用户名: 密码: 验证码:
圆柏属植物抗冷冻适应性机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国幅员辽阔,低温伤害是限制植物自然分布和栽培区带的主要因素,也是全国性的自然灾害之一。每年因植物受低温伤害而造成的巨大经济损失,已引起我国政府部门和科技工作者的高度重视。因此,研究低温胁迫对植物的伤害作用及其机理,探索植物抗冷冻机制及其预防措施,不仅对于引种栽培具有理论上的指导意义,而且对于发展培育较多品种的抗冻植物,增加寒冷地区的生物学产量和经济学产量具有广泛的应用价值。圆柏属植物在我国西北广泛分布,有关其抗冷冻适应性机制的研究目前尚未报道。本研究以祁连圆柏(Sabina przewalskii)和圆柏(Sabina chinensis)为材料,通过测定叶片内源一氧化氮(NO)和抗氧化系统,水分、渗透调节物和无机元素,稳定碳同位素组成,观察显微和超微结构,分析它们与植物冷适应、越冬间的关系,以探讨常绿木本植物的抗冷冻性适应机制。研究表明:
     (1) 随秋季气温下降,过氧化氢酶(CAT)、过氧化物酶(POD)、抗坏血酸氧化酶(APX)活性和谷胱甘肽(GSH)、脯氨酸(Pro)、类胡萝卜素(Car)含量增加并在冬季达最大值,NO释放率、NOS和NR活性以及丙二醛(MDA)含量也显著增加并在秋季和初春出现两峰值;两树种叶中的抗氧化酶活性和抗氧化剂含量都与温度和MDA含量明显负相关,表明抗氧化系统在清除氧自由基、抑制膜脂过氧化、提高抗冷冻性方面具有重要作用;而且NO的产生总是发生在抗氧化酶活性和抗氧化剂含量增加之前,表明NO作为信号分子激活了抗氧化系统以诱导植物的抗冷冻性。在抗冷冻过程中祁连圆柏叶的NO释放率、NOS和NR活性、抗氧化酶活性以及抗氧化剂含量都高于圆柏,表明祁连圆柏具有较强的抗冷冻适应性策略。
     (2) 随秋季气温下降,叶片组织相对含水量(RWC)、自由水含量(FWC)下降,束缚水含量(BWC)、脯氨酸(Pro)、游离氨基酸(FAA)、可溶性蛋白质(SP)、可溶性糖(SS)含量增加,翌年春季气温回升,相对含水量和自由水含量增加,束缚水含量下降,有机渗透调节物再次增加。有机渗透调节物在秋末冬初及初春的增加正好与圆柏属植物抗冻锻炼及脱冻恢复生长的时间相吻合,因而是植物抗冻及脱冻适应的重要生理响应,在降低细胞冰点、防止细胞结冰引起的膜机械伤害、抑制膜脂过氧化、保护膜稳定性方面具有重要作用。祁连圆柏的相对含水量和自由水含量均低于圆柏,3种有机渗透调节物含量均高于圆柏,表明祁连圆柏在抗冷冻性诱导
The freezing injury limited the distribution of plants and the chilling stress is one of the natural disasters prevailed in China. The huge economic losses resulted from freezing injury were concerned seriously by Chinese Government and scientific researchers. Therefore, studies on adaptive mechanisms of plants to chilling stress are very important;it will not only be a guide to introduction and cultivation of plants but also help to breed anti-freezing plants. However, there was no report about the physiological mechanism of evergreen woody plants of Sabina in northwest China during winter stress. The leaves of Sabina przewalskii and Sabina chinensis were used to explore the cold resistant mechanism of evergreen woody plants of Sabina by examining seasonal changes of the endogenous nitric oxide, anti-oxidative system, water content, osmoregulation substance, element, microstructure, ultra structure, stable carbon isotope. The results showed as follows:(1) The activities of CAT, POD and APX, contents of GSH, Pro and Car increased with temperature decrease, and the highest value occurred in the winter. The MDA content, NO release rate, NOS and NR activities increased markedly and reached two peaks in autumn and early spring, respectively. Meanwhile, the activities of POD, CAT, APX and the contents of GSH, Car and Pro were negatively correlated with mean temperature and MDA content in both species, it indicated that the anti-oxidative systems played an important role in potentiating freezing-resistance of plant and limiting the production of free radicals to protect membrane integrity. Furthermore, NO generation is always found before increasing of anti-oxidative enzyme activity and antioxidant content, it indicated that NO as an early signal molecule is able to induce the freezing tolerance by activating the anti-oxidative system involved in both anti-oxidative enzyme and antioxidant. S. przewalskii showed a prevailing strategy in signal function of NO and the higher anti-oxidative enzyme activity and antioxidant content than S. chinensis in order to develop the tolerance to freezing.(2) In the leaves of the two species, the relative water content (RWC) and free water content (FWC) decreased during hardening in autumn, but bound water content (BWC)
    and organic osmoticas accumulated and remained relatively higher level over winter. In spring, RWC and FWC increased, BWC decreased, and organic osmotica accumulated again. These seasonal patterns were consistent with winter hardening and dehardening. Organic osmotica may supply nutrients to regrowth in spring and contribute to the stabilization of the cell membrane by preventing lipid peroxidation and by binding the tissue water. The results also suggested that a better capacity for osmoregulation in S. przewalskii might account for its greater capacity for freezing tolerance than S. chinensis.(3) The concentrations of N, K and Cl in the leaves of two species in summer and autumn were higher than that in winter and spring, and this indicated that two species enriched abundant nutrient matters in summer and autumn, which were identical with accumulating higher biomass in these two seasons. The concentrations of P, Ca, Mg, Na, Si and S in the leaves of two species in winter and spring were higher than that in summer and autumn, and this indicated that two species could accumulate abundant inorganic osmotica to adapt itself to low temperature by increasing osmotic pressure of the cell. The results also suggested that a better capacity for accumulating inorganic osmotica in S. przewalskii might account for its greater capacity for freezing tolerance than S. chinensis.(4) It was shown that the foliar surface cells were covered with thick cuticular membrane, and the well-developed arenchyma appeared inside of their mesophyll in S. przewalskii and S. chinensis. It was observed in the two species that starch grains in chloroplasts accumulated in growing season and disappeared or diminished as soluble sugar content increased in cold season, but there was a larger increase in soluble sugar content in S. przewalskii than S. chinensis. Chloroplasts of S. chinensis were injured in winter, with some chloroplasts become abnormal, plastoglobuli increased and some lipid drops were observed, but no obvious injury in the chloroplasts of S. przewalskii had been observed. Mitochondria of both species remained stable and intact in dormancy season. It can be concluded that cold tolerance of two species related to the well-developed arenchyma, accumulation of starch grains in developing seasons, and increase of soluble sugar in dormancy season. Moreover, more stable chloroplasts and more marked increase of soluble sugar content in S. przewalskii under low-temperature stress might account for its greater capacity for freezing tolerance than S. chinensis.
    (5) The 5BC values in the leaves of the two species declined with monthly average temperature decreasing and maintained a relatively lower value in the whole winter. It indicated that the two species consumed more self substances in order to adapt to low temperature. As a result, the 813C values decreased. The 813C values of S. przewalskii were markedly higher than those of S. chinensis, it suggested that S. chinensis must consume more self substances than S. przewalskii under low-temperature stress. S. przewalskii showed a more prevailing strategy than & chinensis in order to develop the tolerance to freezing. Furthermore, very significant linear relationships were observed between 613C value and monthly average temperature, between 513C value and Pro content, and between 513C value and RWC in the leaves of S. przewalskii and S. chinensis. These results suggested that the 813C values of two species of Sabina can be used as another index to evaluate freezing tolerance.In conclusion, the well-developed arenchyma, accumulation of starch grains in growing seasons, increase of soluble sugar in dormancy season, signal function of NO to activate the anti-oxidative system, accumulation of organic and inorganic osmotica, stability of chloroplasts, and decrease of 513C value under low-temperature stress were important adaptive mechanisms of plants of Sabina in order to develop the tolerance to freezing.
引文
1. 陈杰中,徐春香,粱立峰.低温对香蕉叶片中蛋白质及脯氨酸的影响[J].华南农业大学学报,1999,20(3):54-58.
    2. 陈杰中,徐春香.植物冷害及其抗冷生理[J].福建果树,1998(2):21~23.
    3. 陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用[J].植物生态学报.2002.26:549~560.
    4. 陈拓,秦大河,李江风等.新疆昭苏云杉树轮纤维素δ13C的气候意义[J].冰川冻土,2000,22(4):347~352.
    5. 陈拓,秦大河,李江风等.新疆昭苏云杉树轮纤维素6~(13)C的时气候意义[J].冰川冻土.2002,22(4):347~350.
    6. 陈英华,胡俊,李裕红,薛博,严重玲.碳稳定同位素技术在植物水分胁迫研究中的应用[J].生态学报,2004,24(5):1027~1033
    7. 董鸣.1996.陆地生物群落调查观测与分析.中国标准出版社.
    8. 冯虎元,安黎哲,陈拓,徐世健等.马先蒿属(Pedicularis L.)植物稳定碳同位素组成与环境因子之间的关系[J].冰川冻土.2003,25(1):88~93.
    9. 冯虎元,安黎哲,王勋陵.环境条件对植物稳定碳同位素组成的影响[J].植物学通报.2000.17:312~318.
    10.冯玉龙,马永双,冯志立.6-苄(基)腺嘌呤和抗坏血酸对渗透胁迫时杨树光合作用光抑制的影响[J].应用生态学报,2004,15(12):2233~2236.
    11.冯自成.1994.甘南树木图志[M].兰州:甘肃科技出版社,27~34.
    12.傅辉恩.东祁连山西段森林涵养水源作用的初步研究[J].兰州大学学报(自然科学版),1990,26:17~28.
    13.关保华,葛滢,常杰等.富营养化水体中植物的元素吸收与净化能力的关系[J].浙江大学学报(理学版),2002,29(2):190~197.
    14.郭延平,张良诚,沈允钢.低温胁迫对温州蜜柑光合作用的影响[J].园艺学报,1998,25(2):111~116.
    15.韩善华,张红,王双.冬季沙冬青细胞质中一种高电子密度结构的电镜观察[J].应用生态学报,1999,10(5):556~558.
    16.何军贤,曾乃燕,易静等.低温对水稻幼苗叶绿体光化学功能及类囊体膜蛋白水平的影响[J].中国水稻,1999,13(2):99~103.
    17.侯爱敏,彭少麟,周国逸,温达志.通过树木年轮δ~(13)C重建大气CO_2碳同位素比δa的可靠性探讨[J].生态学杂志,2001,20(1):13~17.
    18.侯爱敏,彭少麟,周国逸.鼎湖山地区马尾松年轮元素含量与酸雨的关系[J].生态学 报,2002,22(9):1552~1559.
    19.侯爱敏,彭少麟,周国逸.广东鼎湖山马尾松年轮元素含量及其相关性研究[J].生态学杂志2002,21(1):6~9.
    20.黄小云,向邓云,谈锋.自然降温过程中草珊瑚抗寒适应性研究[J].重庆师范学院学报,2002,19(1):66~69.
    21.江勇,贾士荣,费云标.抗冻蛋白及其在植物抗冻生理中的作用[J].植物学报,1999,41(7):677~685.
    22.蒋高明,韩兴国,林光辉.大气CO_2浓度升高对植物的直接影响——国外十余年来模拟试验研究之主要手段及基本情况[J].植物生态学报,1997,21;489~502.
    23.李合生.2000.《植物生理生化实验原理和技术》[M].北京:高等教育出版社:114~118.
    24.李相博,陈践发,张平中,刘光琇.青藏高原(东北部)现代植物碳同位素组成特征及其气候信息[J].沉积学报.1999,17(2):325~329.
    25.李相博,陈践发.植物碳同位素分馏作用与环境变化研究进展[J].地球科学进展,1998,13(3):285~290.
    26.梁银丽,康绍忠,山仑.水分和氮磷水平对小麦碳同位素分辨率和水分利用效率的影响[J].植物生态学报.2000,24(3):289~292.
    27.林梅馨,杨汉金.橡胶树低温伤害的生理反应[J].热带作物学报,1994,15(2):7~11.
    28.林睦就,薛萍,张云跃等.引种针叶树种矿质元素浓度及季节变化的比较研究[J].林业科学,1998,34(5):21~28.
    29.林鹏,范航清.九龙江口秋茄叶热值月变化的初步研究[J].科学通报,1989,34(4):298~300.
    30.林植芳.稳定性碳同位素在植物生理生态研究中的应用[J].植物生理学通讯.1990(3):1~6.
    31.林植芳,林桂珠,孔国辉等.生长光强对亚热带自然林两种木本植物δ~(13)C、Ci和WUE的影响[J].热带亚热带植物学报,1995,3(2):77~82.
    32.刘菊秀,周国逸.土壤累积酸化对鼎湖山马尾松林物质元素迁移规律的影响[J].浙江大学学报(农业与生命科学版),2005,31(4):381~391.
    33.刘祖琪,张石城.植物抗性生理学[M].北京:中国农业出版社,1994.14,43~44.
    34.卢存福,陈玉珍,简令成等.高山植物唐古特红景天粘液细胞及叶肉细胞表面糖蛋白与抗冻性的关系[J].应用与环境生物学报,2003,9(1):16~20.
    35.吕厚远,顾兆炎,吴乃琴,旺罗等.海拔高度的变化对青藏高原表土δ~(13)C的影响[J].第四纪研究.2001,21(5):399~405.
    36.罗耀华,林光辉.稳定碳同位素分析及其在生态学中的应用.刘建国.当代生态学博论.北京:中国科学技术出版社.1993,322~341.
    37.马向丽,魏小红,龙瑞军等.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报,2005,25(6):1269-1274.
    38.庞静,朱建国,谢祖彬等.自由空气CO_2浓度升高对水稻营养元素吸收和籽粒中营养元素含量的 影响[J].中国水稻科学,2005,19(4):350~354.
    39.强维亚,杨晖,陈拓等.镉和增强紫外线-B辐射复合作用对大豆生长的影响[J].应用生态学报,2004,15(4):697~700.
    40.苏维埃.植物对温度逆境的适应.植物生理与分子生物学[M].北京:科学出版社,1998.721~727.
    41.孙凡,钟章成.缙云山常绿阔叶林四川大头茶果实中矿质营养元素含量及季节动态[J].生物学杂志,1998,15(6):6~9.
    42.田景花,张红,李明等.APM对黄瓜幼叶细胞超微结构冷稳定性的影响[J].电子显微学报,2002,21(2):129~133.
    43.万东石,李红玉,周攻克等.虫害对不同水分条件胡杨披针形叶活性氧代谢的影响[J].应用生态学报,2004,15(5):849~852.
    44.万清林,刘鸣远.芸香抗寒生理的初步研究[J].植物研究,1997,7(2):190~194.
    45.王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9~13.
    46.王国安,韩家懋,刘东升.中国北方黄土区C-3草本植物碳同位素组成研究[J].中国科学(D辑)2003,33(6):550~556.
    47.王国安,韩家懋,周力平.中国北方黄土区C-3植物碳同位素组成与年均温度关系[J].中国地质,2002,29(1):55~57.
    48.王国安,韩家懋.中国西北C-3植物碳同位素组成与年降雨量关系初探[J].地质科学,2001,36(4):494~499.
    49.王文卿,林鹏.红树植物秋茄和红海榄叶片元素含量及季节动态的比较研究[J].生态学报,2001,21(8):1233~1238.
    50.王孝宣,李树德,东惠茹等.番茄品种耐寒性与ABA和可溶性糖含量的关系[J].园艺学报,1998,25(1):56~60.
    51.王勋陵,王静.1989.植物形态结构与环境.兰州,兰州大学出版社.16~22.
    52.王毅,方秀娟,徐欣等.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响[J].园艺学报,1995,22(3):299~300.
    53.魏捷,余辉,匡廷云等.青海高原不同海拔珠芽蓼叶绿体超微结构的比较[J].植物生态学报,2000,24(3):304~307.
    54.吴玉环,黄国宏,高谦等.苔藓植物对环境变化的影响及适应性研究进展[J].应用生态学报,2001,12(6):943~946.
    55.谢吉容,谈锋.自然降温过程中南方红豆杉叶片水分、渗透调节物质的动态变化与低温半致死温度的关系[J].西南民族学院学报,2002,28(ⅰ):61~64.
    56.徐世健,陈拓,冯虎元,安黎哲,强维亚,王勋陵.新疆乌鲁木齐河上游植物叶片δ~(13)C空间分异的环境分析[J].自然科学进展.2002,12(6):617~620.
    57.许振柱,周广胜.植物氮代谢及其环境调节研究进展[J].应用生态学报,2004,15(3):511~516.
    58.于颖,刘元英,罗盛国等.重茬胁迫下硒对大豆叶绿体超微结构和叶片中微量元素含量的影响[J].应用生态学报,2003,14(4):573~576.
    59.曾乃燕,何军贤,赵文等.低温胁迫期间水稻光合膜色素与蛋白水平的变化[J].西北植物学报,2000,20(1):8~14.
    60.曾韶西,王以柔.低温胁迫对黄瓜子叶抗坏血酸过氧化物酶活性和谷胱甘肽含量的影响[J].植物生理学报,1990,16(1):37~42.
    61.张满效,安黎哲,陈拓,王勋陵.NO是植物应激反应的信号分子[J].西北植物学报,2004,24(6):1145~1153.
    62.张毅,戴俊英,苏正淑a.灌浆期低温对玉米籽粒的伤害作用[J].作物学报,1995,21(1):71~75.
    63.张毅,戴俊英,苏正淑等b.孕穗期低温对玉米雌穗的伤害作用[J].作物学报,1995,21(2):235~239.
    64.张瑜斌,林鹏,邓爱英等.福建九龙江口秋茄红树林鹧鸪菜几种营养元素含量的季节变化[J].海洋科学,2003,27(10):46~49.
    65.赵良菊,刘晓宏,肖洪浪,郭天文.土壤养分对作物茎叶稳定碳同位素组成和生物产量的影响[J].地球学报.2003,24(6):519~524.
    66.赵天宏,史奕,黄国宏.CO_2和O_3浓度倍增及其交互作用对大豆叶绿体超微结构的影响[J].应用生态学报,2003,14(12):2229~2232.
    67.郑凤英,彭少麟,赵平.两种山麻黄属植物在近一世纪里气孔密度和潜在水分利用率的变化[J].植物生态学报.2001,25(4):405~409.
    68.周玉梅,韩士杰,张军辉等.CO_2浓度升高对长白山三种树木幼苗叶碳水化合物和氮含量的影响[J].应用生态学报,2002,13(6):663~666.
    69. An Lizhe, Liu Yanhong, Zhang Manxiao, et al. Effects of nitric oxide on growth of maize seedling leaves in the presence or absence of ultraviolet-b radiation[J]. Journal of Plant Physiology, 2005, 162(3): 317~326.
    70. Anchorodoguy TJ, Rudolph AS, Carpenter JF, et al. Modes of interaction of cryoprotectants with membrane phospholids during freezing[J]. Cryobiology, 1987, 24: 324~331.
    71. Andersen MN, Jensen CR, Losch R. The interaction effects of potassium and drought in field-grown barley. I. Yield, water-use efficiency and growth[J]. Soil Plant Sci, 1992, 42: 34~44.
    72. Anderson L, Mansfield TA. The effects of nitric oxide pollution on the growth of tomato[J]. Environmental Pollution, 1979, 20: 113~121.
    73. Anderson, WT, Bernasconi, SM, McKenzie JA, et al. Oxygen and Carbon Isotopic Record of Climate Variability in Tree-Ring Cellulose (Picea abies): An Example from Central Switzerland (1913-1995)'[J]. J. Geophys. Res, 1998, 103, 31625~31636.
    74. Anttonen S, Herranen J, Peura P, Karenlampi L. Fatty acids and ultrastructure of ozone-exposed Aleppo pine(Pinus halepensisMili.) needles[J]. Environ Pollut, 1995, 87: 235~242.
    75. Anttonen S, Karenlampi L. Slightly elevated ozone exposure causes cell structural changes in needles and roots of Scots pine[J]. Trees, 1996, 10: 207~217.
    76. Arnon DI. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris[J]. Plant Physiol., 1949, 24: 1~15.
    77. Barroso JB, Corpas FJ, Carteras A et al. Localization of nitric oxide synthase in plant peroxisomes [J]. J Biol Chem, 1999, 274(51): 36729~36733.
    78. Bates LS, Waldren RP, Tear GD. Rapid determination of proline for water stress studies[J]. Plant Soil., 1973, 39: 205~207.
    79. Becket K, Saurer M, Egger A et al. Sensitivity of white clover to ambient ozone in Switzerland[J]. New Phytol, 1989, 112: 235~243.
    80. Beligni MV, Lamattina L. Is nitric oxide toxic or protective?[J]. Trends in Plant Sciences, 1999, 4: 299~300.
    81. Beligni MV, Lamattina L. Nitric oxide stimulates seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants[J]. Planta, 2000, 210: 215~221.
    82. Beligni MV, Lamattina L. Nitric oxide in plants: the history is just beginning[J]. Plant Cell & Environment, 2001, 24: 267~278.
    83. Bender MM. Variations in the ~(13)C/~(12)C rations of plants in relation to the pathway of photosynthetic carbon dioxide fixation[J]. Phytochemistry, 1971, 10: 1239~1244.
    84. Beyer WF, Fridovich I. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions[J]. Anal Biochem., 1987, 161: 559~566.
    85. Bondada BR, Syvertsen JP. Concurrent changes in net CO_2 assimilation and chloroplast ultra-structure in nitrogen deficient citrus leaves[J]. Environmental and Experimental Botany, 2004, 1~9.
    86. Boveris AD, Galatro A, Puntarulo S. Effect of nitric oxide and plant antioxidants on microsomal content of lipid radicals[J]. Biological Research, 2000, 33: 159~165.
    87. Bradford MM. A rapid and sensitive technique to determine protein concentrations[J]. Anal Biochem., 1976, 72: 248~254.
    88. Bredt DS, Hwang DM, Glatt CE et al. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P450 redutase[J]. Nature, 1991, 351: 714~718.
    89. Breusegem F van, Sloten L, Stassart JM et al. Effects of o eerproduction of tobacco M nSOD in maize chloroplasts on foliar tolerace to cold and oxidative stress[J]. J Exp Bot. 1999, 50(330): 71~78.
    90. Brugnol E, Lauteri M. Effects of salinity on stomatal conductance , photosynthetic capacity and carbon isotope discrimination of salt-tolerant cotton and salt-sensitive bean C_3 non-halophytes [J]. Plant Physiol, 1991,95: 628-635.
    91. Butt, YKC, JHK Lum, SCL Lo. Proteomic identification of plant proteins probed by mammalian nitric oxide synthase antibodies [ J ]. Planta, 2003, 216: 762-771.
    92. Cakmak I, Horst WJ. Effect of aluminium on lipid peroxidation, superoxide dismutase,catalase and peroxidase activities in root tips of soybean (Glycine max) [ J ]. Physiol Plant., 1991, 83:463-468.
    93. Carimi F, Zottini M, Formentin E, et al. Cytokinins, new apoptotic inducers in plants [ J ]. Planta, 2002,216:413-421.
    94. Caro A, Puntarulo S. Nitric oxide generation by soybean embryonic axes: possible effect on mitochondrial function [ J ]. Free Rad Res, 1999, 31: S2 05-12.
    95. Caro A, Puntarulo S. Nitric oxide decreases superoxide anion generation by microsomes from soybean embryonic axes [ J ]. Physiologia Plantarum, 1998, 104: 357-364.
    96. Chance B, Maehly AC. Assay of catalase and peroxidases [ J ]. Meth Enzymol., 1955, 11:764-775.
    97. Chandok MR, Ytterberg AJ, van Wijk KJ et al. The pathogen-inducible nitric oxide synthase (iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex [ J ]. Cell, 2003,113:469-482.
    98. Chang MY, Chen SL, Lee CF, Chen YM. Cold-acclimation and root temperature protection from chilling injury in chilling-sensitive mungbean (Vigna radiata L.) seedlings [ J ]. Bot. Bull. Acad. Sin, 2001, 42: 53-60.
    99. Charest, C. & C. T. Phan. Cold acclimation of wheat properties of enzymes involved in proline metabolism [ J ]. Physiologia Plantarum, 1990, 80: 159-168.
    100. Chen Z, Silva H, Klessig DF. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid [ J ]. Science, 1993, 262: 883-886.
    101. Ciamporova M, Trginova I. Ultrastructure of chloroplasts in leaves and of plastids in root tips of two maize lines differing in chilling tolerance [ J ]. Biologia (Bratislava) 1996, 51: 441-447.
    102. Ciamporova M, Trginova I. Modifications of plant cell ultrastructure accompanying metabolic responses to low temperatures [ J ]. Biologia (Bratislava) 1999, 54: 349-360.
    103. Clairborne A. Catalase activity.In: Greenwald RA, eds. Handbook of Methods for Oxygen Radical Research [C]. Boca Raton, FL: CRC Press, 1985, 283-284. ISBN 0-8493-2936-1.
    104. Collins FW & KR Chanddorkar. Soluble sugar changes occurring during cold hardiness of spring wheat, rye and alfalfa [ J ]. Canadian Journal of Plant Science, 1983, 63: 415-420.
    105. Cooney RV, Harwood P J, Custer IJ, et al. Light mediated conversion of nitrogen dioxide to nitric oxide by carotenoids[J]. Environmental Health Perspectives, 1994, 102: 460~462.
    106. Cueto M, Hernandez Perera O, MartinR et al. Presence of nitric oxide synthase activity in roots and nodules ofLupinus albus[J]. FEBS Lett, 1996, 398(2-3): 159~864.
    107. Dean JV, Harper JE. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay[J]. Plant Physiology, 1986, 82: 718~723.
    108. Delledonne M, Xia YJ, Dixon RA, et al. Nitric oxide functions as a signal in plant disease resistance[J]. Nature, 1998, 394: 585~588.
    109. Desikan R, Cheung MK, Bright J, et al. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J]. Journal of Experimental Botany, 2004, 55:205~212.
    110. Desikan R, Griffiths R, Hancock J, et al. A new role for an old enzyme: nitrate reductase~mediated nitric oxide generation is required for abscisie acid~induced stomatal closure in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences, USA 2002, 99: 16314~16318.
    111. Dorffiing KH, Dorffling & D. Lesselich. In vitro~selection and regeneration of hydroxyprine~resistant lines of winter wheat with increased proline content and increased frost tolerance[J]. Journal of Plant Physiology, 1993, 142: 222~225.
    112. Durner J, Klessig DF. Nitric oxide as a signal in plants[J]. Current Opinion in Plant Biology, 1999, 2: 369~374.
    113. Dumer J, Wendehenne D, Klessig D. Defense gene induction in tobacco by nitric oxide, cyclicGMP, and cyclic ADP_ribose[J]. Proceedings of the National Academy of Sciences of the USA, 1998, 95: 10328~10333.
    114. Durzan D J, Pedroso MC. Nitric oxide and reactive nitrogen oxide species in plants. Biotech. Genetic Eng. Revs, 2002, 19: 293~337.
    115. Ehleringer JR, Field CB, Lin ZF et al. Leaf carbon isotope and mineral composition in subtropical plants along an irradiance cline[J]. Oecologia, 1986, 70: 520~526.
    116. Farquhar GD, Ehleringer JR, Hubick KT. Carbon isotope discrimination and photosynthesis[J]. Annual Review of Plant physiology and Plant Molecular Biology, 1989, 503~537.
    117. Farquhar GD, MH O'Leary and JA Berry. On the relationship between Carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves[J]. Australian Journal of plant Physiology, 1982, 9: 121~137.
    118. Feng Xiahong Samuel Epstein. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO_2 concentration[J]. Geochimicaet Cosmoehimica Acta, 1995, 59(2): 2599~2608.
    119. Feng Xiahong. Long-term Ci/Ca responds of trees in western North America to atmospheric CO_2 concentration derived from carbon isotopes chronologies [ J ]. Oecologia, 1998, 117: 19-25.
    120. Foissner I, Wendehenne D, Langebartels C. In vivo imaging of an elicitor induced nitric oxide burst in tobacco [ J ]. The Plant Journal, 2000, 23: 817-824.
    121. Foyer CH, Souriau N, Perret S et al. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees [ J ]. Plant Physiol, 1995, 109: 1047-1057.
    122. Francey RJ, Farquhar GD. An explanation of 13C/I2C variations in tree rings [ J ]. Nature, 1982,297:28-31.
    123. Francy RJ, Hubick KT. Tree ring carbon isotope ratios re-examined [ J ]. Nature, 1988, 333: 712
    124. Fryer MJ, Andrews JR, Oxborough K et al. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature [ J ]. Plant Physiol, 1998, 116(2): 571-580.
    125. Gabara B, Sklodowska M, Wyrwicka A et al., Changes in the ultrastructure of chloroplasts and mitochondria and antioxidant enzyme activity in Lycopersicon esculentum Mill. Leaves sprayed with acid rain [ J ]. Plant Science, 2003, 164: 507-516.
    126. GarcSs H, Durzan D, Pedroso MC. Mechanical stress elicits nitric oxide formation and DNA fragmentation in Arabidopsis thaliana [ J ]. Annals of Botany, 2001, 87: 567-574.
    127. Garcia-Mata C, Lamattina L. Nitric oxide and abscisic acid cross talk in guard cells [ J ]. Plant Physiology, 2002, 128: 790-792.
    128. Gilmour SJ, Artus NN, Thomashow MF.CDNA sequence analysis and expression of two cold-regulated genes of Arabidopsis thaliana [ J ]. Plant Mol Bio, 1992, 18: 13-21.
    129. Gong M et al. Abscisic acid-induced therlmotolerance in maize seedlings is mediated by calciumand associated with antioxidant systems [J].J. Plant Physiol, 1998, 153(3/4): 482-491.
    130. Gorten CT. Correlation between concentration of elements in plants [ J ]. Nature, 1976, 261:686-688.
    131. Gould KS, Lamotte O, Klinguer A. Nitric oxide production in tobacco leaf cells: a generalized stress responses? [ J ]. Plant Cell and Environment, 2003, 26: 1851-1862.
    132. Gouvea CMCP, Souza JF, Magalhaes MIS. NO-releasing substances that induce growth elongation in maize root segments [ J ]. Plant Growth Regulation, 1997, 21: 183-187.
    133. Gramer GR, Lauchi A and Polito V S. Displacement of Ca2+ by Na+ from the plasmalemma of root cells [ J ]. Plant Physiology, 1985, 79: 207-211.
    134. Graziano M, Beligni MV, Lamattina L. Nitric oxide improves iron availability in plants [ J ]. Plant Physiology, 2002, 130: 1852-1859.
    135. Greffiths H. Applications of stable isotope technology in physiological ecology [ J ]. Functional Ecology, 1991,5:254-269.
    136. Greitner CS,Winner WE. Increase in δ13C values of radish and soybean plants caused by ozone [ J ]. New phytol, 1988, 108: 489-494.
    137. Griffith M, Ala P, Yang DSC, Hon W-C, Moffatt B. Antifreeze protein produced endogenously in winter rye leaves [ J ]. Plant Physiol, 1992, 100: 593-596.
    138. Griffith OW. Glutathione and glutathione disulphide [ J ]. Anal Biochem., 1980. 106: 207-212.
    139. Griffith M, M Antikainen, WC Hon et al. Antifreeze proteins in winter rye. Physiologia Plantarum, 1997, 100: 327-332.
    140. Guo FQ, Okamoto M, Crawford NM. Identification of a plant nitric oxide synthase gene involved in hormonal signaling [ J ]. Science, 2003, 302: 100-103.
    141. Guo W, Ward RW, Thamashow MF. Characterization of a cold-regulated wheat gene related to Arabidopsis cor47 [ J ]. Plant Physiol, 1992, 100: 915-922.
    142. Gupta AS, Robert P, Webb A et al. Overexpression of superoxide dismutase protects plants from oxidative stress [ J ]. Plant Physiol., 1993, 103: 1067-1073.
    143. Guy RD, Holowachuk DL. Population differences in stable carbon isotope ratio of Pinus contorta Dougl. Ex Loud.: relationship to environment, climate of origin, and growth potential f J ]. Can. J. Bot., 2001, 79: 274-283.
    144. Guy RD,Reid DM,Krause HR.Shifts in carbon isotope ratios of two Cs halophytes under natural and artifical conditions [J].Oecologia,1980,44(2):241~247.
    145. Han X, Li R, Wang J. Cellular structural comparison between different thermo-resistant cultivars of Raphanus Sativus L. under heat stress [J].J. W. Bot. Res, 1997, 15:173-178.
    146. Harper JE. Evolution of nitrogen oxide (s) during in vivo nitrate reductase assay of soybean leaves [ J ]. Plant Physiology, 1981, 68: 1488-1493.
    147. Hendershot KL & JJ Volenec. Nitrogen pools in roots of Medicago sativa L. after defoliation [ J ]. Journal of Plant Physiology, 1993, 141: 129-135.
    148. Hernandez JA, Almansa MS. Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves [ J ]. Physiol Plant., 2002, 115: 251-257.
    149. Hincha DK, Neukamm B, Sror HAM et al. Cabbage cryoprotectin is a member of the nonspecific plant lipid transfer protein gene family [ J ]. Plant Physiol, 2001, 125(2): 835- 846.
    150. Hockman JN and Burger JA. Spatial and temporal variability of foliar nutrient levels in Fraser fir Christmas trees [ J ]. Forest Science, 1989, 35(2): 632-639.
    153. Holopainen T, Nygren P. Effect of potassium deficiency and simulated acid rain, alone or in combination, on the ultrastructure of Scots pine needles [ J ]. Can J For Res, 1989, 19: 1402-1411.
    152. Hufton CA, Besford RT, Wellburn AR. Effects of NO(+NO2)pollution on growth, nitrate reductase activities and associated protein contents in glasshouse lettuce grown hydroponically in winter CO2 enrichment [ J ]. New Phytologist, 1996, 133: 495-501.
    153. Huntington TG, Hooper RP, Johnson CE et al.Calcium depletion in a southeastern United States forest ecosystem [ J ].Soil Sci Sue Am J, 2000, 64: 1845-1858.
    154. Isla R,Aragu R,Royo A.Validity of various physiological traits as screening criteria for salt tolerance in barley.FieId Crops Research,l998,58(2):97~107.
    155. Jiang M, Zhang J. Involvement of plasma membrane NADPH oxidase in abscisic acid- and water stress-induced antioxidant defense in leaves of maize seedlings [ J ]. Planta, 2002, 215: 1022-1030.
    156. Johnson RC.Salinity resistance,water relations.and salt content of crested and tall wheatgrass accessions [3].Crop Sci.,1991,31(3):730~ 734.
    157. Kimball SL, Salibury FB. Ultrastructural changes of plants exposed to low temperature [ J ]. Amer. J.Bot., 1973,60: 1028-1033.
    158. KivimSenpaa M, Jonsson AM, Stjernquist I et al. The use of light and electron microscopy to assess the impact of ozone on Norway spruce needles [ J ]. Environmental Pollution, 2004, 127:441-45.
    159. Kivimaenpaa M, Sellden G, Sutinen S. Ozone-induced changes in the chloroplast structure of conifer needles, and their use in ozone diagnostics [ J ]. Environmental Pollution, 2005, 5: 1-10.
    160. Klepper LA. Nitric oxide (NO) and nitrogen dioxide (NO2) emissions from herbicide-treated soybean plants [ J ]. Atmosphere and Environment, 1979, 13: 537-542.
    161. Klessig DF, Durner J, Noad R et al. Nitric oxide and salicylic acid signaling in plant defense [ J ]. Proceedings of the National Academy of Sciences of the USA, 2000, 97: 8849-8855.
    162. Kloeppel BD, Gower ST, Treichel IW et al. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison [ J ]. Oecologia, 1998, 114: 153-159.
    163. Kopyra M, Edward A, Gwozdz. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus [J ]. Plant Physiology and Biochemistry, 2003, 41: 1011-1017.
    164. Koshland DE. The Molecule of the Year [ J ]. Science, 1992, 258: 1861.
    165. Korner CH,Farquhar GD,Roksaudic Z. A global survey of carbon isotope discrimination in plants from high altitude [ J ]. Oecologia, 1988, 74: 623-632.
    166. Korner CH,Farquhar GD,Wong SC. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends [ J ].Oecologia, 1991,88:30-40.
    167. Kratsch HA, Wise RR. The ultrasturcture of chilling [ J ]. Plant, Cell and Environment. 2000, 23: 337~350.
    168. Kurkela S, Franck M. Cloning and characterization of a cold and ABA-inducible Arabidopsis gene. Plant Mol Biol, 1990, 15: 137~144.
    169. Lamattina L, Beligni MV, Garcia-Mata C et al. Method of enhancing the metabolic function and the growing conditions of plants and seeds. US Patent. US 6242384 B1, 2001.
    170. Laxalt AM, Beligni MV, Lamattina L. Nitric oxide preserves the level of chlorophyll in potato leaves infected by Phytophthora infestans[J]. European Journal of Plant Pathology, 1997, 103: 643~651.
    171. Leavitt S W, lara A. South American tree rings show δ~(13)C declining trend[J]. Tellus, 1994, 46(B): 152~157.
    172. Leidi GL, Berti GL, Giola Vet al. Orthotopic ileal neobladder: technical procedures and long~term follow-up[J]. Archivio Italiano di Urologica Andrologica, 1999, 71(3): 165~70.
    173. Leshem YY. Nitric oxide in plants. London, UK : Kluwer Academic Publishers, 2001.
    174. Leshem YY, Haramaty E, Iluz D et al. Effect of stress nitric oxide (NO): interaction between chlorophyll fluorescence, galactolipid fluidity and lipoxygenase activity[J]. Plant Physiology and Biochemistry, 1997, 35: 573~579.
    175. Leshem YY, Haramaty E. The characterisation and contrasting effects of the nitric oxide free radical in vegetative stress and senescence of Pisum sativum Linn. foliage[J]. Journal of Plant Physiology, 1996, 148: 258~263.
    176. Leshem YY, Wills RBH. Harnessing senescence delaying gases nitric oxide and nitrous oxide: a novel approach to postharvest control of fresh horticultural produce[J]. Biologia Plantarum, 1998, 41: 110~117.
    177. Leslie S.B, Israeli E, Lightart B et al. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying[J]. Appl Environ Microbiol. 1995, 61: 3592~3597.
    178. Li QB, Haskell DW, Guy CL. Coordinate and non-coordinate expression of the stress 70 family and other molecular chaperones at high and low temperature in spinach and tomato[J]. Plant Mol Biol, 1999, 39(1): 21~34.
    179. Li Zheng-hua, Leavitt SW, Mora CI et al. Influence of early wood-latewood size and isotope differences on long-term tree-ring δ~(13)C trends[J]. Chemical Geology, 2005, 216(3-4): 191~201.
    180. Li R, JJ Volenec, BC Joern et al. Seasonal changes in nonstructural carbohydrates, protein, and macronutrients in roots of alfalfa, red clover, sweetclover, and birtsfoot troil[J]. Crop Science, 1996, 36: 617~623.
    181. Lichtenthaler HK. Plastglobuli and fine structure of the plastids[J]. Endeavour, 1968, 27: 144~149.
    182. Mackerness SA-H, John CF, Jordan B et al. Early signaling components in ultraviolet~B responses: distinct roles for different reactive oxygen species and nitric oxide [ J ]. FEBS Letters, 2001, 489:237-242.
    183. Magalhaes JR, Monte DC, Durzan D. Nitric oxide and ethylene emission in Arabidopsis thaliana [ J ]. Physiology and Molecular Biology of Plants, 2000, 6: 117-127.
    184. Magalhaes JR, Pedroso MC, Durzan DJ. Nitric oxide, apoptosis and plant stresses [ J ]. Physiol Plant Mol Biol, 1999,5: 115-125.
    185. Makarovh M I, Kiseleva V V. Acidification and nutrient imbalance in forest soils subjected to nitrogen deposition [ J ].Water, Air, and Soil Pollution, 1995, 85:1137-1142.
    186. Marietta MA. Nitric oxide synthase structure and mechanism [ J ]. J Biol Chem, 1993, 268:12231-12234.
    187. Martin B, Thbrston YR. Stable carbon isotope composition (δ13C), water-use efficiency, and biomass productivity of Lycopersicon esculentum,L .pennellii and the F_1 hybird [ J ]. Plant Physio, 1988,88:213-217.
    188. Mata CG, Lamattina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress [ J ]. Plant Physiology, 2001, 126(3): 1196-1204.
    189. Matthew D. Smith, Donny D. Licatalosi, John E. Thompson. Co-association of cytochrome catabolites and plastid-lipid-associated protein with chloroplast lipid particles [ J ]. Plant Physiol, 2000, 124:211-222.
    190. McCarroll D, Pawellek F. Stable carbon isotope ratios of Pinus sylvestris From northern Finland and the potential for extraction a climate signal from long Fennoscandian chronologies [ J ]. The Holocene, 2001, 11:517-526.
    191. Murphy ME, Noack E. Nitric oxide assay using hemoglobin method [ J ]. Methods Enzymol, 1994,233: 240-250.
    192. Nagao M, Minami A, Arakawa K et al. Rapid degradation of starch in chloroplasts and concomitant accumulation of soluble sugars associated with ABA-induced freezing tolerance in the moss Physcomitrella patens [ J ]. Journal of Plant Physiology, 2005, 162: 169-180.
    193. Naidu SL, Sullivan JH, Teramura AH et al. The effects of UV-B radiation on photosynthesis of different aged needles in field-grown loblolly pine (Pinus taeda) [ J ] . Tree physiol, 1993, 12 (2):151-162.
    194. Nathan C, Xie QW. Nitric oxide synthase: roles tolls, and controls [ J ].Cell, 1994, 78: 915-918.
    195. Neill SJ, Desikan R, Clarke A et al. Nitric oxide is a novel component of abscisic acid signalling in stomatal guard cells [ J ]. Plant Physiology, 2002a, 128: 13-16.
    196. Neill SJ, Desikan R, Clarke A, et al. Hydrogen peroxide and nitric oxide as signalling molecules in
     plants[J]. Journal of Experimental Botany, 2002b, 53: 1237~1242.
    197. Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants[J]. New Phytologist, 2003, 159: 11~35.
    198. Neven LG, Haskell DW, Hofig A et al. Characterization of a spinaach gene responsive to low temperature and water stress[J]. Plant Mol Biol, 1993, 21: 291~305.
    199. Nicholas S, Quinton JC. Hydroxyl radical scavenging activity of compatible solutes[J]. Phytochemistry., 1989, 28: 1057~1060.
    200. Ninneman H, Maier J. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in phototcondition of Neurospora crassa[J]. Phototchem Photobiol, 1996, 64: 393~398.
    201. O'leary MH.Carbon isotope fractionation in plants[J]. Phytoehemistry, 1981, 20(4): 553~567.
    202. O'Leary MH.Carbon isotopes in Photosynthesis (fractionation techniques may reveal new aspects of carbon dynamics in plants)[J]. Bio Science, 1988, 38: 328~336.
    203. Olien CR & GE. Lester. Freeze-induced changes in soluble carbohydrote of rye[J]. Crop Science, 1985, 25: 288~290.
    204. Olien, CR & JL Clark. Changes in soluble carbohydrate composition of barley, wheat, and rye during winter[J]. Agronomy Journal, 1993, 85: 21~29.
    205. Osmond DP, Schmidt AM, Livingston NJ. Effect of UV-B radiation on the shoot dry matter production of stable carbon isotope compositon of two Arabidopsis thaliana genotypes[J]. Physiol Plant, 1997, 101: 497~502.
    206. Pagnussat GC, Lanteri ML, Lamattina L. Nitric Oxide and Cyclic GMP Are Messengers in the Indole Acetic Acid-Induced Adventitious Rooting Process[J]. Plant Physiology, 2003, 132: 1241~1248.
    207. Pagnussat GC, Simontacch IM et al. Nitric oxide is required for root organogenesis[J]. Plant Physiology, 2002, 129: 954-956.
    208. Pearman GI, Franeey RJ, Fraser PJ. Climatic implications of stable carbon isotopes in tree rings[J]. Nature, 1976, (260): 771~773.
    209. Pedroso MC, Durzan DJ. Effect of different gravity environments on DNA fragmentation and cell death in Kalanchoe leaves[J]. Annals of Botany, 2000a, 86: 983~994.
    210. Pedroso MC, Magalhaes JR, Durzan D. A nitric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues[J]. Journal of Experimental Botany, 2000b, 51: 1027~1036.
    211. Pedroso MC, Magalhaes JR, Durzan D. Nitric oxide induces cell death in Taxus cells[J]. Plant Science, 2000c, 157(2): 173~180.
    212. Polley HW, Johnson HB, Marino BD et al. Increase in C_3 plant water-use efficiency and biomass over glacial to present CO_2 concentrations[J]. Nature, 1993, 361: 61~63.
    213. Prasad TK. Role of catalase in inducing chilling tolerance inpre~emergent maize seedlings[J]. Plant Physiol., 1997, 114(4): 1369~1376.
    214. Rada F, Rcia NC, Boero C et al. Low-temperature resistance in Polylepis tarapacana, a tree growing at the highest altitudes in the world[J]. Plant Cell Environ., 2001, 24: 377~381.
    215. Rao MV, Davis K R. The physiology of ozone induced cell death[J]. Planta, 2001, 213: 682~690.
    216. Ribeiro EAJr, Cunha FQ, Tamashiro WMSC et al. Growth phase-dependent subcellular localization of nitric oxide synthase in maize cells[J]. FEBS Lett, 1999, 445: 283~286.
    217. Ristic Z, Ashworth FN. Changes in leaf ultrastructure and carbohydrates in Arabidopsis thaliana L. (Heyn)cv. Columbia during rapid cold acclimation[J]. Protoplasma. 1993, 172: 111~123.
    218. Rockel P, Strube F, Rockel A et al. Regulation of nitric oxide(NO) production by plant nitrate reductase in vivo and invitro[J]. J Exp Bot, 2002, 53(366): 103~11020.
    219. Ruan HH(阮海华), Shen WB(沈文飚), Ye MB(叶茂炳) et al. Protective effects of nitric oxide on salt stress~induced oxidative damage to wheat (Triticum aestivum L.) leaves[J]. Chinese Science Bulletin(科学通报), 2001, 46(23): 1993~1997.
    220. Saurer M,Sigenthaler U.The climate-carbon isotope relationship in tree rings and the significance of site conditions[J].Tellus B,1995,47(3): 320~330.
    221. Saurer M, Fuhrer J, Siegenthaler U. Influence of ozone on the stable carbon isotope composition, δ~(13)C of leaves and grain of spring wheat(Triticum aestivum L.)[J]. Plant Physiol, 1991, 97: 313~316.
    222. Scherer GFE, Holk A. NO donors mimic and NO inhibitors inhibitcytokinin action in betalaine accumulation in Amaranthus caudatus[J]. Plant Growth Regulation, 2000, 32: 345~350.
    223. Schleser GH, Jauasckera R. δ~(13)C-variations of leaves in forests as an indication of reassimilated CO_2 from the soil[J]. Oecologia, 1985, 65: 536~542.
    224. Stuiver M, Braziunas TE Tree cellulose ~(13)C/~(12)C isotopes and climate change[J]. Nature, 1987, 328: 58~60.
    225. Takahashi S, Yamasaki H. Reversible inhibition of photophosphorylation in chloroplasts by nitric oxide[J]. FEBS Letters, 2002, 512: 145~148.
    226. Tevini M, Steinmuller D. Composition and function of plastoglobuli. Ⅱ. Lipid composition of leaves and plastoglobuli during beech leaf senescence[J]. Planta, 1985, 163: 91~96.
    227. Thelin G, Rosengren-Brinck U, Niholgard B et al. Trends in needle and soil chemistry of Norway spruce and Scots Pine stands in South Sweden 1985-1994[J]. Environmental Pollution, 1998, 99: 149-158.
    228. Tschesche S. Unusual solution properties of proline and its interaction with proteins [ J ]. Biochemistry and Biophysics Acta, 1978, 541: 270-277.
    229. Tu J(屠洁), Shen WB(沈文飚), Xu LL(徐朗莱). Regulation of Nitric Oxide on the Aging Process of Wheat Leaves [ J ]. Acta Botanica Sinica(植物学报), 2003, 45(9): 1055-1062.
    230. Tun NN, Holk A, Scherer GFE. Rapid increase of NO release in plant cell cultures induced by cytokinin [ J ]. FEBS Letters, 2001, 509: 174-176.
    231. Volenec JJ, PJ Boyce & KL Hendershot. Carbohydrate metabolism in roots of Medicago sativa L. during winter adaptation and spring regrowth [ J ]. Plant Physiology, 1992, 96: 786-793.
    232. Vogel JC. Recycling of carbon in a forest environment [ J ]. Oecol Plant, 1978, 13: 89-94.
    233. Vranova E, Inze D, Van Breusegem F. Signal transduction during oxidative stress [ J ]. Journal of Experimental Botany, 2002, 53: 1227-1236.
    234. Waterhouse JS, Switsur VR, Barker AC et al. Northern European tree show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations [ J ]. Quaternary Sciences Reviews, 2004, 23: 803-810.
    235. Weigel HJ. Inhibition of photosynthetic reactions of isolated intact chloroplasts by cadmium [ J ]. J Plant Physiol, 1985, 119: 179-189.
    236. Wendehenne D, Pugin A, Klessig DF et al. Nitric oxide: comparative synthesis and signalling in animal and plant cells [ J ]. Trends in Plant Science, 2001, 6: 177-183.
    237. Wildt J, Kley D, Rockel A et al. Emission of NO from higher plants pecies [ J ]. Journal of the Geological Research, 1997, 102: 5919-5927.
    238. Winter K, Holthum J AM and Edwards GE et al. Effect of low relative humidity on 513C value in two C3 grasses and in paanicum milioides, a C3-C4 intermediate species [ J ]. Journal of experimental botany, 1982, 33(132): 88-91.
    239. Wojtaszek P. Nitric oxide in plants-To NO or not to NO [ J ]. Phyto chemistry, 2000, 54(1): 1-4.
    240. Wong SC, Cowan IR, Farquhar GD. Stomatal conductance correlates with photosynthetic capacity. Nature, 1979, 282: 424-426.
    241.Wray JL, Fido RJ. Nitrate reductase and nitrite reductase. In: Dey PM, Harbourne JB, eds. Methods in plant biochemistry, Vol. 3. Enzymes of primary metabolism. Lea PJ, ed. London: Academic Press, 1990, 241-256.
    242. Xua S, Li JL, Zhang XQ et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress [ J ]. Environmental and Experimental Botany, 2005, 5: 1-15.
    243. Yamasaki H,Sakihama Y.Simultaneous production of nitric oxide and peroxynitrite by plant
     nitrate reductase:in vitro evidence for the NR dependent formation of active nitrogen species[J]. FEBS Lett, 2000, 468(1): 89~92.
    244. Yamasaki H, Sakihama Y, Takahashi S. Analternative pathway for nitric oxide productionin plants: New features of an old enzyme[J]. Trends PlantSci., 1999, 4(4): 128~129.
    245. Yoshida M, Abe J, Moriyama M et al. Seasonal changes in the physical state of crown water associated with freezing tolerance in winter wheat[J]. Physiol Plant, 1997, 99(3): 363~370.
    246. Zhang H(张华), Shen WB(沈文飚), Xu LL(徐朗莱). Effects of Nitric Oxide on the Germination of Wheat Seeds and Its Reactive Oxygen Species Metabolisms Under Osmotic Stress[J]. Acta Botanica Sinica(植物学报), 2003, 45(8): 901~905.
    247. Zhang M, An L, Feng H. The cascade mechanisms of nitric oxide as a second messenger of ultraviolet B in inhibiting mesocotyl elongations[J]. Photochem Photobiology, 2003, 77: 219~225.
    248. Zhao L, Zhang F, Guo J. Nitric Oxide Functions as a Signal in Salt Resistance in the Calluses from Two Ecotypes of Reed[J]. Plant Physiology, 2004, 134: 849~857.
    249. Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought~induced abscisic acid synthesis in root tips of wheat seedlings. Aust J Plant Physiol, 2001, 28: 1055~1061.
    250. Zhou R, Zhao H. Seasonal pattern of antioxidant enzyme system in the roots of perennial forage grasses grown in alpine habitat, related to freezing tolerance[J]. Physiol Plant., 2004, 121: 399~408.
    251. Zimmerman JK, Ehleringer JR. Carbon isotope ratios are correlated with irradiance levels in the Panananian orchid Catasetum viridiflavum[J]. Oecologia, 1990, 83: 247~249.
    252. Zwiazek JJ, Ianusz J, Blake TJ et al. Effects of preconditioning on electrolyte leakage and lipid composition in black spruce(Picea mariana)stressed with polyethylene glycol[J]. Physiol Plant., 1990, 79: 71~77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700