用户名: 密码: 验证码:
液化天然气冷能利用技术研究及其过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源、环境问题已经日益成为制约我国经济可持续发展的一个瓶颈,为了优化能源结构,我国开始大力发展液化天然气(LNG)产业。由于LNG在气化时会释放出大量的冷能,因此,充分高效地利用LNG的冷能,有利于节约能源,创造巨大的经济效益。
     针对现有的LNG冷能发电技术发电量较小,能量利用效率较低等问题,本文考察了LNG直接膨胀工艺理论上的最大发电量、发电效率和火用效率。同时,通过对比五种LNG冷能的朗肯循环发电系统的混合工质。结果表明,在最小传热温差下,混合工质的复合冷凝曲线与LNG的气化曲线基本一致时,该系统的火用损失最小,其火用效率最高。
     针对我国众多的商品天然气含有大量的乙烷组分,本文设计了LNG冷能用于商品气轻烃回收工艺,该工艺具有较高的乙烷的回收率,与电压缩制冷工艺相比,该工艺的节电效益较好,具有较高的实际应用价值。同时采用火用分析法和图像火用分析方法(EUD),对该工艺的用能情况进行了分析,指出了该工艺的用能薄弱环节,为该工艺的优化奠定了理论基础。
     针对我国油田伴生气凝液回收工艺大多采用冷凝分离方法,其能耗较高,因此,本文提出了LNG冷能用于油田伴生气凝液回收工艺,该工艺可回收液态乙烷、LPG和轻油,凝液回收率高达96.8%;该工艺火用分析与图像火用分析的结果表明,与电压缩制冷工艺相比,本工艺的节电效率为65%的火用利用率为44.3%。技术经济分析结果表明,150×104Nm3/d的油田伴生气凝液回收工艺的投资回收期为2.25年,内部收益率为93.3%,本工艺具有较好的经济效益。
     目前的LNG冷能用于冷库技术不适用于LNG卫星站、不具备调峰功能。本文以丁烷为冷媒,开发了具有暂储冷特征和调峰功能的LNG冷能用于冷库工艺;采用火用分析法和图像火用分析方法(EUD),对该工艺进行了分析;结果表明,相对于电压缩制冷工艺,其节电效率为96%,火用效率为27.3%;技术经济分析结果表明,LNG冷能用于冷库工艺具有较好的经济效益。
     针对现有的废旧橡胶低温粉碎工艺能耗较高,自动化程度较低等问题,本文提出了以LNG冷能为冷源,空气为制冷介质,采用自控程度较高的流化床为关键设备的LNG冷能废旧橡胶低温粉碎工艺。研究结果表明,该工艺的能耗较低,每kg的废旧橡胶仅需耗电0.1kWh,相对于空气涡轮膨胀法可节电0.21 kW/kg(胶粉),节电效益约为67.7%。
     结合某接收站和卫星气化站的实际情况,本文分别提出了适用于某一LNG接收站和卫星气化站的LNG冷能集成利用工业实施方案,并对其分别进行了技术经济评价。研究结果表明,本文开发的LNG冷能集成利用工业实施方案即适用于某接收站和卫星气化站的实际情况,具有较高的LNG冷能利用率,同时,又具有较高的经济效益。
     在上述研究结果的基础上,按照“温度对口,梯级利用”的原则,本文将LNG冷能的高效集成利用与实际的工业环境有机结合,开发出了LNG冷能利用工艺软件。该软件可根据冷能用户的用冷需求和实际的工业环境,对各冷能用户的用冷需求自动进行匹配,并可对匹配结果进行简要的分析。
To overcome the problem of energy supply security and environment protect, China will import a lot of liquefied natural gas (LNG) from other countries. LNG is a cryogenic liquid, and it should be vaporized before supplied to the final consumers. During the vaporized process of LNG, it releases a great deal of cryogenic energy. Using the cryogenic energy of LNG, it could not only save a lot of electric power but also decrease the environmental impacts of LNG vaporization.
     Since the existing power generation processes with LNG cryogenic energy has small power generating capacity and low energy efficiencies, a direct expansion power generation process with LNG cryogenic is proposed. And its theoretical maximum capacity, power efficiency and exergy efficiency were carried out in this paper. At the same time, five mixtures are compared in the Rankine cycle power generation system. The results show that the system has minimal exergy loss and the high exergy efficiency, when the complex mixture condensation curves are basically the same as LNG gasification curves.
     Ethane is one of main components of the commercial natural gas in China. As ethane has a higher value than methane, ethane should be recovered from the commercial natural gas. The ethane recovery process from the commercial natural gas with LNG cryogenic energy utilization is proposed. The proposed process has high ethane recovery efficiency. Compared to the power compression refrigeration process, the proposed process can save a lot of electricity. The process was analyzed by the method of exergy analysis and the energy utilization diagram (EUD). The results can be used in the optimization of the process.
     The current electric refrigeration recovery process of natural gas liquids has high energy consume. A novel process to recovery natural gas liquids from oil field associated gas with LNG cryogenic energy utilization is proposed. The proposed process recovers ethane, liquid petroleum gas (propane and butane) and heavier hydrocarbons, with total recovery rate of natural gas liquids up to 96.8%. Compared to the current electric refrigeration process, the proposed process uses the cryogenic energy of LNG and saves 62.6% of electricity. In this paper, exergy analysis and the energy utilization diagram method (EUD) are used to assess the new process. The results show that exergy efficiency of the new process is 44.3%. Technical and economic analysis showed that, the investment recovery period is 2.25 years, and its internal rate of return is 93.3%, which its capacity is 150×104Nm3/d oil field associated gas.
     The current process of cold storage with LNG cryogenic energy does not have peaking function, and does not apply to the LNG satellite station. In this paper, a novel process of cold storage with LNG cryogenic energy utilization is proposed, which butane is selected as the refrigerant. Exergy analysis and the energy utilization diagram method (EUD) are used to assess the new process. The results show that the proposed process can saves 96% of electricity, and its exergy efficiency is 27.3%. Technical and economic analysis show shat the new process has a promising economic benefit.
     Since the current cryogenic grinding processes of waste rubber have high energy consumption, a novel cryogenic grinding process of waste rubber with LNG cryogenic energy utilization is proposed, which air is selected as the refrigerant. The results show that the new process has lower energy consumption, and it consumed 0.1 kWh electricity per kg waste rubber. Compared to the air turbine expansion process, the process can save 67.7% of electricity.
     According to the actual industrial environment of some LNG receive terminal and LNG satellite station, the integrated utilization programs of their LNG cryogenic energy were dividedly proposed. Their technical and economic analysis was carried out, and the results showed that these two programs have high efficiencies of cryogenic energy, and have a promising future.
     Based on these results, the software of LNG cryogenic energy utilization is developed in this paper. The software can automatically calculate out the cryogenic energy needs of every customer, and match the needs of every customer. Then, the software can simply analyze the results.
引文
[1] Pun-Lee Lam. The growth of Japan’s LNG industry: lessons for China and Hong Kong. Energy Policy[J]. 2000, 28: 327-333
    [2]华贲.利用海外LNG资源的战略思考[J].天然气工业. 2005,25(5):124-126
    [3]张抗.中国石油资源战略观[J].中国石油瞭望,2004(7): 51-52 [ 4 ]谭蓉蓉.我国实施首个LNG冷能利用空分项目[J].天然气工业.2006,26(3):61-64
    [5]李静,李志红,华贲. LNG冷能利用现状及发展前景[J].天然气工业, 2005, 25(5): 103-105
    [6] M.J. Rosetta, B.C. Price, L. Himmelberger. Optimize energy consumption for LNG vaporization [J]. Hydrocarbon Processing, 2006, 85(1): 57-64
    [7] S. Dharmadhikari. Optimize LNG Vaporizers [J]. Hydrocarbon Processing, 2004, 83(10): 95-99
    [8] S.P.B. Lemmers. LNG Receiving and Regasification Termincal Operations [J]. Hydrocarbon Processing, 2005, 84(7): 55-61
    [9] W.S. Worthington, B.S. Hubbard. Improved Regasification Methods Reduce Emissions [J]. Hydrocarbon Processing, 2005, 84(7): 51-54
    [10]吕俊,王蕾.浙江LNG项目汽化器选型及汽化系统的优化[C].第一届中国液化天然气论坛文集.深圳: 2006.6
    [11] Hongtan Liu, Lixin You. Characteristics and applications of the cold heat exergy of liquefied natural gas[J]. Energy Conversion & Management. 1999, 40: 1515-1525
    [12]朱刚,顾安忠.液化天然气冷能的利用[J].能源工程, 1999, 11(3): 1-2
    [13]石玉美,汪荣顺,顾安忠.液化天然气接收终端.石油与天然汽化工[J]. 2003, 32(1):14-17
    [14]谢杨,沈庆杨. ASPEN-PLUS化工模拟系统在精馏过程中的应用[J].化工生产与技术. 1999, 6(3):17-23
    [15]陆恩锡,张惠娟,尹清华.化工过程模拟及相关高新技术(I)-化工过程稳态模拟[J].化工进展.1999, 4(18): 63-64
    [16]赵琛琛.工业系统流程模拟利器-ASPEN-PLUS[J].电站系统工程. 2003,9(2): 56-58
    [17]徐文渊,蒋长安.天然气利用手册[M].中国石化出版社. 2002
    [18] N. Yamanouchi and H. Nagasawa. Using LNG cold for air separation [J]. Chemical Engineering Progress. 1979, 75(7): 78-82
    [19] Anon. Using LNG cold energy more efficiently [J]. Oil & Gas Journal. 1981, 78(11): 174-176
    [20] J.M. Bourguet. LNG cold: Still a problem [J]. Hydrocarbon Processing. 1981, 60(1): 167-172
    [21]王坤,顾安忠. LNG冷能利用技术及经济分析[J].天然气工业, 2004, 24(7):122-124
    [22]谢红飞.液化天然气汽化时冷能的利用方法[P].中国: CN1342879, 2004-9-22
    [23]陈则韶;程文龙.利用液化天然气冷能的空气分离装置[P].中国: CN1407303, 2004-12-1
    [24]薛鲁;江楚标.一种利用液化天然气的空气分离方法[P].中国: CN1789868, 2005-12-16
    [25]林福粦.回收液化天然气冷能的空气分离装置[P].中国: CN2766203, 2005-4-15
    [26]徐文东,钱宇,边海军,等.一种利用液化天然气冷能液相粉碎橡胶的方法及装置[P],中国: CN101579651, 2009
    [27]曹文胜,鲁雪生.回收液化天然气冷能用于冷库的制冷装置[P].中国: 200420114636.0, 2006-2-15
    [28]厉彦忠,王强,陈曦,王江.利用液化天然气冷能的汽车空调器[P].中国: CN100434292, 2008-11-19
    [29]陈则韶,程文龙,胡芃.一种利用液化天然气冷能半导体温差发电及制氢的装置[P].中国: CN2602186, 2004-2-4
    [30]黄美斌,林文胜,顾安忠,等. LNG冷能用于冷媒直接接触法海水淡化[J].化工学报. 2008, 59(S2): 204-209
    [31] Bai Feifei, Zhang Zaoxiao. Integration of low-level waste heat recovery and liquefied natural gas cold energy utilization [J]. Chinese journal of chemical engineering. 2008, 16(1): 95-98
    [32]熊永强,华贲.动力系统利用液化天然气冷能的节能减排分析[J].化工学报. 2009, 60(9): 2276-2283
    [33]卢涛,王奎升.液化天然气冷能回收混合动力循环参数分析[J].化工学报. 2008, 59(1): 1-5
    [34] Kotas TJ. The exergy method of thermal plant analysis [M]. Butterworths, London, 1985.
    [35]傅秦生.能量系统的热力学分析方法[M].西安交通大学出版社,西安.2005.
    [36] Ishida M, Kawamra K. Energy and exergy analysis of a chemical process system with distributed parameters based on the energy-direction factor diagram. Industrial Engineering & Chemistry Process Design and Development 1982; 21:690-702.
    [37] Jin H, Ishida M. Graphical exergy analysis of complex cycle. Energy 1993; 18:615-625.
    [38] Srinophakun T, Laowithayangkul S, Ishida M. Simulation of power cycle withenergy utilization diagram. Energy Conversion & Management 2001; 42:1437-1456
    [39]杨中文,张铸全,将景楠.化工技术经济分析[M].华东理工大学出版社,上海. 1991.
    [40]王威;蔡睿贤;张娜;利用LNG冷火用的CO2 Rankine循环方案探析[J].中国电机工程学报. 2003,23(8): 191-195
    [41] Yousef SH, Najjar. Enhancement of performance of gas turbine engines by inlet air-cooling and cogeneration cycle [J]. Journal of Applied Thermal Engineering. 1996, 16(2): 163-173
    [42]暨穗璘,彭艳.液化天然气(LNG)冷能用于冷却发电燃气轮机进气的冷却[J].能源技术. 2005, 26(4):182-184
    [43]王坤,鲁雪生,顾安忠.液化天然气冷能利用发电技术浅析[J].低温工程,2005,43(1): 53-58
    [44]游立新,顾安忠.液化天然气冷能火用特性及其应用[J].低温工程.1996 (3):6-11
    [45]朱文建,张同,王海华.液化天然气冷能利用的原理及方法[J].煤气与热力.1998, (3): 33-35
    [46]王强,厉彦忠,张朝昌.液化天然气(LNG)冷能回收及其利用[J].低温工程.2002, 128(4):38-42
    [47]程文龙,伊藤猛宏,陈则韶.一种回收液化天然气冷能的低温动力循环系统[J].中国科学技术大学学报. 1999, 29(6):671-676
    [48]赖元楷,罗东晓.统一天然气热值标准是中国天然气工业发展的需要[J].城市燃气, 2005, 364(6): 7-12
    [49]华贲,李明,罗东晓.制定中国天然气质量标准的紧迫性[J].天然气工业, 2005, 25(6): 128-131
    [50]徐正斌,王世清,乔志刚,等. LNG凝液回收技术经济浅析[J].天然气工业, 2005, 25(10):133-135
    [51] Yang C.C., Kaplan Al, Huang Zupeng. Cost-effective design reduces C2 and C3 at LNG receiving terminal [J]. Oil & Gas Journal. 2003, 101 (21): 50-53
    [52]钱伯章.天然汽化工技术现状与发展趋势[J].江苏化工,2004,32(5): 2-5
    [53]钱伯章.当代天然汽化工的技术进展[J].石油与天然汽化工,2001(6): 283-286
    [54]陶志华.对我国乙烯发展的几点思考[J].化工技术经济,2004,22(11): 7-10
    [55]华贲.利用海外LNG资源的战略思考[J].天然气工业,2005,25(5),124-127
    [56]肖增均,王振德,韩福忠.利用天然气配合进口乙烯发展我国乙烯产业的新思维[J].化工技术经济,2005, 23 (5): 21-25
    [57]袁晴棠.抓住机遇,加速发展我国乙烯工业[J].当代石油石化,2003, 11(2): 5-9
    [58] W. H. Marshall. Processing liquefied natural gas [P]. United States Patent, US2952984, 1960-09-20
    [59] Markbreiter Stephen J., Weiss Irving. Processing liquefied natural gas to deliver methane-enriched gas at high pressure [P]. United States Patent, US3837172, 1974-09-24
    [60] C.L. Rambo, John D. Wilkinson, Hank M. Hudson, Liquefied natural gas processing [P]. United States Patent, US5114451, 1992-05-19
    [61] Tamara L. Daugherty, Christopher F. Harris, Recompression cycle for recovery of natural gas liquids [P]. United States Patent, US 5588308, 1996-10-31
    [62] Kenneth Reddick,Noureddine Belhateche. Liquid natural gas processing [P]. United States Patent, US6604380B1, 2003-08-12
    [63] Scott Schroeder, Kenneth Reddick. Cryogenic liquid natural gas recovery process [P]. United States Patent, US6907752B2, 2005-07-21
    [64] Kenneth Reddick,Noureddine Belhateche. Liquid natural gas processing [P]. United States Patent, US6941771B2, 2005-09-13
    [65] George B. Narinsky. Process and apparatus for LNG enriching in methane [P]. United States Patent, US6986266B2, 2006-01-17
    [66] Eric Prim. System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas [P]. United States Patent, US7069743B2, 2006-07-04
    [67]熊永强,李亚军,华贲.液化天然气冷能利用与轻烃分离集成优化[J].现代化工. 2006(3): 50-53
    [68]高婷,林文胜,顾安忠.利用LNG冷能的轻烃分离高压流程[J].化工学报. 2009(60): 73-76
    [69]化工部第四设计院.深冷手册[M].燃料化学工业出版社, 1973:10-13.
    [70] F.S. Manning. Oil field Process of Petroleum [M], Vol.Ⅰ: Natural Gas. Tulsa, OK., Penn Well Books, 1991.
    [71] GPSA. Engineering Data Book[M]. 11 th Editon, Tulsa, OK., 1998.
    [72] Wang YD. Principles and processes of natural gas treatment[M]. China Petrochemical Press; 2007.
    [73]尹荣辅,卢涌.透平膨胀制冷回收轻烃有关问题的探讨[J].石油与天然气化工. 2000, 29(2): 59-63
    [74]金丽梅,董群,王德辉.天然气浅冷回收装置工艺优化[J].石油与天然气化工. 2005, 34(5): 17-20
    [75]金丽梅,董群,马成华,等.天然气轻烃回收装置工艺优化[J].化学工程师. 2006, 130(7): 47-50
    [76] Wang XK, Zhang H, Yan SR, et al. Big NGL recovering plant with advanced cryogenic technology[M]. Source: Tianranqi Gongye/Natural Gas Industry, 2003; 23(5):133-35
    [77] Aspen Technology, Inc., Aspen Plus?. version 11.1. http://www.aspentech.com.
    [78] China National Petroleum Corporation. Economic evaluation parameters of construction project in China National Petroleum Corporation (internal document) [S]. 2008.
    [79]余华明.冷库及冷藏技术[M].北京:人民邮电出版社,2003
    [80]徐扬禾.制冷系统及其原理[M].北京:航空工业出版社, 1993
    [81]李亚峰,游立新.液化天然气冷能火用特性研究.能量研究与利用.1997, 24(1):7-10
    [82]解焕民.制冷技术基础[M].北京:机械工业出版社, 1994
    [83]黄美斌,林文胜,顾安忠.利用LNG冷能的低温冷库流程比较[J].制冷学报. 2009, 30(4): 58-62
    [84]张树龙,焦琳,李秀娟,等.利用LNG气化站冷能的冷库系统研究[J].煤气与热力. 2007, 27(12): 15-17
    [85]杜琳琳,罗东晓,徐文东.南方地区冷库利用液化天然气冷能的技术研究[J].天然气工业. 2007, 27(6):115-117
    [86]盛青青,章学来,叶金,等.利用LNG冷能的冷冻冷藏库设计[J].能源技术. 2007, 28(6): 322-324
    [87]吴集迎,马益民,陈仕清. LNG冷能用于冷库的系统设计及分析[J].集美大学学报(自然科学版). 2010, 15(1): 44-47
    [88] Yukio Iwata.New Applications of LNG Cold Energy.LNG10, Poster, paper 20, Chicago, Illinois, USA.1992
    [89]徐文东,边海军,樊栓狮,等. LNG卫星气化站冷能利用技术[J].天然气工业, 2009, 29(5):112-114. [ 90 ] Scaffaro R, Dintcheva N Tzankova, Nocilla M A, etc. Formulation, characterization and optimization of the processing condition of blends of recycled polyethylene and ground tire rubber: Mechanical and rheological analysis[J]. Polymer Degradatiom and Stability, 2005,90(2): 281-287.
    [91]李岩,张勇,张隐西.废橡胶的国内外利用研究现状[J].合成橡胶工业, 2003, 26(1):59-61.
    [92]孙玉海,张培新,刘剑洪.胶粉的生产利用现状及前景分析[J].再生资源研究, 2004, (1): 24-27
    [93]荣慧,李南,李志强.废旧轮胎的回收与利用[J].北方环境, 2005, 30(1): 39-4
    [94]王学锋,刘茜霞.废轮胎热解资源化研究新进展[J].化工进展, 2001, 20(10):36-39
    [95]蒋家羚,刘小龙,刘宝庆.废轮胎热裂解设备的开发[J].化工进展, 2002, 21(9): 681-684
    [96]陆永其.国外废橡胶资源的利用概况[J].再生资源研究, 2005, (1): 16-19
    [97]所同川,李忠明.废橡胶回收利用新技术[J].江苏化工, 2004, 32(6): 1-6
    [98]刘超锋,杨振如.废橡胶制取细胶粉的技术开发及应用概况[J].上海塑料, 2005, 12(4): 23-26
    [99]何永峰,刘玉强.胶粉生产及其应用:废旧橡胶资源化新技术[M].北京:中国石化出版社,2001
    [100]吕百龄.废橡胶制品的回收利用[J].橡胶技术与装备, 2004,30(7): 16-19 [ 101 ] R. Scaffaro, N. Tzankova Dintcheva, M.A. Nocilla, etc. Formulation, characterization and optimization of the processing condition of blends of recycled polyethylene and ground tire rubber: Mechanical and rheological analysis[J]. Polymer Degradatiom and Stability, 2005, 90: 281-287
    [102] Li Shuyuan, Lamminm?ki Johanna, Hanhi Kalle. Improvement of mechanical properties of rubber componds using waste rubber/virgin rubber [J]. Polymer Engineering and Science, 2005, 45(9): 1239-1246.
    [103]寇丽华,魏清.精细胶粉的生产方法及现状[J].化工科技[J], 2007, 30(8):25-27.
    [104]中国橡胶工业协会.关于我国废旧橡胶综合利用的情况[J].中国橡胶.2004, 20(21):3-6.
    [105]韩秀山,丛慰然,张卫华.我国废旧橡胶利用[J].化工新型材料, 2001, 29(10):17–19.
    [106]所同川,李忠明.废旧橡胶回收利用新技术[J].江苏化工, 2004, 32(6):1-6
    [107] Walrod R A, Collins K D, Deghuee B J. Comminuting cryogenically embrittled feed stock particles - using shock waves generated by high voltage electrical discharges as the fracture mechanism[P]. US5758831-A.1998-01-02.
    [108]吴为民,苏航,许东卫等.低温脉冲放电粉碎废旧轮胎的研究[J].高电压技术.1997, 23(3):87-88.
    [109] Waznys P J, Meckert G W, Cialone A M. Comminuting rubber particles toproduce rubber powder, involves introducing rubber particles into comminuting device, concurrently introducing inert gas coolant into the comminuting device, and comminuting the rubber particles[P].US2006086838-A1.2006-04-27. US7108207-B2.2006-09-19.
    [110]梁焱,郭有仪,丁平.橡胶单颗粒低温冲击破碎的实验研究[J].低温工程, 2002, 32(5):34-40.
    [111]陈宝根.制取胶粉的空气循环冷冻工艺及其装置[P].CN:1141418A.1997 -01-29.
    [112]柯钢,高树武,李刚,等.一种用废旧轮胎制备胶粉的方法[P]. CN1262987A. 2000-08-16.
    [113]贾友祥,邓志明.空气制冷冷冻制取胶粉的方法和装置.CN1063546A, 2006-08-16.
    [114]王屏,刘思永.空气涡轮制冷低温粉碎法生产精细胶粉技术研究[J].制冷学报, 1998, 35(4):61-65.
    [115]王屏,刘思永.用废旧橡胶生产精细胶粉的空气涡轮制冷低温粉碎法[J].低温工程,1998,106(6):1-5.
    [116]李蒙沂,袁秀玲,田怀璋,等.用低温粉碎法生产精细胶粉技术的进展[J].低温与超导, 2001, 29(2):26-29.
    [117]乔武康,李静,张德坤等.利用天然气压力能的方法[P]. CN101245956A, 2008-08-20.
    [118]熊永强,华贲,罗东晓等.天然气管网压力能用于废旧橡胶粉碎的制冷装置[J].现代化工, 2005, 27(1):49-52.
    [119]熊永强,李亚军,华贲.液化天然气冷能利用的集成优化[J].华南理工大学学报, 2008, 26(3):20-25.
    [120]陈珍明.湿法碾磨制备废旧橡胶超细粉体的研究[J].孝感学院学报, 2007, 27(3):9-11.
    [121]何豪明,叶李青,张建军,等.冬季轮胎的开发及性能测试[J].轮胎工业. 2009, 25(29):30~35
    [122]何永峰,刘玉强.胶粉生产及其应用—废旧橡胶资源化技术[M].中国石化出版社,2001.
    [123] James E,Mark,et al.Physical Properties of Polymers [M].Washington, D.C.. American Chemical Society.1984
    [124]利帕托夫,涅斯捷罗夫等.聚合物物理化学手册[M].闫家宾等译.北京:中国石化出版社,1995
    [125]中国石化集团上海工程公司.化工工艺设计手册(上)[M].化学工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700