用户名: 密码: 验证码:
中国西部低阶煤储层特征及其勘探潜力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国西部广泛分布的低阶煤盆地及其潜在的巨大的资源,通过对国内外低阶煤储层以及勘探实例的基础上,采集具有代表性的低阶煤样品并对其进行储集特征研究和分析,在此基础上提出三种低阶煤煤层气的富集模式,以及勘探潜力。研究成果主要体现在以下几个方面:
    1、工业分析表明,尽管其水分和挥发分与国内外的研究结果很相似,但是该地区的低阶煤属于特低灰煤,有利于煤层气的吸附和储集。而且密度随镜质组的增加下降,矿物质的增加而增高;孔容则随镜质组含量的增加而减小。
    2、总空隙主要由小孔孔容构成,小孔孔容占了50%以上;镜质组含量和惰性组含量等物质以及镜煤反射率均与孔容、比表面未表现出明显的相关性,说明孔隙分布特征不受物质组成的影响
    3、鄂尔多斯地区的空隙呈现开放状态为主,空隙开放的次序为暗煤-亮煤-煤样-镜煤,其他盆地则为半封闭和细瓶颈空隙
    4、随压力增加,煤对气体的吸附量增加,煤中所含游离气的量随之减小;随温度增加,煤对气体的吸附量减小,而煤中所含游离气的量随之增加;在相同的温压条件下,同是长焰煤的样品,吸附量在孔容中所占的比例随镜质组含量增加而增加。
    5、长焰煤渗透率高于褐煤,低于肥煤;垂直样的渗透率略高于平行样的渗透率,低阶煤样品的束缚水饱和度最低,有利于采气。但是由于其束缚水饱和度值平衡点处的含气饱和度值相对稍低,会在一定程度上影响低阶煤煤层气的采收率。
    6、在储层特性分析的基础上,结合国内外煤层气的案例分析,针对西部低阶煤煤层气资源认识的现状,提出了背斜型、断陷型和凹陷型三种不同的低阶煤煤层气富集模式。
    7、提出各个盆地的煤层气得富集模式,并预测出21个低阶煤煤层气勘探有利区,预测资源量为5.2万亿立方米。而准噶尔盆地和吐哈盆地是低阶煤煤层气勘探的重点地区。
The reservoir capability were studied by the tested data which are from sometypical low rank coal bearing basins in the western China to speed up the CBMexploration. Three CBM richness model were given basis on the analysis of coalreservoir, some potential targets will be the emphases for the next exploration stage inthe future. The main points of this paper are as follows:
    1. Ash content is lower although VM and moisture content are as similar with theother research work, it indicates that it is available for adsorption and reservation ofCBM. The density is becoming lighter with increasing of vitrinite content anddecreasing the mineral content. The pore capacity is becoming smaller with increasingthe vitrinite content.
    2. Micro-porosity is dominated in the total pore capacity, which takes more than50%. There is not relationship among pore capacity and specific surface with otherfactors such as Maceral and R0, which shows that the distribution and shapes of poreare not influenced by the composition of the coal.
    3. The pore is opened for the coal of Ordos Basin, the order is from durain to clarainthen samples to vitrain. Others are belong to half-opened and thin throat.
    4. The adsorption content of gas is increasing with the higher pressure, and the freegas content is decreasing;The adsorption content of gas is decreasing with thehigher temp, and the free gas content is increasing;The adsorption content of gas isincreasing with higher vitrinite content for the kennel coal when temp. and pressurekeep same status.
    5. The permeability of kennel coal is higher than brown coal, but lower than fatcoal. The vertical permeability is higher than horizontal. The irreducible watersaturation is lowest comparing with other rank coals, it shows that it is available forproducing gas, but it would be influence in some degree for the gas recovery ratebecause of the lower balance point of the irreducible water saturation.
    6. Three CBM richness model were predicted basin on the analysis of coal reservoirand the experiences of CBM exploration, which are anticline type, rift-subsidencetype and depression type respectively.
    7. There are totally 21 potential targets and 5.2 trillion m3 of CBM resources for thewestern basins of China. The very potential basins are Zhungeer and Tuha.
引文
[1] 孙茂远,辛文杰,范志强. 中国煤层气开发利用与对外合作,煤炭工业出版社,2000
    [2] 毛节华,许惠龙.中国煤炭资源预测与评价,科学出版社,1998
    [3] 中国煤炭地质总局, 中国聚煤作用系统分析, 中国矿业大学出版社 2001.
    [4] 中国煤田地质总局, 中国煤炭资源预测与评价, 科学出版社, 1999
    [5] 叶建平、秦勇、林大扬.中国煤层气资源,中国矿业大学出版社,1998
    [6] 张新民、庄军、张遂安.中国煤层气地质与资源评价,科学出版社, 2002,
    [7] 高瑞祺、赵政璋主编,中国油气新区勘探(Vol.7),石油工业出版社,2001
    [8] 中国煤田地质总局.中国煤层气资源,中国矿业大学出版社,1998
    [9] 中联煤层气有限责任公司.21 世纪中国煤层气产业发展与展望,煤炭工业出版社,2003
    [10] 张建博,王红岩,赵庆波. 中国煤层气地质,地质出版社,2000
    [11] Bill Powers, A review of CBM in the USA,US Energy Investor,November 1,2004
    [12] Pratt,T. J., M. J. Mavor and R. P. De Bruim. Coal gas resource and production potential of subbituminous coal in the Powder River basin. University of Alabama College of Continuing Studies, Proceedings of the 1999 Int'l Coalbed Methane Symposium, 1999 12-34
    [13] Walter B. Ayers Jr. Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River Basins. AAPG, vol. 86, No.11,2002, 1855-1890
    [14] Leslie Haines, Coalbed Methane,Oil and Gas Investor, December 2005,1
    [15] Joe Fisher. CBM is the place to be, Oil and Gas Investor, December 2005,2-7
    [16] Joe Fisher. CBM technology on the rise, Oil and Gas Investor, December 2005,2-7
    [17] Scott L. Montgomery, Powder River Basin, Wyoming: an expanding coalbed methane (CBM) Play. AAPG,Vol.83,No.8, 1999,1207-1222
    [18] Littke R., Leythaeouser D.. Migration of Oil and gas in coal. In: Hydrocarbons from coal, AAPG #38, 1993,219-236
    [19] Scott H. Stevens, Kartono Sani, Sutarno Hardjosuwiryo. Indonesia's 337 tcf CBM resource a low-cost alternative to gas, LNG. Oil and Gas Journal, 2001, 10.
    [20] 钱凯、赵庆波、汪泽成等. 煤层甲烷勘探开发理论与实验测试技术,石油工业出版社,1996
    [21] 刘焕杰、秦勇、曾勇等. 煤层甲烷储层中孔裂隙系统发育的非均质性及其岩石学评价方法, 煤层气开发与利用国际会议论文集(A).中国北京,1995, 43-51
    [22] 韩德馨. 中国煤岩学, 中国矿业大学出版社,1996
    [23] 汤达祯. 煤变质演化与煤层气生成条件,地质出版社,1998
    [24] Kuuskraa V. A., C. F. Brandenburg. Coalbed methane sparks a new energy industry. Oil & Gas J. Weeks of Cot. 9, 1989, 3-8
    [25] Lamberson N.M. and Bustin R.M. Coalbed methane characteristics of Gates Formation,Northeastern British Columbia: Effect of maceral composition. AAPG Vol.77(12) ,1993
    [26] Levine, J.R. Influences of coal composition on coal seam reservoir quality, In: symposium on coalbed methane research and development in Australia (Eds. By Beamish B.B. et al), vol.1, 1992, 19-21
    [27] 中国煤田地质总局. 鄂尔多斯盆地聚煤规律及煤炭资源主产价,煤炭工业出版社,1996
    [28] 陈金刚,秦勇,桑树勋等,准葛而盆地煤层气勘探前景,天然气工业,第22 卷第 2 期,2003,127-129
    [29] 宁正伟,苏复义,蔡云飞等,西北地区侏罗系煤层气前景研究,天然气工业,第 23 卷第 3 期,2003,11-16
    [30] 胡宝林,车遥,杨起等,.吐哈盆地煤储层物性特征研究及煤层气资源前景,煤炭科学技术,第 31 卷第 4 期,2003,50-53
    [31] 李建屋.吐哈盆地煤层气开发前景,煤田地质与勘探,第 30 卷第 5 期,2002,23-24
    [32] 内蒙古自治区地质矿产局. 内蒙古自治区区域地质志,地质出版社,1991
    [33] 张长俊, 龙永文.海拉尔盆地沉积相特征与油气分布,石油工业出版社,1995
    [34] 张晓东, 刘光鼎, 王家林.海拉尔盆地的构造特征及其演化,石油实验地质,V12(2), 1994,119-127
    [35] 周江羽, 刘常青, 李健伏. 海拉尔地区沉积盆地的充填序列和聚煤规律,煤田地质与勘探. V24(2), 1996,1-4.
    [36] Clarkson, C.R. and Bustin R.M. Variation in micropore capacity and size distribution with composition in bituminous coals of the Western Canadian Sedimentary Basin. Fuel, vol. 13, 1996, p.1438-1498
    [37] Harries L.A., Yust C.S. Transmission electron microscopy observation of porosity in coal. Fuel, vol.55, 1976, 233-236
    [38] 秦勇.中国高煤级煤的显微岩石学特征及结构演化,中国矿业大学出版社。1994,48-69
    [39] 吕志发、张新民、钟铃文等. 块煤的孔隙特征及其影响因素, 中国矿业大学学报,Vol.20(3) 1991,45-51
    [40] 王生维、陈钟惠、张明. 煤基岩块孔裂隙特征及其在煤层气产出中的意义, 地球科学,Vol.20(5),1995(a), 557-560
    [41] 王生维、陈钟惠. 煤储层孔隙、裂隙系统研究进展, 地质科技情报, Vol.14(1), 1995(b), 53-59
    [42] 霍永忠,张爱云,煤层气储层的显微孔裂隙的成因分类及其应用, 煤田地质与勘探,Vol.26(6),1998, 28-32
    [43] 朱步瑶,赵振国,1996;界面化学基础。北京:化学工业出版社
    [44] 陈兆山.阜新盆地刘家区煤层气储层特征及产出特点,辽宁科技大学学报,第21 卷第 5 期,2002,567-570
    [45] Andrew R. Scott, Hydrogeologic factors affecting gas content distribution in coal beds. Int'l J. of Coal Geol., vol.50, No. 2, 2002,363-387
    [46] 王衍,马府波.哈参一井煤层气测试技术,油气井测试,第 12 卷第 2期,2003,38-40
    [47] 叶建平,郭海林,武强等,.铁法盆地煤层气成藏模式及产能预测,中国矿业大学学报,第 31 卷第 2 期,2002,204-207
    [48] 叶建平. 铁法盆地煤层气成藏动力条件研究,中国矿业大学学报,第 31 卷第 1 期,2002,18-22
    [49] 冯子辉, 李振广, 李景坤等,.松辽及外围盆地煤成烃地球化学特征及资源量预测方法研究,大庆油田有限责任公司勘探开发研究院有机地化室, 2000
    [50] 李培超,孔祥言,曾清红等,. 煤层气渗透性因素综述与分析,天然气工业,第 22 卷第 5 期,2002,45-51
    [51] R.A. Koening, S.K. Choi and K.T.A. Meaney. In-situ determination of relative permeability in coal seam using a two-phase Well-testing tool, Intergas, 1995, 219-227
    [52] R.Puri, J.C.Evanoff,and M.L.Brugler, Measurement of coal cleat porosity and relative permeability characteristics, Gas Technology Symposium, SPE,Houston,1991
    [53] M.K.Dabbous, A.A. Reznik, J.J.Taber and P.F. Fulton, Permeability of coal and water, SPEJ, Dec.1974,563-572
    [54] R.M.Bustin, C.R.Clarkson. Geological controls on coalbed methane reservoir capacity and gas content. International Journal of Coal Geology,38,1998,3-26
    [55] W.B.Ayers, Jr.,and W.R.Kaiser. Coalbed methane in the upper Cretaceous fruitland formation, San Juan Basin, New Mexico, and Colorado, New Mexico Bureau of Mines & Mineral Resources, Bulletin 146,1994
    [56] 秦勇,唐修义,叶建平。华北上古生界煤层甲烷稳定碳同位素组成与煤层气解析-扩散效应,高校地质学宝,第 4 第 2 期,1998,127-132
    [57] 张建博,陶明信.煤层甲烷碳同位素在煤层气勘探中的地质意义,沉积学报,第 18 卷第 4 期,2000,611-614
    [58] 高波,马玉贞,陶明信等.煤层气富集高产的主控因素,沉积学包,第 21 卷第 2期,2003,345-349
    [59] 袁政文.煤层气藏类型及富集高产因素,断块油气田,第 4 卷第 2 期,1997,9-12
    [60] 邱振馨.浅论断陷盆地的煤层气藏,断块油气田,第 1 卷第 2 期,1994,5-8
    [61] 刘焕杰,秦勇,桑树勋.山西南部煤气地质,中国矿业大学出版社,1998
    [62] 叶建平、武强、叶贵均等,.沁水盆地南部煤层气成藏动力学机制研究。地质论评,vol.48, No.3,2002,319-323
    [63] 王纯信,郭国胜.晋城矿区煤层气赋存条件及地面开发现状,中国煤层气,第 2期,1996, 154-157
    [64] 范文科,郑红菊,陈蕾.开平-涧河地区煤层气成藏条件评价,石油与天然气地质,第 21 卷第 4 期,2000,321-323
    [65] 王译成,郑红菊,范文科.开平-涧河地区煤层气勘探前景,煤田地质与勘探,即28 卷第 2 期,2000,28-32
    [66] 张泓,鄂尔多斯盆地中新生代构造应力厂,华北地质矿产杂志,第 11 卷第 1期,1996,87-92
    [67] 杨俊杰.鄂尔多斯盆地构造演化与油气分布规律,石油工业出版社,2002
    [68] 杨起, 吴冲龙. 中国煤变质作用,地球科学:中国地质大学学报,第 21 卷第 3期,1996,311-319
    [69] 刘大猛,杨起.鄂尔多斯盆地煤成烃潜力与成气热模拟实验,现代地质,第11卷第 3 期, 1997,322-329
    [70] 冯三利,叶建平.中国煤层气勘探开发技术与研究进展,煤田地质,第 15 卷第 6期,2003,19-23
    [71] 张晓东,刘光鼎,王家林.海拉尔盆地的构造特征及其演化,石油试验地址,第 16 卷第 2 期,1994,119-127
    [72] 刘伟,冯杰,王淑芝等,.海拉尔盆地烃源岩有机相分布特征,大庆石油地质与开发,第 21 卷第 5 期,2001,18-21
    [73] 彭威, 刘景, 蔡红柳. 海拉尔盆地呼和湖凹陷油气成藏条件研究, 大庆油田有限责任公司勘探开发研究院外围勘探室, 1999.
    [74] 桑树勋,秦勇, 郭晓波等,. 准葛尔和吐哈盆地侏罗系煤层气储集特征, 高校地质学报, 第 9 卷第 3 期, 2003, 365-372
    [75] 李建武. 吐哈盆地煤层气开发前景分析,煤田地质与勘探, 第 30 卷第 5期,2002, 23-24
    [76] 秦长文,庞雄奇, 蒋兵.吐哈盆地煤层气富集的地质条件, 天然气工业, 第 24卷第 2 期, 2004,8-13
    [77] 张国伟, 李三忠, 刘俊霞等,.新疆伊犁盆地的构造特征与形成演化, 地学前缘, 第 6 卷第 4 期,1999, 203-214
    [78] 张井, 王士俊, 唐家祥等,. 新疆伊犁盆地煤岩特征和煤相, 煤田地质与勘探, 第 25 卷第 3 期, 21-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700