用户名: 密码: 验证码:
可变凸轮轴配气相位机构的测试及分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节约能源,控制有害排放,已成为内燃机技术发展的主导方向。传统气门驱动系统具有一定局限性,通常只能保证在某一工况优化发动机的性能,其凸轮型线在出厂时即已经固定,无法在运行过程中进行调节,它使得发动机的性能难以在各种工况下都达到优化。可变气门正时能够较好的满足发动机不同转速、负荷工况对于配气正时的不同要求,从而整体提高发动机综合性能,可变气门技术已成为衡量发动机性能的关键技术之一。
     本文在广泛参阅国内外研究及生产现状基础上,结合企业合作项目的实际情况,采用模型分析,仿真分析计算,设计制造,试验测试和整机试验相结合的研究模式,对可变凸轮轴配气相位器系统(VCT)进行了较为系统和深入的研究。主要研究工作可以概括如下:
     1.通过研究可变凸轮轴配气相位系统的工作机理,建立了可变凸轮轴配气相位系统的机、电、液、磁仿真模型,利用MATLAB\SIMULINK软件对系统进行仿真计算。揭示了相位器系统各结构参数及各种运行参数对其系统性能的影响规律,以便对相位器的设计制造提供可靠的参数和依据。
     2.通过对相位器液压部分的分析,研究了可变凸轮轴配气相位可能的泄漏情况,建立了系统泄漏的数学模型,对可能存在的内外泄漏进行计算,并对泄漏控制进行分析。通过对相位器系统的泄漏分析,揭示了系统各种间隙对其泄漏的影响,为相位器系统的设计制造提供可靠的参数和依据。
     3.在分析典型可变配气相位机构特点,剖析配气相位中影响发动机性能的各种可变因素的基础上,确定了基于凸轮轴调相的可变配气相位结构方案。通过仿真计算和借鉴国外的开发经验,设计了一套可变凸轮轴配气相位机构。分别从叶片、密封、锁止销和油道布置等方面对叶片式连续可变凸?轮相位器本体结构着重分析与选择,并阐述了进、排气相位器的不同设计考虑,明确了材料的选取原则。另外,对相位器的设计原则进行了详细阐述,指出设计相位器的要满足的技术关键。
     4.建立了可变配气相位器的试验测试系统,为可变相位器系统的深入研究及产品开发提供了有效的工具。针对液压油驱动VCT系统液力、机械结构具有非线性特征及系统时变性等特点提出了PID控制策略,研究表明,PID控制来说有较好的执行性能,提出的控制算法具有结构简单、实时性好、响应快等优点,较好的满足了VCT控制要求。并利用测试系统分析和探讨了相位器系统机构工作过程中参数的变化规律。测试系统采用电控,智能,集成的控制方式及友好的测试界面。
     5.对新研制的可变配气相位器在发动机上进行试验研究,完成对相位器本体系统进行最终的实机测试。结果显示,新研制得可变配气相位器可以满足发动机要求,表明为此研制的性能测试装置已经可以用于新开发的相位器性能检测。
Energy conservation and the control of harmful emissions have become the dominant direction in the development of internal combustion engine technology. Conventionally, the valve timing and lift have been fixed in use, optimized for the standard condition and circumstances. The valve timing of engine can’t be permitted variation during engine operation. So this valve drive system has certain limitations, which make engine performance in various conditions difficult to optimize. However variable valve timing(VVT) can better meet the different engine speed, load conditions and thereby improve overall engine performance for the allocation of gas is different requirements. VVT has become one of the key technologies.
     This dissertation investigates it on the basis of a host of reference, and combines the real situation of the subject. A comprehensive study pattern, the integration of analysis, simulation, design and production, unit test and experimental engine is applied to develop variable cam timing(VCT) system. Major research work can be summed up as follows:
     1. Through analysis of the whole system, a VCT mathematical model is set up, including mechanical, electrical, hydraulic and electromagnetic simulation mode. The influences of different working parameters and structure parameters of VCT are discussed by using the MATLAB/SIMULINK code with strong capability of engineering calculation and the number analysis. The effect of the systemic operational parameters and various parameters of VCT on its operation process is revealed. It can provide reliable parameter and data to the mechanical design and manufacture.
     2. Through analysis of the hydraulic system, the leakage of vane-type VCT mathematical model is set up. We carry out the forecasts and verifications of the influences that the various factors exert on the leakage flow. According to the study on leakage, the effect of various parameters of VCT on its operation process is revealed. It can provide reliable parameter and data to the mechanical design and manufacture.
     3. This dissertation analyzes the practical technology for VVT and the variable factors of VVT. The technology for VCT based on the camshaft phase shift theory is determined. Based on the simulation results and learning from foreign experience, VCT is designed. Through analysis of vane-type VCT, the sort and design are introduced about the structure such as vane, seal, lock pin and oil passage, and it is revealed that the different designs of the structure of intake and exhaust cam and the select of material. Furthermore, the design and key technique of VCT are primarily described.
     4. The measuring system is developed for VCT. For the problem of hydraulic pressure serving as the driving source of the VCT and the mechanism of the VCT have non-linear characteristics, the policy of PID control is suggested.Study indicates that the control arithmetic is simple in structure,good in real time capability,fast in response and preferably satisfies control request.By the testing systems, theVCT characteristics and parameters related to operation process of VCT can be analyzed. Electronic control, intelligent, integrated control and testing friendly interface is applied to the measuring system. Testing system is domestic initiative.
     5. Experiment study of VCT on SI engine is done. At the same time, it plays a final measuring of successful design. The results show that the new VCT can meet the requirements of engine and the measuring system can be used for performance testing of VCT.
引文
[1]王立彪,全可变气门机构闭环控制策略的实验研究,[硕士学位论文],天津;天津大学,2006
    [2]冯迎霞,俞水良.车用发动机可变气门驱动技术进展,机电工程技术,2005,34(1):22~25
    [3]贺玉海,汪志刚,发动机可变气门驱动的研究与进展,交通科技,2004,203(2):64~68
    [4]苏岩,李理光,肖敏等,国外发动机可变配气相位研究进展--机构篇,汽车技术,1999(6):10~14
    [5]李红艳,赵雨东,发动机无凸轮轴气门驱动的研究与进展,车用发动机,2001(4):1~5
    [6]严兆大,王希珍,李莉等,电磁控制全可变气门系统及其仿真,内燃机工程,2002(4):10~12
    [7]李志锐,舒歌群,无凸轮电液驱动气门配气机构技术的发展,拖拉机与农用运输车,2005(2):1~3
    [8]李红艳,发动机无凸轮轴气门驱动的研究与进展,车用发动机,2001,2(4):1~5
    [9] Diehl,Internal combustion engine, U. S. patent 6,701,879, Mar. 9, 2004
    [10]王希珍,电磁全可变气门的仿真控制及相关研究,[博士学位论文],浙江:浙江大学,2003
    [11]钟欣韩,复合凸轮可变气门正时机构之类型合成,[硕士学位论文],台湾省:国立中正大学,1989
    [12]李理光,苏岩,王云开等,液压张紧器式可变配气相位机构的设计与试验,内燃机学报,2002,20(4):345~349
    [13]钱人一,凸轮轴调节装置对汽油机节能和环保的贡献(上),汽车与配件,2003(46):22~46
    [14]钱人一,宝马全可变气门控制(Valvetronic)四缸机的电子控制,汽车与配件,2003(52):24~26
    [15] Kusano, et al., Apparatus for Controlling Valve Timing of Engine, U. S. patent 6,634,329, Oct. 21, 2003
    [16] Sato, et al., Valve Timing Adjust Device for Internal Combustion Engine, U. S. patent 6,532,921, Mar. 18, 2003
    [17] Mikame, et al., Valve Timing Control Apparatus for Internal Combustion Engine,U. S. patent 6,626,136, Sep. 30, 2003
    [18] Kondou, et al., Valve Control Apparatus and Method for Internal Combustion Engine, U. S. patent 6,755,165, Jun 29, 2004
    [19]宋良玉,广州本田雅阁轿车可变气门控制机构及其检修,汽车维修,2002(7):57~59
    [20] Jong-Cheol L.,The Application of a Lost Motion VVT System to a DOHC SI Engine,SAE Paper 950816
    [21] Flierl R., et al., The Third Generation of Valvetrains-New Fully Variable Valvetrains for Throttle-Free Load Control, SAE Paper 2000-01-1227
    [22]柯亚仕,蒋德明,可变气门定时研究的回顾与展望,车用发动机,1996 (1):30~34
    [23]邵显龙,可变配气机构的种类、构造和未来动向,汽车研究与开发, 2000(4):20~24
    [24] Shibano K et al., A Newly Developed Variable Valuing Mechanism with Low-Mechanical Friction, SAE Paper 920451
    [25] Takasuke Shikida, Development of the High Speed 2ZZ-GE engine, SAE Paper 2000-01-0617
    [26]苏岩,李理光,肖敏等,可变配气相位对发动机性能的影响,汽车技术,2000(10):10~14
    [27] Peterson, et al., Electronic valve actuator control system and method, U. S. patent 6,810,841, Nov. 2, 2004
    [28] Allen J., et al., Production Electro-Hydraulic Variable Valve-Train for a New Generation of I.C. Engines, SAE Paper 2002-01-1109
    [29]Yan Wang. Camless Engine Valvetrain: Enabling Technology and Control Techniques, UMI Number:3035386
    [30] Lenz H. P., Geringer B., Smetana G., and Dachs A., Initial Test Results of an Electro-Hydraulic Variable valve Actuation System on a Firing Engine, SAE Paper No.890678, 1989
    [31] Moriya Y., watanabe A., Uda H., et al., A Newly Developer Intelligent Variable Valve Timing System-Continuously Controlled Cam Phasing as Applied to a New 3 Liter Inline 6 Engines, SAE Paper No.960579,1996
    [32] Gould L., Richeson W., and Erickson F., Performance Evaluation of a Camless Engine Using Valve Actuation with Programmable Timing, SAE Paper NO.910450, 1991
    [33] Lancefield T. M., Gayler R.j., and Chattopadhay A., The Practical Application and Effects of a Variable Event Timing System, SAE Paper No.930825,1993
    [34] Pischinger M., Salber W.,Van Der stay F.,et al, Benefits of the ElectromechanicalValve Train in Vehicle Operatipn, SAE Paper NO. 2000-01-1223, 2000
    [35] Martin Scheidt, Timed to perfection - the variable cam timer: technology for clean exhausts and a greener environment, Engine technology international, 2001(3):62~65
    [36] Rainer Steinberg, Ingo Lenz, Guenther K?ehnlein et al., A fully continuous variable cam timing concept for Intake and exhaust phasing, SAE Paper No.980767
    [37]M. Astarita, A. Caraceni, V. Cioffi et al, virtual testing and design of experiments for functional validation of Cam Phaser Control, SAE Paper No.2004-01-0785
    [38]“舍弗勒与大学的约会”中国,演示材料-可变凸轮相位调节器(VCT),2005
    [39]乌尔里希·维尔,迈克·科尔斯,赖纳·奥特斯巴赫等,带有相对于曲轴调整凸轮轴旋转角度的液压装置的内燃机,中国专利,200410101168.8,2004-12-16
    [40]三瓶和久,饭田达雄,用于内燃机的可变配气定时机构,中国专利, 97111243.6,1997-04-04
    [41]古牧优作,内燃机的气门正时控制系统,中国专利,200410056305.0,2004-08-06
    [42]安德烈亚斯·施特劳斯,安德烈亚斯·罗尔,延斯·霍佩维克托·利希滕瓦尔德等,凸轮轴调整器,中国专利,200510072657.X,2005-05-16
    [43]井上敬仁,内燃机,中国专利, 03103508.6,2003-01-27
    [44]J·路易斯,具有提供液压延迟的曲折路径的可变凸轮轴定时锁销, 03122583.7,2003-04-21
    [45]东北大学《机械零件设计手册)编写组,机械零件设计手册,北京:冶金工业出版社,1994
    [46]蔡春源,机械零件设计手册第三版,北京:冶金上业出版社,1996
    [47]孙靖民,机械优化设计,北京:机械上业出版社,2000
    [48]张冠生,陆俭国,电磁铁与自动电磁元件,北京:机械工业出版社,1982
    [49]卢启龙,电控直列泵一管一阀嘴柴油喷射系统高速强力电磁阀的研究:[博士学位论文],北京:清华大学,1998.
    [50] Liyun Zheng, Jeremy Plenzler, Characterization of Engine Variable Cam Phaser Fluid Dynamics and Phaser’s Ability to Reject System Disturbances, SAE Paper No. 2004-01-1389
    [51] M. Astarita, A.Caraceni, V.Cioffi et al., virtual testing and design of experiments for functional validation of Cam Phaser Control, SAE Paper No.2004-01-0785
    [52]成大先主编,机械设计手册单行本液压传动,北京:化学工业出版社,2004
    [53]成大先主编,机械设计手册单行本液压控制,北京:化学工业出版社,2004
    [54]薛定宇,陈阳泉,基于matlab /simulink的系统仿真技术与应用,北京:清华大学出版社,2002
    [55]李树立,焦宗夏,叶片式摆动液压马达泄漏计算与控制,液压与气动,2005(11):67~68
    [56]许海洲,一种间隙密封叶片式摆动液压马达的泄漏控制,机床与液压,1998(1):55
    [57]蔡廷文,液压系统现代建模方法,北京:中国标准出版社,2002
    [58]陆元章,液压系统的建模与仿真,上海:上海交通大学出版社,1989
    [59]李永堂,雷步芳,高雨茁,建模与仿真,北京:冶金工业出版社,2003
    [60]P. Gaudino, A. Bianco, R. Fiorenza, M. Pirelli, Integration of a cam phaser on an engine to reduce fuel consumption: a comprehensive approach to the system, 2003 Fall Technical Conference of the ASME Internal Combustion Engine Division, Sep 7-11, 2003, 55~63
    [61]苏铁力等编,传感器及其接口技术,北京:中国石化出版社,1998
    [62]黄贤武等编,传感器原理与应用,北京:电子科技大学出版社,1999
    [63] A. Umut Genc, Keith Glover, Richard Ford. Nonlinear Control of Hydraulic Camshaft Actuators in Variable Cam Timing Engines, MECA International Workshop, 2001:49~54
    [64] Chang Wenxiu, Li Liguang, Tao Jianwu, et al., Design and Application of Fuzzy Control System of Engine Variable Valve Timing, Proceeding of IEEE International Vehicle Electronics Conference, 1999:26~29
    [65] Hajime Hosoya, Hidekazu Yoshizawa, Satoru Watanabeet al., Development of New Concept Control System for Valve Timing Control, SAE transactions, 2000(109):1431~1439
    [66] Frank Vollmer, Hubertus Murrenhoff, Hydraulic Linear Actuators with High Dynamic Load Stiffness,SAE transactions, 2002(111):528~535
    [67]陶永华,新型PID控制及其应用,北京:机械工业出版社,2002
    [68]王田苗,丑武胜编著,机电控制基础理论及应用,北京:清华大学出版社,2003
    [69]于长宫,现代控制理论及应用,哈尔滨:哈尔滨工业大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700