用户名: 密码: 验证码:
基于产量反应和农学效率的小麦推荐施肥方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合理推荐施肥是促进粮食高产、肥料高效的有效途径,而如何确定适宜的施肥量一直是施肥技术的核心和难点。本研究提出了将热带土壤肥力定量评价(Quantitative Evaluation of the Fertilityof Tropical Soils,QUEFTS)模型与改良的实地养分管理(Site-specific Nutrient Management,SSNM)技术相结合的小麦养分专家推荐施肥系统,其方法是在多年多点试验数据基础上,基于产量反应和农学效率进行施肥推荐。该方法不但满足了对不同大小田块推荐施肥的适用性,而且考虑了土壤基础养分供应量和N、P、K养分间的相互作用。与传统的测土施肥、植株营养诊断施肥等一系列测试技术和方法相比,本理论与技术具有时效性强、简便经济、易于掌握、适用广泛等优点,特别是在测土和植株诊断等条件不充分时采用本技术显得尤为重要。因此,基于产量反应和农学效率的推荐施肥系统是当前集约化农业生产条件下一种重要的施肥方法。
     本文在2000~2011年大量文献数据收集与已有试验数据库获取基础上,分析了当前中国小麦产量和养分吸收特征,运用QUEFTS模型模拟了一定目标产量下小麦地上部最佳养分吸收以及籽粒养分最佳移走量,评价了当前小麦产量与养分吸收特征,分析了基于产量反应和农学效率的小麦推荐施肥理论基础,建立了小麦养分专家系统,并进行两年的田间试验,验证其应用效果。研究获得的主要结论如下:
     (1)2000~2011年中国小麦平均产量为5950kg/ha,平均N、P2O5和K2O施用量分别为172、102和91kg/ha。冬小麦产量为<4.0、4.0~6.0、6.0~8.0、8.0~10.0和10.0~12.0t/ha所对应的生产每吨籽粒产量所需要的N养分分别为22.9、24.4、24.8、25.0和27.6kg,P养分分别为6.5、6.4、6.5、6.8和7.6kg,K养分分别为15.2、17.5、19.0、22.6、36.3kg。春小麦<4.0、4.0~6.0、6.0~8.0t/ha产量范围吨粮N养分吸收分别为24.3、25.4、27.0kg,P养分吸收分别为3.3、3.4和4.1kg,K养分吸收分别为49.8、32.3和17.3kg。
     (2) QUEFTS模型利用两条边界线描述了N、P和K养分的最小和最大养分内在效率。小麦N、P和K养分最小和最大养分内在效率分别为28.8和62.6kg籽粒/kg N,98.9和487.4kg籽粒/kg P,以及23.0和112.9kg籽粒/kg K。随着目标产量的增加,QUEFTS模型预估的作物养分平衡需求呈线性―抛物线―平台曲线。在产量潜力60%~70%范围内呈线性关系,此时生产1000kg籽粒所需要的N、P和K养分分别为22.8、4.4和19.0kg,对应的N:P:K比例为5.18:1:4.32,对应的氮、磷和钾养分内在效率分别为43.9、227.0和52.7kg籽粒/kg N、P和K;QUEFTS模型模拟的形成1000kg籽粒产量作物籽粒N、P和K养分最佳移走量分别为18.3、3.6和3.5kg,对应的N:P:K比例为5.08:1:0.97。约有80%、82%和18%地上部的N、P和K累积在籽粒中并被移出土壤。
     (3)土壤基础养分供应是表征土壤养分状况的重要参数,我国小麦产区土壤基础养分供应分别为122.6kg N/ha、38.0kg P/ha和120.2kg K/ha。产量反应是评价地力对施肥效应的重要指标,农学效率是反映施肥增产效应的重要参数。我国小麦产区施氮、磷和钾肥的产量反应平均分别为1.67、1.00和0.80t/ha,氮、磷和钾肥农学效率平均分别为9.4、10.2和6.5kg/kg。不施氮、磷和钾肥的相对产量分别为0.76、0.85和0.90。相对产量数值可以用于对土壤基础养分供应强度的分级。土壤基础N养分供应低、中、高级别所对应的相对产量参数分别为0.60、0.77和0.88;土壤基础P养分供应低、中、高级别所对应的相对产量参数分别为0.79、0.87和0.93;土壤基础K养分供应低、中、高级别所对应的相对产量参数分别为0.84、0.90和0.94。
     (4)产量反应和土壤速效养分之间存在显著负相关关系,和土壤基础养分供应之间存在显著负指数关系,和相对产量之间存在显著负线性关系。产量反应(x)和农学效率(y)之间存在显著一元二次函数关系。N产量反应(xN)与N农学效率(yN)之间函数关系为:y_N=-0.3729x_N~2+6.1333x_N+0.1438(R~2=0.76, n=601),P产量反应(x_P)与P农学效率(y_P)之间关系为:y_P=-0.5013x_P~2+8.3209x_P~2+2.3907(R=0.65, n=288),K产量反应(x_K)与K农学效率(y_K)之间关系为:y_K=-1.6581x_K~2+9.099x_K+0.7668(R~2=0.58, n=379)。上述相关性是基于产量反应和农学效率进行推荐施肥的重要理论基础。
     (5)田间试验结果表明,QUEFTS模型可以用于预估一定目标产量下N、P和K养分最佳需求量,表征籽粒产量与养分吸收之间的关系。基于产量反应和农学效率的小麦养分专家施肥推荐与农民习惯相比,降低了7.6%~55.8%的氮肥用量,调整了磷肥和钾肥用量,使小麦产量增加了0.1%~4.3%,纯收益增加了533~1734元/ha,氮、磷和钾肥农学效率以及回收率多表现出增加趋势或达显著水平。基于产量反应和农学效率的小麦养分专家系统作为一种可供选择的推荐施肥方法在理论支撑和技术实践上是可行的,可以在中国小麦产区进行施肥推荐。
The inappropriate application of fertilizer has become a common phenomenon in wheat plantingsystem in China and has led to nutrient imbalances, inefficient use and large losses to the environment.Having access to a science-based fertilizer recommendation is critical for improvement of fertilizer useefficiency in high yielding crops. However, how to establish fertilizer recommendation suitable forsmall-holder farmers remains a challenge. This paper described a new fertilizer recommendationmethod named Nutrient Expert for Wheat decision support system based on yield response andagronomic efficiency using datasets from2000to2011. This system applies Site-specific NutrientManagement (SSNM) principles, which includes the use of the Quantitative Evaluation of the Fertilityof Tropical Soils (QUEFTS) model to determine crop nutrient uptake for a specific yield. Fertilizerrecommendation based on yield response and agronomic efficiency is an alternative approach developedfor use, which meets the adaptability of different sizes of field plots and considers the soil indigenousnutrient supply and N, P and K interactions. This methodology has the advantages of good timeliness,simple and economical, and easy to master and widely to apply, especially when soil testing and plantdiagnosis technology are not available. It is believed that Nutrient Expert for wheat decision supportsystem will become the popular method of fertilizer recommendation in China. The results of this studyshowed as follows.
     (1) The statistic of data from all experiments showed that the grain yield was averaged at5950kg/ha,the rates of N, P2O5, and K2O fertilizer application were172kg N/ha,102kg P2O5/ha, and91kgK2O/ha, respectively. At the yield ranges of <4,4~6,6~8,8~10, and10~12t/ha, the N requirementfor per ton of grain yield for winter wheat were22.9,24.4,24.8,25.0, and27.6kg, and P were6.5,6.4,6.5,6.8, and7.6kg, and K were15.2,17.5,19.0,22.6, and36.3kg, respectively. However, forspring wheat at the yield ranges of <4,4~6, and6~8t/ha, N for per ton of grain yield required were24.3,25.4, and27.0kg, P were3.3,3.4, and4.1kg, and K were49.8,32.3, and17.3kg,respectively.
     (2) In the QUEFTS model, two boundary lines described the minimum and maximum internalefficiencies (IEs, kg grain per kg nutrient in above-ground plant dry matter) of N, P and K. Theminimum and maximum IEs for wheat were28.8and62.6kg grain per kg N,98.9and487.4kggrain per kg P, and23.0and112.9kg grain per kg K. The QUEFTS model predicted alinear-parabolic-plateau curve for balanced nutrient uptake with target yield increasing. The linearpart continued until the yield was approximately at60%~70%of the potential yield, and22.8kg N,4.4kg P and19.0kg K were required to produce1000kg grain. The corresponding N:P:K ratio was5.18:1:4.32, and the corresponding IEs were43.9,227.0and52.7kg grain per kg N, P and K,respectively. The QUEFTS model simulated balanced N, P and K removal by1000kg grain were18.3,3.6and3.5kg, respectively, with a N:P:K ratio of5.08:1:0.97. Approximately80%,82%and18%of N, P and K in total above-ground plant material were presented in the grain and removedfrom the field. (3) The soil indigenous nutrient supply is an important parameter to characterize the soil nutrient status,the yield responses to N, P and K are most important indices for evaluation of fertilizer effect indifferent soil fertility, and the agronomic efficiency is a most important parameter to evaluate theyield increase by fertilizer application. The result showed that the average soil indigenous nutrientsupplies in China were122.6kg N/ha,38.0kg P/ha, and120.2kg K/ha, respectively. The meanyield responses of wheat to N, P and K were1.67,1.00and0.80t/ha. The mean agronomicefficiency values of N, P, and K were9.4,10.2, and6.5kg/kg, respectively. The mean relative yieldof N, P and K were0.76,0.85and0.90. The relative yield could be used to classify the soilindigenous nutrient supply. The values of relative yield for N were0.60,0.77and0.88for low,medium, and high indigenous N supply, respectively. The values of relative yield for P were0.79,0.87and0.93for low, medium, and high indigenous P supply, respectively, and values of relativeyield for K were0.84,0.90and0.94for low, medium, and high indigenous K supply, respectively.
     (4) There was a significant negative relationship between yield response and soil available nutrient, andsignificant negative exponential relationship between yield response and indigenous nutrient supply,and a significant negative linear correlation between yield response and relative yield. It was alsodemonstrated a quadratic equation between yield response (x) and agronomic efficiency (y)(P<0.05). The relationship between yield response and agronomic efficiency for N wasyN=-0.3729x_N~2+6.1333xN+0.1438(R~2=0.76, n=601), for P was y_P=-0.5013x_P~2+8.3209x_P+2.3907(R~2=0.65, n=288), and for K was y_K=-1.6581x_K~2+9.099x_K~2+0.7668(R=0.58, n=379). Theseequations were all incorporated as part of the Nutrient Expert for Wheat fertilizer recommendationdecision support system.
     (5) Field validation based on Nutrient Expert for Wheat confirmed that the QUEFTS model could beused as a practical tool for this decision support system to make fertilizer recommendation. Alsomultiple field experiments helped to validate the feasibility and showed that fertilizerrecommendation based on yield response and agronomic efficiency could reduce the N fertilizerapplication by7.6%~55.8%, and adjust the P and K fertilizer, the gain yield increased by0.1%~4.3%, and net profit was improved by522~1734yuan/ha. The agronomic efficiency andrecovery efficiency of N, P and K mainly showed a trend to increase or were improved significantly.It concluded that Nutrient Expert for Wheat could be used as an alternative method to makefertilizer recommendations in China.
引文
1.白由路,杨俐苹.我国农业中的测土配方施肥[J].土壤肥料,2006(2):3-7.
    2.曾长立,王兴仁,陈新平,等.冬小麦氮肥肥料效应模型的选择及其对推荐施氮效果的影响[J].江汉大学学报,2000,17(3):9-13.
    3.陈德立,朱兆良.稻田土壤供氮能力的解析研究[J].土壤学报,1988,25(3):262-267.
    4.陈范骏,米国华,张福锁,等.华北区部分主栽玉米杂交种的氮效率分析[J].玉米科学,2003,11(2):78-82.
    5.陈欣,张庆忠,鲁彩艳,等.东北一季作农田秋末土壤中无机氮的累积[J].应用生态学报,2004,15(10):1887-1890.
    6.陈新平,李志宏,王兴仁,等.土壤、植株快速测试推荐施肥技术体系的建立与应用[J].土壤肥料,1999(2):6-10.
    7.陈新平,张福锁.小麦―玉米轮作体系养分资源综合管理理论与实践[M].中国农业出版社,北京.2006a.
    8.陈新平,张福锁.通过―3414‖试验建立测土配方施肥技术指标体系[J].中国农技推广,2006b,22(4):36-39.
    9.陈新平,周金池,王兴仁,等.应用土壤无机氮测试进行冬小麦氮肥推荐的研究[J].土壤肥料,1997,(5):19-21.
    10.陈志超,田长彦,马英杰,等.应用土壤无机氮测试进行棉花氮肥推荐研究[J].棉花学报,2006,18(4):242-247.
    11.崔振岭.华北平原冬小麦夏玉米轮作体系优化氮肥管理―从田块到区域尺度[D].中国农业大学博士学位论文,2005.
    12.党红凯,李瑞奇,李雁鸣,等.超高产栽培条件下冬小麦对磷的吸收、积累和分配[J].植物营养与肥料学报,2012,18(3):531-541.
    13.董文旭,吴电明,胡春胜,等.华北山前平原农田氨挥发速率与调控研究[J].中国生态农业学报,2011,19(5):1115-1121.
    14.渡边和彦.作物营养元素缺乏与过剩症的诊断与对策[M].罗小勇译.日本:日本种苗株式会社,1999.
    15.杜连凤,吴琼,赵同科,等.北京市郊典型农田施肥研究与分析[J].中国土壤与肥料,2009(3):75-78.
    16.高凤友.玉米测土配方施肥应用技术的基础研究-以赤峰市松山区为例[D].中国农业科学院硕士学位论文,2007.
    17.高伟,金继运,何萍,等.我国北方不同地区玉米养分吸收及累积动态研究[J].植物营养与肥料学报,2008,14(4):623-629
    18.郭建华,王秀,陈立平,等.快速获取技术在小麦推荐施肥中的应用[J].土壤通报,2010,41(3):664-667.
    19.贺帆,黄见良,崔克辉,等.实时实地氮肥管理对水稻产量和稻米品质的影响[J].中国农业科学,2007,40(1):123-132.
    20.何萍,金继运,等著.集约化农田节肥增效理论与实践[A].北京:科学出版社,2012a.
    21.何萍,金继运, Pampolino M.F.,等.基于产量反应和农学效率的推荐施肥新方法[J].植物营养与肥料学报,2012b,18(2):499-505.
    22.侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004,35(4):493-501.
    23.侯彦林.―生态平衡施肥‖的理论基础和技术体系[J].生态学报,2000,20(4):653-658.
    24.侯彦林,郭喆,任军.不测土条件下半定量施肥原理和模型评述[J].生态学杂志,2002,21(4):31-35.
    25.胡春胜,董文旭,张玉铭,等.华北山前平原农田生态系统氮通量与调控[J].中国生态农业学报,2011,19(5):997-1003.
    26.胡明芳,田长彦,马英杰,等.土壤/植株硝态氮含量与棉花产量及其相关因素之间的关系[J].西北农业学报,2002,11(3):128-131.
    27.姬兴杰,于永强,张稳,等.近二十年中国冬小麦收获指数时空格局[J].中国农业科学,2010,43(17):3511-3519.
    28.贾良良,陈新平,张福锁.作物氮营养诊断的无损测试技术[J].世界农业,2001(6):36-37.
    29.贾良良,寿丽娜,李斐,等.遥感技术在植物氮营养诊断和推荐施肥中的应用之研究进展[J].中国农学通报,2007,23(12):396-401.
    30.姜文彬,杨铁成,单文波.玉米诊断施肥技术的研究与应用[J].吉林农业大学学报.1986,8(4):62-68.
    31.金耀青.配方施肥的方法及其功能对我国配方施肥工作的评述[J].土壤通报,1989,20(1):46-49.
    32.巨晓棠,潘家荣,刘学军,等.高肥力土壤冬小麦生长季肥料氮的去向研究Ⅰ冬小麦生长季肥料氮的去向[J].核农学报,2002,16(6):397-402.
    33.雷咏雯,危常州,冶军,等.计算机辅助叶色分析进行棉花氮素营养诊断的初步研究[J].石河子大学学报:自然科学版,2004,22(2):113-116.
    34.李刚.田块尺度下春玉米养分资源综合管理技术研究[D].吉林农业大学硕士学位论文,2008.
    35.李鑫.华北平原冬小麦-夏玉米轮作体系中肥料氮去向及氮素气态损失研究(D).河北农业大学.2007.
    36.李志宏,刘宏斌,张云贵.叶绿素仪在氮肥推荐中的应用研究进展[J].植物营养与肥料学报,2006,12(1):125-132.
    37.李志宏,张福锁,王兴仁.我国北方地区几种主要作物氮营养诊断及追肥推荐研究Ⅱ植株硝酸盐快速诊断方法的研究[J].植物营养与肥料学报,1997,3(3):268-272.
    38.李映雪,朱艳,曹卫星.不同施氮条件下小麦冠层的高光谱和多光谱反射特征[J].麦类作物学报,2006,26(2):103-108.
    39.李宗新,董树亭,王空军,等.不同施肥条件下玉米田土壤养分淋溶规律的原位研究[J].应用生态学报,2008,19(1):65-70.
    40.刘洪见.图像处理技术在获取夏玉米冠层信息和氮肥诊断中的应用[D].中国农业大学硕士学位论文,2005.
    41.刘建刚,王宏,石全红,等.基于田块尺度的小麦产量差及生产限制因素解析[J].中国农业大学学报,2012,17(2):42-47.
    42.刘金山.水旱轮作区土壤养分循环及其肥力质量评价与作物施肥效应研究[D].华中农业大学博士学位论文,2011.
    43.刘文通,刘声元,郝景发.长春地区诊断施肥量计算公式中几个参数的探讨[J].土壤通报,1984,15(3):117-120.
    44.刘芷宇.植物营养诊断的回顾与展望[J].土壤,1982,24(1):173-175.
    45.鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社.1998.
    46.吕晓男.施肥模型的发展及其应用[A].中国土壤学会.迈向21世纪的土壤科学(浙江省卷)[C].北京:中国环境科学出版社,1999,164-166.
    47.马文奇.山东省作物施肥现状、问题与对策[D].中国农业大学博士学位论文,1999.
    48.毛振强.基于田间试验和作物生长模型的冬小麦持续管理研究[D].中国农业大学博士学位论文,2003.
    49.农牧渔业部农业局.配方施肥技术工作要点[J].土壤肥料,1987,(1):6-12.
    50.裴雪霞,王秀斌,何萍,等.氮肥后移对土壤氮素供应和冬小麦氮素吸收利用的影响[J].植物营养与肥料学报,2009,15(1):9-15.
    51.仇少君,赵士诚,苗建国,等.氮素运筹对两个晚稻品种产量及其主要构成因素的影响[J].植物营养与肥料学报,2012,18(6):1326-1355.
    52.沙之敏.冬小麦、夏玉米氮素优化管理研究[D].河北农业大学硕士学位论文,2010.
    53.沙之敏,边秀举,郑伟,等.最佳养分管理对华北冬小麦养分吸收和利用的影响[J].植物营养与肥料学报,2010,16(5):1049-1055.
    54.苏昌龙,王毅.超级稻栽培中后期应用―水稻比色卡‖的效果简报[J].耕作与栽培,2006(6):29-30.
    55.谭昌伟,郭文善,朱新开,等.不同条件下夏玉米冠层反射光谱响应特征的研究[J].农业工程学报,2008,24(9):131-135.
    56.唐近春.中国土壤肥料工作的成就与任务[J].土壤学报,1994,31(4):341-347.
    57.伍素辉,程见尧,刘景福.氨基态氮作为棉花氮营养诊断指标的研究[J].中国棉花,1991(2):29-30.
    58.肖焱波,金航,段宗颜,等.滇中粮食高产区基于土壤Nmin测试下小麦氮肥推荐的研究[J].中国土壤与肥料,2006,3:21-23.
    59.徐新朋.基于产量反应和农学效率的玉米推荐施肥方法研究[D].中国农业科学院硕士学位论文,2012.
    60.薛利红,杨林章,沈明星.缺素对小麦冠层反射光谱的影响[J].麦类作物学报,2006,26(6):120-124.
    61.王纯枝,李良涛,陈健,等.作物产量差研究与展望[J].中国生态农业学报,2009,17(6):1283-1287.
    62.王激清.我国主要粮食作物施肥增产效应和养分利用效率的分析与评价[D].中国农业大学博士学位论文,2007.
    63.王红娟.我国北方粮食主产区土壤养分分布特征研究[D].中国农业科学院博士学位论文,2007.
    64.王秀斌,周卫,梁国庆,等.优化施肥条件下华北冬小麦/夏玉米轮作体系的土壤氨挥发[J].植物营养与肥料学报,2009,15(2):344-351.
    65.闫湘,金继运,何萍,等.提高肥料利用率技术研究进展[J].中国农业科学,2008,4(2):450-459.
    66.闫湘.我国化肥利用现状与养分资源高效利用研究[D].中国农业科学院博士学位论文.2008.
    67.吴建国.冬小麦地上部分不同器官干物质、氮磷积累、分配特点的初步分析[J].河南农学院学报,1981,(2):26-31.
    68.易琼.麦-稻作物系统氮素优化管理技术研究[D].中国农业科学院硕士学位论文,2011.
    69.鱼欢,邬华松,王之杰.利用SPAD和Dualex快速、无损诊断玉米氮素营养状况[J].作物学报,2010,36(5):840847.
    70.于峰.计算机图像处理技术在植物N营养诊断中的应用及其软件开发[D].中国农业大学硕士论文,2003.
    71.于亮,陆莉.冬小麦氮素营养诊断的研究进展[J].安徽农业科学,2007,32(10):2861-2863.
    72.于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践[J].作物学报,2002,28(5):577-585.
    73.张大光,刘武仁,边秀芝,等.玉米测土施肥中几个主要参数及其应用的研究[J].吉林农业科学,1987,(1):58-63.
    74.张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924.
    75.张宏彦,陈清,李晓林,等.利用不同土壤Nmin目标值进行露地花椰菜氮肥推荐[J].植物营养与肥料学报,2003,9(3):342-347.
    76.张金恒,王珂,王人潮.叶绿素计SPAD-502在水稻氮素营养诊断中的应用[J].西北农林科技大学学报(自然科学版),2003,31(2):177-180.
    77.张宽,赵景云,王秀芳,等.黑土供磷能力与磷肥经济合理用量问题的初步研究[J].土壤通报,1984,(3):120-123.
    78.张绍林,朱兆良,徐银华,等.关于太湖地区稻麦上氮肥的适宜用量[J].土壤,1988,20(1):5-9.
    79.张永帅.基于Nmin的棉田氮素养分实时监测和推荐施肥技术研究[D].新疆石河子大学硕士学位论文,2007.
    80.张云贵,刘宏斌,李志宏,等.长期施肥条件下华北平原农田硝态氮淋失风险的研究[J].植物营养与肥料学报,2005,11(6):711-716.
    81.赵士诚,裴雪霞,何萍,等.氮肥减量后移对土壤氮素供应和夏玉米氮素吸收利用的影响[J].植物营养与肥料学报,2010,16(2):492-497.
    82.赵士诚,何萍,仇少君,等.相对SPAD值用于不同品种夏玉米氮肥管理的研究[J].植物营养与肥料学报,2011a,17(5):1091-1098.
    83.赵士诚,沙之敏,何萍.不同氮素管理措施在华北平原冬小麦上的应用效果[J].植物营养与肥料学报,2011b,17(2):517-524.
    84.赵同科,张成军,杜连凤,等.环渤海七省(市)地下水硝酸盐含量调查[J].农业环境科学学报,2007,26(2):779-783.
    85.中国农业标准汇编(土壤肥料卷)[M].中国标准出版社,1998.
    86.中国农业科学院土壤肥料研究所.中国化肥区划[M].北京:中国农业科技出版社,1986.
    87.中国农业年鉴.中国农业出版社,北京.2010.
    88.中国土壤学会.土壤和植株测试方法[M].中国农业科技出版社,2000.
    89.周鸣铮.中国的测土施肥[J].土壤,1987,(1):7-13.
    90.朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系[J].2006,26(10):3463-3469.
    91.朱兆良.关于稻田土壤供氮量的预测和平均适宜施氮量的应用[J].土壤,1988,20(2):57-61.
    92.朱兆良.农田中氮肥的损失与对策[J].土壤环境,2000,9(1):1-6.
    93.朱兆良.我国氮肥的使用现状、问题和对策.见:李庆逵,朱兆良,于天仁.中国农业持续发展中的肥料问题[M].南京:江苏科学技术出版社,1998,38-51.
    94.朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    95.朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):780-790.
    96.朱兆良,文启孝.中国土壤氮素[M].江苏科技出版社,1992,220-282.
    97.朱兆良,张绍林,徐银华.平均适宜施氮量的含义[J].土壤,1986,18(6):316-317.
    98. Bailey J.S., Dils R.A., For R.H., et al. The diagnosis and recommendation integrated system (SRIS)for diagnosing the nutrient status of grassland swards: Ⅲ Practical application [J]. Plant and Soil,2000,222:255-262.
    99. Bangar A.R. Fertilization of sorghum based on modified mitscherlich-bray equation undersemi-arid tropics [J]. Journal of the Indian Society of Soil Science,1998,46:383-391.
    100. Blackmer T.M., Schepers J.S. Use of a chlorophyll meter to monitor nitrogen status and schedulefertigation for corn [J]. Journal of Production Agriculture,1995,8:56-60.
    101. Buresh, R.J. The SSNM concept and its implementation in rice [A]. In: IFA Crossroad Asia-PacificConference [C],8-10December,2009, Kota Kinabalu, Malaysia.
    102. Buresh R.J., Pampolino M.F., Witt C. Field-specific potassium and phosphorus balances andfertilizer requirements for irrigated rice-based cropping systems [J]. Plant and Soil,2010,335:35-64.
    103. Buresh R.J., Witt C. Site-specific nutrient management [A]. In: Proceedings of the IFAInternational Workshop on Fertilizer Best Management Practices [C],7-9March2007, Brussels,Belgium. International Fertilizer Industry Association, Paris,47-55.
    104. Chandrasekhra R.K., Riazuddin A. Soil test based fertilizer recommendation for maize growninnceptisols of Jagtiyal in andhra pradesh [J]. Journal of the Indian Society of Soil Science,2000,48:84-89.
    105. Chen X.P. Optimization of the N fertilizer management of a winter wheat/summer maize rotationsystem in the Northern China Plain [D]. Ph. D. Dissertation, University of Hohenheim, Stuttgart,Germany,2003.
    106. Chuan L.M., He P., Jin J.Y., et al. Estimating nutrient uptake requirements for wheat in China [J].Field Crops Research,2013a,146:96-104.
    107. Chuan L.M., He P., Pampolino M.F., et al. Establishing a scientific basis for fertilizerrecommendations for wheat in China: yield response and agronomic efficiency [J]. Field CropsResearch,2013b,140:1-8.
    108. Cruz M.R., Moreno O.H. Wheat yield response models to nitrogen and phosphorus fertilizer forrotation experiments in the northwest of Mexico [J]. Cereal Research Communications,1996,24:239-245.
    109. Cui Z.L., Zhang F.S., Chen X.P., et al. On-farm evaluation of an in-season nitrogen managementstrategy based on soil Nmin test [J]. Field Crops Research,2008a,105:48-55.
    110. Cui Z.L., Zhang F.S., Chen X.P., et al. On-farm estimation of indigenous nutrient supply forsite-specific nitrogen management in the North China plain [J]. Nutrient Cycling inAgroecosystems,2008b,81:37-47.
    111. Das D.K., Maiti D., Pathak H. Site-specific nutrient management in rice in Eastern India using amodeling approach [J]. Nutrient Cycling in Agroecosystems,2009,83:85-94.
    112. Dobermann A. Nutrient use efficiency, measurement and management [A]. In: IFA InternationalWorkshop on Fertilizer Best Management Practices [C].7-9March2007, Brussels, Belgium.International Fertilizer Industry Association, Paris.
    113. Dobermann A., Cassman K.G. Plant nutrient management for enhanced productivity in intensivegrain production systems of the United States and Asia [J]. Plant and Soil,2002,247:153-175.
    114. Dobermann A., Witt C., Dawe D. Increasing productivity of intensive rice systems throughsite-specific nutrient management [J]. International Rice Research Institute (IRRI), Enfield, NH,USA and Los Ba os, Philippines,2004.
    115. Dobermann A., Witt C., Abdulrachman S., et al. Estimating indigenous nutrient supplies forsite-specific nutrient management in irrigated rice [J]. Agronomy Journal,2003,95:924-935.
    116. Dobermann A., Witt C., Dawe D., et al. Site-specific nutrient management for intensive ricecropping systems in Asia [J]. Field Crops Research,2002,74:37-66.
    117. Ghosh P.C., Misra U.K. Modified mitscherlich-bray equation for calculation of crop response toapplied phosphate [J]. Journal of the Indian Society of Soil Science,1996,44:786-788.
    118. Godfray H.C.J., Beddington J.R., Crute I.R., et al. Food security: the challenge of feeding9billionpeople [J]. Science,2010,327:812-818.
    119. Gransee A., Merbach W. Phosphorus dynamics in a long-term P fertilization trial on luvicphaeozem at Halle [J]. Journal of Plant Nutrition and Soil Science,2000,163:353-357.
    120. Greenland D.J., Watanabe I. The continuing nitrogen enigma. Trans.12th Tnter-congr [J]. SoilScience,1982,5:123-137.
    121. Greenwood D.J., Karpinets T.V., Stone D.A. Dynamic model for the effects of soil P and fertilizerP on crop growth, P uptake and soil P in arable cropping: model description [J]. Annals of Botany,2001,88:279-291.
    122. Haefele S.M., Wopereis M.C.S., Ndiaye M.K., et al. Internal nutrient efficiencies, fertilizerrecovery rates and indigenous nutrient supply of irrigated lowland rice in SahelianWest Africa [J].Field Crops Research,2003,80:19-32.
    123. He C.E., Liu X.J., Fangmeier A., et al. Quantifying the total airborne nitrogen-input into agroecosystems in the North China Plain [J]. Agriculture, Ecosystems and Environment,2007,121:395-400.
    124. He P., Li S.T., Jin J.Y., et al. Performance of an optimized nutrient management system fordouble-cropped wheat-maize rotations in North-Central China [J]. Agronomy Journal,2009,101:1489-1496.
    125. Hussain F., Bronson K.F., Yadvinder S., et al. Use of chlorophyll meter sufficiency indices fornitrogen management of irrigated rice in Asia [J]. Agronomy Journal,2000,92:875-879.
    126. Isfan D., Zizka J., Avignon A.D., et al. Relationships between nitrogen rate, plant nitrogenconcentration, yield and residual soil nitrate nitrogen in silage corn [J]. Communications in SoilScience and Plant Analysis,1995,26:2531-2557.
    127. Janssen B.H., Guiking F.C.T., Van der Eijk D., et al. A system for quantitative evaluation of thefertility of tropical soils (QUEFTS)[J]. Geoderma,1990,46:299-318.
    128. Katsuyuki K., Osamu I., Joseph J.A., et al. Effects of NPK fertilizer combinations on yield andnitrogen balance in sorhgum or pigeonpea on a vertisol in the semi-arid tropics [J]. Soil Scienceand Plant Nutrition,1999,45(1):143-150.
    129. Khurana H.S., Phillips S.B., Singh B., et al. Agronomic and economic evaluation of site-specificnutrient management for irrigated wheat in northwest India [J]. Nutrient Cycling inAgroecosystems,2008,82:15-31.
    130. Ladha J.K., Pathak H., Krupnik T.J., et al. Efficiency of fertilizer nitrogen in cereal production:retrospects and prospects [J]. Advances in Agronomy,2005,87:85-156.
    131. Legg J.Q., Meisinger J.J. Soil nitrogen budgets [A]. In: Stevenson F.J.(eds). Nitrogen inagricultural soils [C]. Agronomy Monography,22. American Society of Agronomy, Madison, WI,1982,503-507.
    132. Liu H.L., Yang J.Y., Drury C.F., et al. Using the DSSAT-CERES-Maize model to simulate cropyield and nitrogen cycling in fields under long-term continuous maize production [J]. NutrientCycling in Agroecosystems,2011a,89:313-328.
    133. Liu M.Q., Yu Z.R., Liu Y.H., et al. Fertilizer requirements for wheat and maize in China: theQUEFTS approach [J]. Nutrient Cycling in Agroecosystems,2006a,74:245-258.
    134. Liu X.J., Ju X.T., Zhang Y., et al. Nitrogen deposition in agro ecosystems in the Beijing area [J].Agriculture, Ecosystems and Environment,2006b,113:370-377.
    135. Liu X.Y., He P., Jin J.Y., et al. Yield gaps, indigenous nutrient supply, and nutrient use efficiencyof wheat in China [J]. Agronomy Journal,2011b,103:1452-1463.
    136. Maiti D., Das D.K., Pathak H. Simulation of fertilizer requirement for irrigated wheat in easternIndia using the QUEFTS model [J]. Archives of Agronomy and Soil Science,2006,52:403-418.
    137. Naklang K., Harnpichitvitaya D., Amarante S.T., et al. Internal efficiency, nutrient uptake, and therelation to field water resources in rainfed lowland rice of northeast Thailand [J]. Plant and Soil,2006,286:193-208.
    138. Neil W.C., Mark E.M. Validation and recalibration of a soil test for mineralizable nitrogen [J].Communications in Soil Science and Plant Analysis,2006,37:2199-2211.
    139. Pampolino M.F., Witt C., Pasuquin J.M., et al. Development approach and evaluation of theNutrient Expert software for nutrient management in cereal crops [J]. Computers and Electronics inAgriculture,2012,88:103-110.
    140. Pampolino M.F., Witt C., Pasuquin J.M., et al. Nutrient Expert for Hybrid Maize (version1.11). Asoftware for formulating fertilizer guidelines for tropical hybrid maize [J]. International PlantNutrition Institute, Penang, Malaysia,2011.
    141. Pathak H., Aggarwal P.K., Roetter R.P., et al. Modeling the quantitative evaluation of soil nutrientsupply, nutrient use efficiency, and fertilizer requirements of wheat in India [J]. Nutrient Cycling inAgroecosystems,2003,65:105-113.
    142. Peng S.B., Garcia F.V., Laza R.C., et al. Increased N-use efficiency using a chlorophyll meter onhigh yielding irrigated rice [J]. Field Crops Research,1996,47:243-252.
    143. Peng S.B., Laza R.C., Garcia F.V., et al. Chlorophyll meter estimates leaf area-based nitrogenconcentration of rice [J]. Communications in Soil Science and Plant Analysis,1995,26:927-935.
    144. Prasad R., Prasad B. Fertilizer requirements for specific yield targets of soybean based on soiltesting in alfisols [J]. Journal of the Indian Society of Soil Science,1996,44:332-333.
    145. Probert M.E. A conceptual model for initial and residual responses to phosphorus fertilizers [J].Fertilizer Research,1985,6:131-138.
    146. Roth G.W., Fox R.H. Plant tissue test for predicting nitrogen fertilizer requirement of winter wheat[J]. Agronomy Journal,1989,81:502-507.
    147. Ruter D.J. Plant analysis: an interpretation manual [M]. Australia: CSIRO,1991.
    148. Saidou A., Janssen B.H., Temminghoff E.J.M. Effects of soil properties, mulch and NPK fertilizeron maize yields and nutrient budgets on ferralitic soils in southern Benin [J]. Agriculture,Ecosystems and Environment,2003,100:265-273.
    149. Satyanarayana T., Majumdar M., Birdar D.P. New approaches and tools for site-specific nutrientmanagement with reference to potassium [J]. Karnataka Journal of Agricultural Sciences,2011,24:86-90.
    150. Schepers J.S., Francis D.D., Vigil M., et al. Comparison of corn leaf nitrogen concentration andchlorophyll meter readings [J]. Communications in Soil Science and Plant Analysis,1992,23:2173-2187.
    151. Schroder J.J., Neeteson J.J., Withagen J.C.M, et al. Effects of N application on agronomic andenvironmental parameters in silage maize production on sandy soils [J]. Field Crops Research,1998,58:55-67.
    152. Setiyono T.D., Walters D.T., Cassman K.G., et al. Estimating the nutrient uptake requirements ofmaize [J]. Field Crops Research,2010,118:158-168.
    153. Setiyono T.D., Yang H., Walters D.T., et al. Maize-N: A decision tool for nitrogen management inmaize [J]. Agronomy Journal,2011,103:1276-1283.
    154. Shapiro C.A. Using a chlorophyll meter to manage nitrogen applications to corn with high nitrateirrigation water [J]. Communications in Soil Science and Plant Analysis,1999,30:1037-1049.
    155. Smaling E.M.A., Janssen B.H. Calibration of QUEFTS: a model predicting nutrient uptake andyields from chemical soil fertility indices [J]. Geoderma,1993,59:21-44.
    156. Smith S.J., Yong L.B., Miller G.E. Evaluation of soil nitrogen mineralization potentials undermodified field conditions [J]. Soil Science Society of America Journal,1977,41:74-76.
    157. Snyder C.S., Bruulsema T.W. Nutrient use efficiency and effectiveness in North America [J].Indices of agronomic and environmental benefits,2007.
    158. Sonawane S.S., Sonar K.R. Application of mitscherlic-bray equation for fertilizer use in pearimillet on vertisol [J]. Journal of the Indian Society of Soil Science,1995,43:276-277.
    159. Tabi F.O., Diels J., Ogunkunle A.O., et al. Potential nutrient supply, nutrient utilization efficiencies,fertilizer recovery rates and maize yield in northern Nigeria [J]. Nutrient Cycling inAgroecosystems,2008,80:161-172.
    160. Tittonell P., Vanlauwe B., Coebeels M., et al. Yield gaps, nutrient use efficiencies and response tofertilizer by maize across heterogeneous smallholder farms of western Kenya [J]. Plant and Soil,2008,313:19-37.
    161. Tremblay N., Bélec C. Adapting nitrogen fertilization to unpredictable seasonal conditions with theleast impact on the environment [J]. Horttechnology,2006,16:408-412.
    162. Varvel G.E., Schepers J.S., Francis D.D. Ability for in-season correction of nitrogen deficiency incorn using chlorophyll meters [J]. Soil Science Society of America Journal,1997,6:1233-1239.
    163. Weigel A., Russow R., Korschens M. Quantification of airborne N input in long-term fieldexperiments and its validation through measurements using15N isotope dilution [J]. Journal ofPlant Nutrition and Soil Science,2000,163:261-265.
    164. Witt C., Buresh R.J., Peng S., et al. Nutrient management [A]. In: Fairhurst T.H., Witt C., BureshR.J., Dobermann A.(Eds.), Rice: A Practical Guide to Nutrient Management [C], second ed.International Rice Research Institute (IRRI)/International Plant Nutrition Institute (IPNI)/International Potash Institute (IPI), Los Ba os (Philippines)/Singapore,2007,1-45.
    165. Witt C., Dobermann A. Toward a decision support system for site-specific nutrient management[A]. In: Dobermann, A., Witt, C., Dawe, D.(Eds.), Increasing Productivity of Intensive RiceSystems Through Site-Specific Nutrient Management [C]. Science Publishers, Inc., InternationalRice Research Institute (IRRI), Enfield, NH, USA and Los Ba os, Philippines,2004,359-395.
    166. Witt C., Dobermann A., Abdulrachman S., et al. Internal nutrient efficiencies of irrigated lowlandrice in tropical and subtropical Asia [J]. Field Crops Research,1999,63:113-138.
    167. Witt C., Pasuquin J.M.C.A., Dobermann A. Site-specific nutrient management for maize infavorable tropical environments of Asia [A]. In: Proceedings of5th International Crop ScienceCongress [C], Jeju, Korea,2008.
    168. Witt C., Pasuquin J.M.C.A., Pampolino M.F., et al. A manual for the development and participatoryevaluation of site-specific nutrient management for maize in tropical, favorable environments [J].International Plant Nutrition Institute, Penang, Malaysia,2009.
    169. Wolf D.W., Henderson D.W., Hsiao T.C., et al. Interactive water and nitrogen effects on senescenceof maize. Ⅱ. Photosynthetic decline and longevity of individual leaves [J]. Agronomy Journal,1988,80:865-870.
    170. Zhang Y., Liu X.J., Fangmeier A., et al. Nitrogen inputs and isotopes in precipitation in the NorthChina Plain [J]. Atmospheric Environment,2008,42:1436-1448.
    171. Zhen R.G., Leigh R.A. Nitrate accumulation by wheat (Triticum estirum) in relation to growth andtissue nitrogen concentration [J]. Plant and Soil,1990,124:157-160.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700