the ecosystem. Bioscience, 1992, 42: 433-442
    189. Sombroek W G, Nachtergaele F O, Hebel A. Amounts, dynamics and sequestering of carbon in tropical and subtropical soils. AMBIO, 1993, 22: 417~425
    190. Sommerfeld R A, Mosier A R, Musselman R C. CO2, CH4 and N2O flux through a Wyoming snow -pack and implications for global budgets. Nature, 1993,361:140~142
    191. Stallard Robert F. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles, 1998, 12 (2) :231~257
    192. Stefen W.L., Waiker B H., Ungram J.S. et al .Global changes and terrestrial ecosystems, The Operational Plan. IGBP report 21, International Geosphere-Biosphere Programme. Stockholm, 1992
    193. Stuiver M, Polach H A. Reporting of 14C data. Radiocarbon, 1977, 19: 355~363
    194. Stuiver M. Carbon-14 content of 18th-and 19th-century wood: variations correlated with sunspot activity. Science, 1965, 149: 533~535
    195. Sturm, M., Racine, C. & Tape, K. Climate change: Increasing shrub abundance in the Arctic. Nature, 2001, 411: 546-547
    196. Suess H. Radiocarbon concentration in modern wood. Science, 1955, 122: 415~417
    197. Sun J M, Liu T S. Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth and Planetary Science Letters, 2000,180(3/4): 287~296
    198. Sundquist E T. The global carbon dioxide budget. Science, 1993, 259: 934~941
    199. Tamm C O and Ostlund H G. Radiocarbon dating of soil humus. Nature, 1960, 185:706~707
    200. Thompson R, Oldfield F. Environmental Magnetism. 严尧基,吴邦灿,陈达, 等编译.环境磁学.北京,地质出版社.1995.55~70
    201. Thomley J HM, Verbeme EL J. A model of nitrogen flows in grassland. Plant Cell and Environment, 1989,12:863-886.
    202. Thorp J. How soils develop under grass. In: Anderson C P. (Ed.). Grass: The Yearbook of Agriculture. United States Department of Agriculture, US Government Printing Officece. Washington D C. 1948
    203. Tieszen L L. Senyimba M M, Imbamba S K, et al. The distribution of grasses and carbon isotope distribution along an altitude moisture gradient in Kenya. Oecologia, 1979, 37:337~350
    204. Torn M S, Trumbore S E. Chadwick O A, et al. Mineral control of soil organic carbon storage and turnover. Nature, 1997, 389:170~173
    205. Trumbore S E, Davidson E A, Barbosa de Camargo, et al. Belowground cycling of carbon in forest and pastures of Eastern Amazonia. Global Biogeochem. Cycles, 1995, 9:515~528
    206. Trumbore S E, et al. AMS ~(14)C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon, 1989, 31: 644~654
    207. Trumbore S E. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochem.Cycles, 1993, 7:275~290
    208. Trumbore S E. Potential responses of soil organic carbon to global environmental change, PNAS, 1997, 94:8284~8291
    209 Trumbore S E. Age of soil organic matter and soil respiration: radiocarbon constraints on belowgrand C dynamics. Ecological Applications, 2000, 10(2): 399~411
    210. Trumbore S, Oliver A, Amundson R. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science, 1996, 272: 393~396
    211. Veldkamp E. Organic carbon turnover in three tropical soils under pasture after deforestation. Soil Sci.Soc.Am. J., 1994, 58:175~180
    212. Vitousek P M, Mooney H A, Lubchenco J, et al. Human domination of Earth's ecosystems. Science, 1997,277: 494~499
    213. Vitousek, P. M. Nutrient cycling and nutrient use efficiency. Am. Nat, 1982, 119: 553-572
    214. Walker B, Steffen W, Canadell J, et al. The terrestrial biosphere and global change. Cambridge University Press, Cambridge, UK. 1999
    215. Walker B, Steffen W. Global change and terrestrial ecosystems. Cambridge University Press, Cambridge, UK. 1996
    216. Wang Y, Amundson R, Niu X F. Seasonal and altitudinal variation in decomposition of soil organic matter inferred from radiocarbon measurements of soil CO2 flux. Global Biogeochem.Cycles, 2000, 14: 199~211
    217. Wang Y, Jahran H, Amundson R. Potential for 14C Dating of Biogenic Carbonate in Hackberry (Celtis) Endocarps. Quaternary Res., 1997, 47: 337~343
    218. Wang Y, Amundson R, Trumbore S. The impact of land-use change on C turnover in soils. Global Biogeochem. Cycles, 1999,13: 47~57
    219. Wang Y, Hsieh Y P. Uncertainties and novel prospects in the study of the soil carbon dynamics. Chemosphere, 2002,49: 791~804
    220. WBGU. WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol. 1998
    221. Weaver J E, Hougen V H, Weldon M D. Relation of root distribution to organic matter in prairie soil. The Botanical Gazette, 1935, 96(3): 389~420
    222. Wendy M. Loya and Paul Grogan, Carbon conundrum on the tundra. Nature, 2004,431:406-408
    223. Yoshida M, Jedidi N, Hamdi H, et al. Magnetic susceptibility variation of MSW compost-amended soils: In-situ method for monitoring heavy metal contamination. Waste Management & Research, 2003, 21 (2): 155~160
    224. Zavelskiy F C. Radiocarbon dating and theoretical models of carbon turnover in the soils. Proceedings of the Academy of Science, USSR Geography Series, 1975,1:27~34

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700