用户名: 密码: 验证码:
水稻光温敏核不育系对南方水稻黑条矮缩病毒的抗性反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以19个水稻光温敏核不育系为材料,对南方水稻黑条矮缩病毒(Southern rice black-streaked dwarf virus, SRBSDV)的鉴定方法、不育系对SRBSDV的抗性、受SRBSDV侵染后的生理变化、抗性遗传规律、NBS类抗病基因进行研究,得出如下主要结果:
     1、SRBSDV的鉴定方法及19个水稻不育系对SRBSDV的抗性评价:
     根据已公布的SRBSDV S10(EU523360)基因序列,设计1对检测SRBSDV的特异引物,利用分子生物学与田间调查相结合的方法,参照广东省生物防治实验站关于南方水稻黑条矮缩病发生规律与防治技术调查研究方案中的标准进行病株分级,对生产上常用的19个水稻不育系进行株高调查、病级划分,统计计算其发病率、病情指数、相对发病率。以病情指数类平均法(UPGMA)聚类分析,聚类结果将19个不育系划分为4个抗性等级:(1)高抗:164S;(2)中抗:福3S、蜀光1268S、长广占63S;(3)中感:马S、95S、6201S;(4)高感:华莫m207S、华莫103S、中华38S、安S、FSA、6303S、25S、116S、华师wy-2S、安徽195S、培矮64S、春S。尚未发现免疫的材料。
     2、SRBSDV侵染水稻的生理生化变化:
     (1) SRBSDV感染的再生稻根系形态和根系活力变化
     以经鉴定为高抗、中抗、高感的水稻光温敏核不育系各1个为材料,每种不育系选取发病等级为0级、1级、2级、3级的材料,采取水培的方法进行再生繁殖,研究SRBSDV感染对不育系再生稻根系生长的形态变化和根系活力变化。结果表明,在没有SRBSDV侵染(0级)时,高抗和中抗不育系的根长分别是感病不育系的1.53和1.43倍,根表面积分别是感病不育系的1.66和1.27倍,根体积分别是1.78倍和1.13倍,根系活力分别是1.45倍和2.27倍,但是三者的根尖数没有显著差异。高抗与高感不育系的上述指标之间差异显著,高抗和中抗不育系差异不显著。受到SRBSDV侵染时,不育系内不同发病等级间随着发病程度的增高,各指标呈现明显下降趋势,除了高抗不育系的根尖数,其余各基因型内各指标均随着发病等级的增加而表现出显著差异。SRBSDV感染对根系的影响主要表现为根系的粗细不同。
     (2)水稻光温敏不育系对SRBSDV的抗性与内源激素的关系分析
     利用人工接种SRBSDV和采用高效液相色谱技术(High Performance Liquid Chromatography, HPLC)测定内源激素的研究方法,对SRBSDV胁迫下高抗SRBSDV164S和高感SRBSDV培矮64S两个不同抗性不育系水稻幼苗植株内源激素赤霉素(GA3)、生长素(IAA)、水杨酸(SA)和脱落酸(ABA)的动态变化进行了研究。结果表明:1)人工接种SRBSDV后,促进生长明类的激素GA3、IAA在培矮64S处理植株中含量平均值显著低于其对照植株,在第5和第6天感病症状开始出现时达到最低值;在164S处理植株中IAA含量平均值显著低于其对照植株,GA3含量平均值也低于对照植株,但未达到5%显著水平。2)抗御信号分子SA在处理植株中含量平均值显著高于对照植株,在感病症状开始出现时,其含量都达到最高值,但培矮64S在最高值后开始较快下降,而164S的SA含量则保持显著高于对照植株的水平。3)与衰老、死亡有关的内源激素ABA在处理植株中含量高于对照植株,培矮64S的ABA含量显著高于164S,与其对照植株差异显著;164S与其对照差异不显著。4)SRBSDV胁迫改变了植株体内IAA/ABA和GA3/ABA的平衡。
     (3) SRBSDV实时荧光定量PCR检测方法的建立及其各病级的病毒含量
     针对SRBSDV CP基因设计了1对特异性引物,以水稻UBC为内参基因,建立SRBSDV CP两步法real time PCR绝对定量检测方法。对感SRBSDV的0级、1级、2级、3级水稻植株叶片SRBSDV CP基因的拷贝数进行绝对定量,结果显示,通过内参UBC校正后,病级之间SRBSDV CP基因拷贝数差异显著。
     3、不育系对SRBSDV的抗性遗传分析:
     以经鉴定为中抗和高抗SRBSDV的水稻光温敏核不育系及感病对照TN1为材料,应用经典遗传学分析方法研究4个抗SRBSDV亲本抗病基因的对数。结果显示,164S与TN1杂交的F2代表现为15:1的抗感分离比例,表明供试亲本对SRBSDV的抗性均受2对显性基因控制。长广占63S、蜀光1268S、福3S这3个与TN1杂交的F2代表现为3:1的抗感分离比例,表明它们对SRBSDV的抗性均受1对显性主效基因控制。
     4、水稻系列不育系抗病基因同源序列的克隆与测序分析:
     本研究根据NBS-LRR类保守氨基酸序列设计引物,对水稻系列不育系进行抗病基因同源序列进行克隆与分析,结果显示,18个水稻不育系亲本及抗感病对照恩恢58、TN1,共获得了9类NBS-LRR类抗病基因同源序列,这9类抗病基因同源序列氨基酸相似性为49.5%-83.6%,与已知的9个NBS抗病基因氨基酸序列一致性为26.2%-100.0%。
19rice photo thermo sensitive genic male sterile lines (PTGMS) were used to study the SRBSDV (Southern rice black streaked dwarf virus) identification method, their resistance to SRBSDV, the physiological change by SRBSDV infection, the inheritance, the NBS resistance genes. The main results were summarized as follows:
     1. The identification method of SRBSDV and resistantance evaluation of19rice sterile lines to SRBSDV:
     SRBSDV S10(EU523360) was used to design a pair of specific primers to detect SRBSDV, using molecular biology and the field investigation method, with reference to Guangdong province biological control experiment station's grade standards about occurrence regularity and control technology research of southern black rice dwarf virus disease, we measured19rice sterile lines'plant height and disease grades, computing their average incidence, their disease index and their relative incidence. Clustal analysis with main component average incidence,19resistance of sterile lines are divided into four levels:(1) high resistant (HR):164S;(2) moderate resistant (MR):Fu3S, Shuguang1268S, Guangzhan63S;(3)moderate sensitive (MS):Ma S,6201S and95S;(4) high sensitive (HS):Huamo m207S, Huamo103S, An S, FSA,25S,116S,6303S, Huashi wy-2S, Chunghua38S, Anhui195S, Peiai64S and Chun S. Haven't found any immune material.
     2. Physiological changes of rice by SRBSDV infection:
     (1) Analysis of the morphology and activities of ratooning rice root systems infected by SRBSDV:
     Three rice photo thermo sensitive genic male sterile lines which had been identified to be high resistant, moderate resistant and high sensitive to SRBSDV were used as materials and four disease grades (0,1,2and3grade) were set to study the influence of SRBSDV infection on sterile lines ratooning rice root morphology and activities by the method of hydroponic regeneration. The results showed that while there was no SRBSDV infection (grade0), root indexes reached significant differences between high resistant and high sensitive sterile lines, but there was no significant difference between high resistant and moderate resistant sterile lines. While sterile lines infected by SRBSDV (grade1,2,3), the root indexes indicated a downward trend as disease grades increased within the same sterile line. Indicators reached significant differences as the grades increased except the tips number of the high resistant sterile line. The influence of SRBSDV on root system mainly performed on different size roots.
     (2) Relationship analysis of endogenous hormone and PTGMS resistance to SRBSDV
     Artificial inoculating SRBSDV and HPLC (High Performance Liquid Chromatography) technique were used to measure the GA3, IAA, SA and ABA content of high resistant PTGMS line164S and high sensitive PTGMS line Peiai64S in response to SRBSDV infection. The results showed that:1) Peiai64S'GA3and IAA average content were significantly lower in SRBSDV infected plants than that in healthy plants. The lowest value appeared in the5th and6th day after SRBSDV infected when disease symptoms began to appear.164S'IAA average content was significantly lower in SRBSDV infected plants than those in healthy plants; GA3average content was lower in the infected plants than those in healthy plants, but didn't reach the5%significant level.2) Resistance signal molecule SA content was higher in SRBSDV infected plants than in healthy plants. Both reached the highest level when disease symptoms initialised. Peiai64S' SA content declined faster than that of164S' after the highest value and164S' SA content remained significantly higher than that in healthy plants.3) Endogenous hormone ABA which relevants to aging and death content was higher in SRBSDV infected plants than that in healthy plants. Peiai64S'content significantly higher than164S' and significantly higher than their healthy plants;164S didn't show significant difference with its healthy plants.4) SRBSDV infection changed plants' IAA/ABA and GA3/ABA balance. Conclusion: SRBSDV stress changed rice endogenous hormone content, but this change was direct infection or indirect damage of the virus still remains elusive.
     (3) Establishment and implication of SRBSDV real-time qPCR
     Design a pair of specific primers to amplify SRBSDV CP gene fragment, UBC was used as referance gene, establish SRBSDV CP two-step real time absolute quantitative PCR detection method. Absolute quantitative the grade0, grade1, grade2, grade3rice leaf SRBSDV CP copies number, through UBC regulation, results show that SRBSDV CP copies number significantly difference between grades.
     3. SRBSDV resistance genetic analysis of rice sterile lines:
     3moderate resistant and1high resistant rice photo thermo sensitive genic male sterile line to SRBSDV and sensitive check TN1were used as materials in this study. Classical genetic analysis was applied to study this five SRBSDV resistant parent genetic and logarithm of resistance genes.164S hybrided with TN1, their F2hybrids showed resistant to sensitive15:1separation ratio. The result indicates164S' resistance to SRBSDV is controlled by2dominant genes. Four sterile lines Guangzhan63S, Shuguang1268S, Fu3S hybrided with TN1, their F2hybrids showed resistant to sensitive15:1separation ratio. The results showed that their resistances to SRBSDV are controlled by1dominant gene.
     4. Rice sterile lines resistance genes homologous cloning and sequence analysis:
     Design a pair of degenerate primers according to the NBS-LRR conserved amino acid sequences, homologous cloning and analysis the rice sterile lines' disease resistant gene sequences. The results showed that18rice sterile lines, Enhui58and TN1, received9types of NBS-LRR resistance gene homologous sequences total. These9types of resistance genes homologous amino acid sequence similarities are between49.5%~83.6%. Contrast with the9had been known NBS resistance genes amino acid sequences similarities are26.2%~100.0%.
引文
[1]艾育芳.甘薯抗疮痂病氮代谢与植物激素的研究:[学位论文].福州:福建农林大学,2003
    [2]安德荣,王和平.国外病毒化学防治的研究现状及问题.陕西农业科学,1994(6):43-45
    [3]蔡昆争,骆世明,段舜山.水稻根系在根袋处理条件下对氮养分的反应.生态学报,2003,23(6):1109-1116
    [4]蔡霞.定量PCR技术及其应用现状.现代诊断与治疗,2005,16(2):112-115
    [5]曹双河,张相岐,张爱民.光(温)敏雄性不育的调控机理和分子遗传学研究进展.植物学通报,2005,22(1):19-26
    [6]曹杨,潘峰,周倩,等.南方水稻黑条矮缩病毒介体昆虫白背飞虱的传毒特性.应用昆虫报,2011,48(5):1314-1320
    [7]曾汉来,张端品,姚方印,等.克服水稻两用不育系不育临界温度升高的选育方法.中国,专利说明书,CN 1337148A,2002.2.27
    [8]曾汉来,张端品.培育不同不育临界温度的光温敏核不育系培矮64S.作物学报.2001,27(3):351-355
    [9]曾蓉.黄瓜花叶病毒基因组RNA的定量分析.长沙:湖南农业大学,2007.
    [10]常二华,张慎凤,王专琴,等.结实期氮磷营养水平对水稻根系分泌物的影响及其与稻米品质的关系.作物学报,2007,33(12):1949-1959
    [11]常文静,郭大立.中国温带、亚热带和热带森林45个常见树种细根直径变异.植物生态学报,2008,32(6):1248-1257
    [12]陈旭,齐凤坤,康立功,等.实时荧光定量PCR技术研究进展及其应用.东北农业大学学报,2010,41(8):148-155
    [13]陈观水,潘大仁,周以飞,等.三浅裂野牵牛NBS类抗病基因同源序列的克隆与分析.西北植物学报,2007,27(9):1728-1734
    [14]陈观水,周以飞,林生,等.甘薯NBS类抗病基因类似物的分离与序列分析.热带亚热带植物学报,2006,14(5):359-365
    [15]陈立云,肖应辉.水稻光温敏核不育机理设想及光温敏核不育系选育策略.中国水稻科学,2010,24(2):103-107
    [16]陈良碧,周广洽,黄玉祥.温敏不育水稻幼穗发育过程不育水稻生态生理学.长沙:湖南师范大学出版社,1996,164-168
    [17]陈良碧.温度对光温敏不育水稻不育基因表达的影响.作物学报,1993,19(1):47-57
    [18]陈声祥,张巧艳.我国水稻黑条矮缩病和玉米粗缩病研究进展.植物保护学报,2005a,32(1):97-102
    [19]陈声祥,洪健,吕永平,等.RBSDV在玉米叶脉细胞内的侵染状态与灰飞虱传毒活力的关系.中国病毒学,2005b,19(2):153—157
    [20]陈卓,郭荣,钟玲,等.芦溪县麻田乡南方水稻黑条矮缩病爆发的原因.贵州农业科学,2010a,38(10):118-120
    [21]陈卓,宋宝安,郭荣,等.水稻病毒病防治的理论与实践的思考.公共植保与绿色防控,中国农业科学技术出版社,北京,2010b,585-596
    [22]陈卓,宋宝安,郭荣,等.水稻病毒病及其防治技术的研究与应用.中国植保导刊,2010c,12:13-18
    [23]陈卓,宋宝安.南方水稻黑条矮缩病防控技术.北京:化学工业出版社,2011
    [24]程建峰,戴廷波,荆奇,等.不同水稻基因型的根系形态生理特性与高效氮素吸收.土壤学报,2007,44(2):266-272
    [25]程建勇,吴建宇,秦西云,等.云南烟草丛枝症病害研究×激素的变化.云南农业大学学报,1999,14(2):176-179
    [26]川田信一朗.水稻的根系.北京:农业出版社,1984:1-60
    [27]邓启云,符习勤.光温敏核不育水稻育性稳定性研究Ⅲ不育起点温度漂移及其控制技术.湖南农业大学学报,1998,24(1):8-13
    [28]丁铭,尹跃艳,方琦,等.云南水稻上检测到南方水稻黑条矮缩病毒.植物病理学报,2011,41(6):640-644
    [29]董桂春,王余龙,王坚刚,等.不同水稻品种间根系性状的差异.作物学报,2002,28(6):749-755
    [30]董桂春,王余龙,吴华,等.水稻主要根系性状对施氮时期反应的品种间差异.作物学报,2003,29(6):871-877
    [31]董汉松.植物诱导抗病性原理和研究.北京:北京科学出版社,1995
    [32]樊小林,史正军,吴平.水肥(氮)对水稻根构型参数的影响及其基因型差异.西北农林科技大学学报·自然科学版,2002,30(2):1-5
    [33]冯跃华,邹应斌,ROLAND B,等.不同耕作方式对杂交水稻根系特性及产量的影响.中国农业科学,2006,39(4):639-701
    [34]龚国淑,冷怀琼.梨树感染茎痘病毒后对内源激素及其生长的影响.四川农业大学学报,2000,18(4):243-245
    [35]龚国淑,张庆,张咏梅.梨树感染茎沟病毒后生长速度与内源激素的变化.西南农业学报,2002,12(2):62-64
    [36]郭荣,周国辉,张曙光.水稻南方黑条矮缩病发生规律及防控对策初探.中国植保导刊,2010
    [37]海蒂弗斯主编,朱有(译).植物病理生理学.北京:中国农业出版社,1991:386-587
    [38]何俊瑜,王阳阳,任艳芳,等.镉胁迫对不同水稻品种幼苗根系形态和生理特性的影响.生 态环境学报,2009,18(5):1863-1868
    [39]何强,蔡义东,徐耀武,等.水稻光温敏核不育系利用中存在的问题与对策.杂交水稻,2004,19(1):1-5
    [40]何愚,柳淑华.水稻锯齿叶矮缩病及其寄主植物的研究.湖南农业科学,1984,3:19,33-34
    [41]洪健,李德葆,周雪平,等.植物病毒分类图谱.北京:科学出版社,2001
    [42]侯宇.马铃薯Y病毒和马铃薯卷叶病毒的实时荧光同步检测技术的研究:[学位论文].重庆:重庆大学,2009
    [43]胡瑞波,范成明,傅永福.植物实时荧光定量PCR内参基因的选择.中国农业科技导报,2009,11(6):30-36
    [44]胡向阳.激发子诱导植物防卫反应过程中的信号分子:[学位论文].上海:中国科学院研究生院(上海生命科学研究院),2003
    [45]胡秀弟.南方水稻黑条矮缩病毒云南分离物基因组特征及其编码蛋白的功能预测:[学位论文].昆明:云南农业大学.2012
    [46]黄利兴.水稻系列不育系对稻瘟病的抗性遗传研究:[学位论文].福州:福建农林大学,2009
    [47]黄燕湘,罗丽华,何静.不同类型水稻根系形态特性实验方法的比较与分析.实验技术与管理,2006,23(7):24-26
    [48]季英华,高瑞珍,张野,等.一种快速同步检测水稻黑条矮缩病毒和南方水稻黑条矮缩病毒的方法.中国水稻科学,2011,25(11):91-94
    [49]江山,韩熹莱.植物病毒病化学防治的研究进展.中国病毒学,1995,10(1):1-7
    [50]姜军剑,李美善,许明子,等.水稻光温敏核不育系与常规品种的过氧化物酶同工酶比较研究.延边大学农学学报,2008,30(4):270-275
    [51]姜玉英,郭荣,刘宇,等.越南的水稻病毒病发生和防治概况.中国植保导刊,2010,30(8):54-57
    [52]金登迪,林瑞芬,余舰斌,等.水稻锯齿叶病的潜育期及介体褐飞虱的传毒特性.浙江农业科学.1987,5:236-237
    [53]冷怀琼,袁永凯.苹果茎沟病毒病对苹果内源激素的影响.四川农业大学学报,1991,9(2):190-194
    [54]李博,田晓莉,王刚卫,等.苗期水分胁迫对玉米根系生长杂种优势的影响.作物学报,2008,34(4):662-668
    [55]李锋,潘晓华,刘水英,等.低磷胁迫对不同水稻品种根系形态和养分吸收的影响.作物学报,2004,30(5):438-442
    [56]李华,杨肖娥,罗安程.不同氮钾条件下水稻基因型氮钾积累利用差异.中国水稻科学,2002,14(1):87-89
    [57]李莉,王凯学,王华生,等.南方水稻黑条矮缩病毒传播介体白背飞虱带毒率监测情况初 报.广西植保,2011,24(1):16-18
    [58]李素梅,施卫明.不同氮形态对两种基因型水稻根系形态及氮吸收效率的影响.土壤,2007,39(4):589-593
    [59]廖伏明,杨益善,袁隆平.水稻高世代光温敏不育系低温下育性选择效果研究.杂交水稻,2003,18(4):51-54
    [60]廖伏明,袁隆平.水稻光温敏核不育系起点温度遗传纯化的策略探讨.杂交水稻,1996,(6):14
    [61]廖明安,冷怀琼,任雅君,等.苹果无病毒与带病毒幼树某些内含物及生育的差别.中国果树,1993,(2):6-8
    [62]临沧市植保植检站.南方水稻黑条矮缩病的发生流行规律及防治技术.云南农业信息网,www.ynagri.gov.cn,2011
    [63]林晶.水稻不育系系谱抗稻瘟病遗传及抗病基因同源序列分析:[学位论文].福州:福建农林大学,2007
    [64]凌启鸿,凌励.水稻不同层次根系的功能及对产量形成作用的研究.中国农业科学,1984(5):3-11
    [65]刘海,陈立云.水稻两用核不育系的育性光温效应及遗传机理.作物研究,2008,22(5):333-337
    [66]刘继梅,程在全,杨明挚,等.云南3种野生稻中抗病基因同源序列的克隆及序列分析.中国农业科学,2003,36(3):273-280
    [67]刘琳琳.24个水稻品种对南方水稻黑条矮缩病的抗性研究:[学位论文].福州:福建农林大学,2012.
    [68]刘万才,刘宇,郭荣.南方水稻黑条矮缩病发生现状和防控对策.中国植保导刊,2010,30(3):17-18
    [69]刘瑛.两种植物呼肠孤病毒的小管蛋白鉴定及功能结构域研究:[学位论文].福州:福建农林大学,2011
    [70]刘永霞,岳延滨,刘岩,等.水稻单株产量与根系主要几何属性的定量关系.江苏农业学报,2010,26(3):456-461
    [71]刘宇,闫彩霞,张廷婷,等.花生NBS-LRR类抗病基因的克隆及原核表达.中国农业科技导报,2010,12(3):73-78
    [72]刘志勇,沈春章,董元彦.气相色谱法速测油菜中的乙烯释放量.化学与生物工程,2006,23(2):55-56
    [73]卢嫣红,张金凤,熊如意,等.南方水稻黑条矮缩病毒S6编码一个沉默抑制子.中国农业科学,2011,44(14):2909-2917
    [74]鲁运江.南方水稻黑条矮缩病的识别及防控技术.种子科技,2011,2:39-40
    [75]米银法,马锋旺,马小卫.根际低氧对不同抗性猕猴桃幼苗生长和内源激素的影响.园艺 学报,2009,36(2):163-170
    [76]潘凤英,廖咏梅,海博,等.19个水稻雄性不育系对南方水稻黑条矮缩病的抗性评价.南方农业学报,2011,42(4):399-402
    [77]潘晓华,王永锐,傅家瑞.水稻根系生长生理的研究进展.植物学通报,1996,13(2):13-20
    [78]潘亚清,史淑芝.植物诱导抗病性研究进展.植物保护科学,2005,21(8):366-369
    [79]漆艳香,肖启明,朱水芳.玉米细菌性枯萎病菌16SrDNA基因克隆及TaqMan探针实时荧光PCR.湖南农业大学学报(自然科学版),2003,29(3):183-187
    [80]钱国良,胡白石,卢玲,等.梨火疫病菌的实时荧光PCR检测.植物病理学报,2006,36(2):123-128
    [81]邱振国.光温敏核不育水稻研究及利用进展.安徽农业科学,2006,34(20):5228-5230,5243
    [82]全国农业技术推广服务中心防治处.水稻南方黑条矮缩病发生情况及防控建议.2010年南方水稻黑条矮缩病防治现场观摩及中长期治理对策研讨会,2010
    [83]阙友雄,许莉萍,林剑伟,等.甘蔗NBS-LRR类抗病基因同源序列的分离与鉴定,作物学报,2009a,35(4):631-639
    [84]阙友雄,许莉萍,林剑伟,等.斑茅NBS-LRR类抗病基因同源序列的克隆与分析,热带作物学报,2009b,30(2):192-197
    [85]任萍,苗洪芹,曹克强.植物病毒与植物激素的相互作用关系.河北农业科学,2009,13(3):25-29
    [86]沈波,王熹.两个亚种间杂交稻组合的根系生理活性.中国水稻科学,2002,16(2):146-152
    [87]沈君辉,尚金梅,刘光杰.中国的白背飞虱研究概况.中国水稻科学,2003,17(增刊):7-22
    [88]石明松,邓景扬.湖北光感核不育水稻的发现、鉴定及其利用途径.遗传学报,1986,13(2):107-112
    [89]石庆华,李木英,许锦彪,等.高温胁迫对不同早稻品种胚乳淀粉合成酶类活性的影响.作物学报,2006,32(7):1044-1048
    [90]宋宇,周洁,高诚,等.哺乳动物呼肠孤病毒外壳蛋白和受体研究进展.实验动物与较医学,2010,30(1):68-72
    [91]孙雁,王云月,何月秋,等.云南稻种抗病基因同源序列类似性分析.中国农业科学,2002,35(5):502-507
    [92]孙宗修,程式华,阂绍楷,等.光敏核不育水稻的光温反应研究Ⅱ.人工控制条件下粳型光敏不育系的育性鉴定.中国水稻科学,1991,5(2):56-60
    [93]田国忠,李怀方,裘维蕃.植物激素与植物病害的相互作用.植物生理学通讯,1999,35(3):177-184
    [94]童建华,李雨薇,黄志刚,等.高效液相色谱法同时检测棉花根中的多种植物激素.现代生物医学进展,2009,13(9):2476-2479
    [95]童哲,邵慧德.光敏核不育水稻中调节育性的第二信使.袁隆平.两系法杂交水稻研究论 文集.北京:农业出版社,1992,170-175
    [96]王丹英,韩勃,章秀福,等.水稻根际含氧量对根系生长的影响.作物学报,2008,34(5):803-808
    [97]王海燕,杨文香,刘大群.小麦NBS-LRR类抗病基因同源序列的分离与鉴定,中国农业科学,2006,39(8):1558-1564
    [98]王康,郑静君,张曙光,等.室内试验证实南方水稻黑条矮缩病毒不经水稻种子传播.广东农业科学,2010,(54)7:95-96
    [99]王明全,徐振平.RNA合成抑制剂对光敏感核不育水稻花粉育性的影响.植物生理学通讯,1994,30(6):426-428
    [100]王绍辉,张福墁.不同水分处理对日光温室黄瓜多胺与激素的影响.生态学报,2004,24(12):2848-2852
    [101]王纬,陈辉,周世伟.水杨酸和氨基酸对烟草黄瓜花叶病毒病防治效果的研究.烟草科技,1996,(1):43-45
    [102]王岩,李兆阳,唐心龙,等.拟南芥基因组NBS-LRR类基因家族的生物信息学分析,中国农学通报,2009,25(15):40-45
    [103]王义鹏,许艳丽.荧光定量PCR技术在植物病原检测方面的应用.大豆科技,2011,(02):9-12
    [104]王永琦.西瓜疫病抗性苗期鉴定方法及抗病机理研究.杨凌:西北农林科技大学,2010
    [105]王余龙,蔡建中,何杰升,等.水稻颖花根活量与籽粒灌浆结实的关系.作物学报,1992,18(2):81-89
    [106]魏海燕,张洪程,张胜飞,等.不同氮利用效率水稻基因型的根系形态与生理指标的研究.作物学报,2008,34(3):429-436
    [107]温锦君,李鹏,蔡德江,等.华南地区一种新的水稻矮缩病的病原病毒鉴定.见中国植物病理学会2008年学术年会论文集.彭友良,北京,2008
    [108]吴建国,王萍,谢荔岩,等.水稻矮缩病毒对3种内源激素含量及代谢相关基因转录水平的影响.植物保护学报,2010,40(2):151-158
    [109]吴建宇,盖钧镒.接种玉米矮花叶病毒对抗性不同的玉米自交系内源激素的影响.植物病理学报,2001,31(3):286-287
    [110]吴为奇.3种水稻病毒病检测方法的研究与应用:[学位论文].金华:浙江师范大学,2012.
    [111]夏明星,赵文军,马青,等.番茄细菌性溃疡病菌的实时荧光PCR检测.植物病理学报,2006,36(2):152-157
    [112]肖羽化,陈平,刘文芳.光敏感核不育水稻花药败育过程中有利氨基酸的比较分析.武汉大学学报(自然科学版),1987(HPGMR专刊):95-100
    [113]谢联辉,林奇英.中国农业百科全书(植物病理学卷).北京:农业出版社,1996:427-430
    [114]徐靖,云勇,唐清杰,等.海南普通野生稻NBS类抗病基因同源序列的分离与分析,中国 农学通报,2010,26(10):38-41
    [115]许志刚.普通植物病理学.北京:中国农业出版社,1997:224-226
    [116]薛光行.二系法杂交稻母本变异的原因及对策探讨.科学通报,1999,44(1):105-109
    [117]薛勇彪,唐定中,张燕生,等.水稻基因组中R类抗病基因同源序列的分离.科学通报,1998,43(3):277-281
    [118]严蔚东,王校常,何锶洁,等.利用外源钾通道基因改良水稻钾素营养.中国水稻科学,2002,16(1):77-79
    [119]颜瑾,朱亚峰,丸山稚子,等.植物呼肠孤病毒外壳蛋白与昆虫传毒机制的研究进展.见生命科学与生物技术:中国科协第三届青年学术年会论文集.北京,1998
    [120]颜永杰,吴宽,张珏,等.马铃薯卷叶病毒陕西分离物外壳蛋白(CP)的生物信息学分析.西北农林大学学报(自然科学版).2010,40(3):473-476
    [121]杨洪建,杨连新,刘红江,等.FACE对水稻根系及产量的影响.作物学报,2005,31(9):1221-1226
    [122]杨勤忠,杨佩文,王群,等.水稻抗病基因同源序列的克隆及测序分析,中国水稻科学,2001,15(4):241-247
    [123]易图永,谢丙炎,张宝玺,等.植物抗病基因同源序列及其在抗病基因克隆与定位中的应用.生物技术通报,2002,(2):16-20
    [124]尹兵.实时荧光定量PCR的原理及应用研究进展.科技信息,2010,17:30-31
    [125]俞美玉,王熹,陶龙兴,等.CRMS诱导水稻雄性不育的研究III CRMS对水稻花药游离脯氨酸含量的影响及其与花药败育的关系.中国水稻科学,1991,5(4):169-174
    [126]袁继红.实时荧光定量PCR技术的实验研究.现代农业科技,2010,13:20-22
    [127]袁克华,冯仁军,程萍,等.香蕉NBS-LRR类抗病基因同源序列的克隆与分析,中国农学通报,2009,25(05):271-274
    [128]袁隆平.水稻光温敏不育系的提纯和原种生产.杂交水稻,1994,(6):1-3
    [129]袁隆平.选育水稻光、温敏核不育系的技术策略.杂交水稻,1992,(1):1-4
    [130]袁明珠,温柔,刘吉升,等.几种植物材料中总RNA的提取.分子植物育种,2005,3(2):285-292
    [131]翟彩霞,马春红,秦君,等.植物诱导抗病性的常规鉴定--相关酶活性变化与诱导抗病性的关系.植物保护科学,2004,20(5):222-224
    [132]张海保,朱西儒,刘鸿先.香蕉束顶病毒(BBTV)侵染对寄主内源激素的影响.植物病理学报,1997,27(1):79-83
    [133]张松柏,张德咏,刘勇等.2009年造成湖南省水稻大面积矮缩的是南方水稻黑条矮缩病.植物保护,2010,36(4):98-100
    [134]张蔚明,刘燕娟,周倩.南方水稻黑条矮缩病毒外壳蛋白P10的原核表达和抗血清制备及应用.湖南农业大学学报(自然科学版),2011,37(4):400-402,141-147;30(8):17-19
    [135]张珣.六种植物病毒Real Time PCR定量方法的建立及其应用:[学位论文].北京:中国农业科学院,2008
    [136]张影波,庞玉新,莫廷辉,等.巴西橡胶NBS类抗病基因同源序列的克隆与分析,安徽农业科学,2009,37(24):11453-11455
    [137]张岳芳,王余龙,张传胜,等.灿稻品种的氮素累积量与根系性状的关系.作物学报,2006,32(8):1121-1129
    [138]张志良,瞿伟菁.植物生理学实验指导:第3版.北京:高等教育出版社,2003
    [139]章松柏,李大勇,肖冬来等.水稻黑条矮缩病的发生和病毒检测.湖北农业科学,2010,49(3):592-594
    [140]赵晓娟.小麦黄花叶病毒定量检测与RNAi介导的抗性材料的创制.北京:中国农业科学院,2012
    [141]赵悦,张孝羲,翟保平.江西上犹2009、2010年南方水稻黑条矮缩病的毒源地分析.应用昆虫学.2011,48(5):1321-1334
    [142]郑璐平,谢荔岩,连玲丽,等.水稻锯齿叶病毒的研究进展.中国农业科技导报,2008,5:8-12
    [143]钟丽娟,赵秀香,贾玉才,等.烟草感染马铃薯Y病毒脉坏死株系后内源激素的变化.安徽农业科学,2006,34(15):3724-3725
    [144]周国辉,温锦君,蔡德江,等.呼肠孤病毒科斐济病毒属一新种:南方水稻黑条矮缩病毒.科学通报.2008,53:2500-2508
    [145]周国辉,许东林,李华平.广东发生水稻黑条矮缩病病原分子鉴定.中国植物病毒学会2004年学术年会论文集,中国农业科学技术出版社,2004,10-12
    [146]周国辉,张曙光,邹寿发,等.水稻新病害南方水稻黑条矮缩病发生特点及危害趋势分析.植物保护,2010,36(1):144-146
    [147]周国辉.水稻南方黑条矮缩病发生规律及防控技术.2010年南方水稻黑条矮缩病防治现场观摩及中长期治理对策研讨会,2010
    [148]周晓丽,朱国坡,李雪华,等.实时荧光定量PCR技术原理与应用.中国畜牧兽医,2010,2:87-89
    [149]周益军.水稻条纹叶枯病.南京:江苏科学技术出版社,2010
    [150]周忠新,袁永泽,王云华,等.蔗糖对不同氮源培养下水稻根部氨同化相关酶活性的影响.武汉植物学研究,2005,14(6):70-74
    [151]朱德峰,林贤青,曹卫星.水稻深层根系对生长和产量的影响.中国农业科学,2001,34(4):429-432
    [152]朱俊子.南方水稻黑条矮缩病毒湖南分离物全基因组及分子检测:[学位论文].长沙:湖南农业大学,2012
    [153]朱英国.水稻雄性不育生物学.武昌:武汉大学出版社,20008
    [154]邹红霞,梁国鲁.实时荧光定量PCR及其在传染性疾病检测中的应用.生物技术通讯,2011,22(5):751-754
    [155]左宝玉,童哲,姜桂珍.光周期对光敏核不育水稻叶绿体类囊体膜超分子结构的影响.植物学报,1996,38(5):337-34
    [156]Aarts N, Metz M, Holub E, et al. Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proceedings of the National Academy of Sciences, USA,1998,95(17):10306-10311
    [157]Abdala G, Milrad S, Vigliocco A, et al. Hyperauxinity in diseased leaves affected by Mal de Rio Cuarto Virus (MRCV). Biocell,1999,23(1):13-18
    [158]Alvarez M E, Pennell R I, Meijer P I, et al. Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell,1998,92:773-784
    [159]Andrew M Q King, Michael J Adams, Eric B Carstens, et al. Virus Taxonomy:Classification and nomenclature of viruses. Ninth Report of the International Committee on Taxonomy of Viruses. San Diego Elsevier Academic Press,2012:541-637
    [160]Antoniw J F, White R F. The effects of asoirin and polyacrylic acid on soluble leaf proteins and resistance to virus infection in five cultivars of tobacco. Phytopathol,1980,98(4):331-341
    [161]Arteca R N, Poovaiah B W, Smith O E. Use of high performance liquid chromatography for the determination of endogenous hormone levels in Solwum tuberosum L. subjected to carbon dioxide enrichment of the root zone. Plant Physiology,1980,65(6):1216-1219
    [162]Azhar M.T., Amin I., Bashir A., and Mansoor S., Charac-terization of resistance gene analogs from Gossypium arboreum and their evolutionary relationships with homologs from tetraploid cottons. Euphytica,2011,178(3):351-362
    [163]Bailiss K W. Gibberellins and the early disease syndrome of aspermy virus in tomato (Lycopersicon esculentum MiⅡ.). Annals of Botany,1968,32:543-552
    [164]Bieza K. and Lois R. An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiology,2002, 126(3):1105-1115
    [165]Blotta I, Prestinaci F, Mirante S, Cantafora A. Quantitative assay of total dsDNA with PicoGreen reagent and real-time fluorescent detection. Ann Ist Super Sanita,2005,41(1):119.
    [166]Bowling S A, Guo A, Cao H, et al. Amutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell,1994,6(12):1845-1857
    [167]Bryan G T, Wu K S, Farrall L, et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pita. The Plant Cell,2000,12(11): 2033-2045
    [168]Buchen-Osmond C. The Universal Virus Database, ICTVdB, ver 4. New York:Columbia University, (http://www.ncbi.nlm.nih.gov/ICTVdb),2006
    [169]Cairns J, Audebert A, Townend J, Price A H, Mullins C E. Effect of soil mechanical impedance on root growth of two rice varieties under field drought stress. Plant Soil,2004,267(1-2): 309-318
    [170]Chung H W. Reverse transcriptase PCR (RT-PCR)and quantitative competitive PCR(QC-PCR). Experimental and Molecular Medicine,2001,33(11):85-97
    [171]Collins N, Park R, Spielmeye W, et al. Resisance gene analogs in barley and their relationship to rust resistance genes. Genome,2001,44:375-381
    [172]Dangl J L, Dietrich R A and Richberg M H. Death don't have no mercy:cell death programs in plant-microbe interactions. The Plant Cell,1996,8(10):1793-1807
    [173]Distefano A J, Conci L R, Munoz Hidalgo M, et al. Sequence analysis of genome segments S4 and S8 of Malde Rio Cuarto virus(MRCV):Evidence that the virus should be a separate Fijivirus species. Archives of Virology,2002,147:1699-1709
    [174]Distefano A J, Conci L R, Munoz Hidalgo M, et al. Sequence and phylogenetic analysis of genome segments S1, S2, S3 and S6 of Mal de Rio Cuarto virus, a newly accepted Fijivirus species. Virus Research,2003,92:113-121
    [175]Distefano A J, Hopp H E, del Vas M. Sequence analysis of genome segments S5 and S10 of Mal de Rio Cuarto virus (Fijivirus, Reoviridae). Archives of Virology,2005,150:1241-1248
    [176]Dixon M S, Jones D A, Keddie J S, et al. The tomato cf-2 disease resistance loucus comprises two functional genes encoding leucine-rich repeat proteins. Cell,1996,84:451-459
    [177]Durner J, Shah J, Klessig D H. Salicylic acid and disease resistance in plants. Trends in Plant Science,1997,2:266-274
    [178]Fourmann M, Chariot F, Froger N, et al. Expression, mapping, and genetic variability of Brassica napus disease resistance gene analogues. Genome,2001,44(6):1083-1099.
    [179]Fraser R S S. Biochemistry of Virus Infected Plants. New York:Research Studies Press,1987
    [180]FraserR S S, Whenham R J. Plant growth regulators and virus infection:A critical review. Plant Growth Regulation,1982, (1):37-59
    [181]Gimenez-Pecci M P, Conci L R, Truol G, et al. Molecular diversity of ecologically distinct Mal de Rio Cuarto virus isolates based on restriction fragment length polymorphism (RFLPs) and genome sequence analysis of segments 1,7,9 and 10. Archives of Virology,2007,152: 1341-1351
    [182]Giovanna M, Piero C, Gian P, Emanuela N. Real-time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. Journal of Virological Methods,2008,147:282-289
    [183]Goodman R N, Kuraly Z, Wood K R. The Biochemistry and Physiology of Plant Disease. Columbia:University of Missouri Press,1986
    [184]Guzman F A, Distefano A J, Arneodo J D, et al. Sequencing of the bicistronic genome segments S7 and S9 of Mal de Rio Cuarto virus (Fijivirus, Reoviridae) completes the genome of this virus. Archives of Virology,2007,152:565-573
    [185]Ha Viet Cuong, Nguyen Viet Hai, Vu Trieu Man, et al. Rice dwarf disease in North Vietnam in 2009 is caused by southern rice black-streaked dwarf virus (SRBSDV). Bull Inst Trop Agr,Kyushu Univ,2009,32:85-92
    [186]Hammond-Kosack K E and Jones J D. Resistance gene dependent plant defence responses. The Plant Cell,1996,8:1773-1791
    [187]Hammond-Kosack K E, Jones J D G. Plant disease resistance genes. Annual Review of Plant Physiology and Plant Molecular Biology,1997(48):573-605
    [188]Hendre P.S., Bhat P.R., Krishnakumar V., and Aggarwal R.K.. Isolation and characterization of resistance gene analogues from Psilanthus species that represent wild relatives of cultivated coffee endemic to India. Genome,2011,54(3):377-390
    [189]Higuchi R, Fockler C. Kinetic PCR analysis real-time monitoring of DNA amplification reactions. Biotechnology,1993,11(9):1026-1030
    [190]Hong S Y, Seo P J, Yang M S, et al. Exploring valid reference genes for gene expression studies in Brachypodium distachyon by real time PCR. BMC Plant Biology,2008,8:112-122
    [191]Hunger S., di Gaspero G., Mohring S., et al. Isolation an d linkage analysis of expressed disease-resistance gene an alogues of sugar beet(Beta vulgaris L.). Genome,2003,46(1):70-82
    [192]Hwa HL, Ko TM, Yen ML, Chiang YL. Fetal gender determination using real-time quantitative polymerase chain reaction analysis of maternal plasma. Fonnos Mod As-soc,2004,103(5): 364-368
    [193]Insalud N, Bell R W, Colmer T D, et al. Morphologicaland physiological responses of rice(Oryza sativa) to limited phosphorus supply in aerated and stagnant solution culture. Annals of Botany,2006,98:995-1004
    [194]Isogai M, Uyeda I, Lindsten K. Taxonomic characteristics of Fijiviruses based on nucleotide sequences of the oat sterile dwarf virus genome. Journal of General Virology,1998,79(5): 1479-1485
    [195]Jameson Paula E, Clarke Sean F. C ritical Reviews in Plant Sciences. Critical Reviews in Plant Sciences,2002,21 (3):205-228
    [196]Jaros J. Studies on the phases of development of healthy and virus X, Y and X-and Y-infected potatoes. Acta Biologica Cracoviensia Series Botanica,1963,6:75-861
    [197]Jiang J, Ridley A W, Tang H, et al. Genetic variability of genome segments 3 and 9 of Fiji disease virus field isolates. Archives of Virology,2008,153(5):838-848
    [198]Johal G S and Briggs S P. Reductase activity encoded by the HMI disease resistance gene in maize. Science.1992,258:985-987
    [199]Kamosita A, Wade L J, Alim L, et al. Mapping QTLs for Root morphology of a rice population to rain fed low land conditions. Theoretical and Applied Genetics.2002,104(5):880-893
    [200]Kanazin V, M arek L F, Shoearker R C. Resistance gene analogs are conserved and clustered in soybean. Proceedings of the National Academy of Sciences, USA,1995,93(21):11746-11750
    [201]Kelen M, Demiralay E C, Sen S, et al. Separation of abscisic acid, indole-3-acetic acid, gibberellic acid in 99 R (Vitis berlandieri x Vitis rupestris) and rose oil(Rosa damascena Mill) by reversed phase liquid chromatography. Turkish Journal of Chemistry,2004,28(5):603-610
    [202]Kunkel B N and Brooks D M. Cross talk between signaling pathways in pathogen defense. Current opinion in plant biology.2002,5(4):2627-2641
    [203]Lautenschlager I. Monitoring of EBV-DNAemia by quantitative real-time PCR after adult liver transplantation. Clin Virol, Epub ahead of print.2006.
    [204]Leister D, Kurth J, L aurie D A, et al. Rapid reorganization of resistance gene homologues in cereal genomes. Proceedings of the National Academy of Sciences, USA,1998,95(1):370-375
    [205]Leister D, Kurth J, L aurieD A, et al. RFLP and physical mapping of resistance gene homologues in rice (Oryza sativa L.) and barley (H. vulgare). Theoretical and Applied Genetics, 1999,98(3-4):509-520
    [206]Leister D., Ballvora A., Salamini F., et al. A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants. Nature Genetics, 1996,14(4):421-429
    [207]Levine A, Tennaken R, Dixon R,et al. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell,1994,79(4):583-593
    [208]Li ZY, Chen SY. Molecular cloning, chromosomal mapp ingand expression analysis of disease resistance homologues in rice(Oryza sativa L.). Chinese Science Bulletin,1999,44 (13): 1202-1207
    [209]Lyer A S, McCouch S R. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Molecular Plant Microbe Interactions,2004,17(12):1348-1354
    [210]Lynch J P. Root architecture and plant productivity. Plant Physiology,1995,109:7-13
    [211]Mackayim,Arden K E, Nitsche A, et al. Real-time PCR in virology. Nucleic Acids Research, 2002,30(6):1292-1305
    [212]Madsen L.H., Collins N.C., Rakwalska M., et al. Barley disease resistance gene analogs of the NBS-LRR class:identification and mapping. Molecular Genetics and Genomics,2003,269(1): 150-161
    [213]Magnus L, Charles H. Dynamic range and reproducibility of hepatitis B virus (HBV) DNA detection and quantification by cobas Taqman HBV, a real-time aemiautomated assay. Journal of Clinical Microbiology,2005,43:4251-4254
    [214]Mago R, N air S, Mohann M. Resistance gene analogues from rice:cloning, sequencing and mapping. Theoretical and Applied Genetics,1999,99:50-57
    [215]Malamy J, Hennig J, Klessig D F. Temperature depended induction of salicylic acid and its conjugates during the resistance response to tobacco mosaic virus infection. Plant Cell,1992, 4(3):359-365
    [216]Marcel A K, Jansen R, Van Den Noort, et al. Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiology,2001,126(3):1012-1023
    [217]Martin G B, Brommmonschenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science,1993,262(5138):1432-1437
    [218]Martin Naylor, Alex M Murphy, James O Berry, et al. Salicylic acid can induce resistance to plant virus movement. Molecular Plant Microbe Interact,1998,11(9):860-868
    [219]Martinez Zamora M.G., Castagnaro A.P., and Diaz Ricci J.C., Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Molecular Genetics and Genomics,2004,272(4):480-487
    [220]Marzach C, Antoniazzi S, de Aquilio M, et al. The double-stranded RNA genome of maize rough dwarf Fijivirus contains both mono and dicistronic segments. European Journal of Plant Pathology,1996,102(6):601-605
    [221]Marzach C, Boccardo G, Nuss D. Cloning of the maize rough dwarf virus genome:Molecular confirmation of the plant-reovirus classification scheme and identification of two large nonoverlapping coding domains within a single genomic segment. Virology,1991,180(2): 518-526
    [222]Mendy ME, Kaye S, van der Sande M, Rayco-Solon P, Waight PA, Shipton D,Awi D,Snell P,Whittle H, McConkey SJ. Application of real-time PCR to quantify hepatitis B virus DNA in chronic carriers in The Gambia. Journal of Virology,2006,3:23
    [223]Meyers B C, Dickerman A W, Michelmore R W, et al. Plant disease resistance genes encodemembers of an ancient and diversep ro tein family w ithin the nucleo tide-binding superfamily. Plant,1999,20 (3):317-332
    [224]Milne R G, de Vas M, Harding R M, et al. Genus Fijivirus. Fauquet C M, Mayo M A, Maniloff J, et al. Virus taxomony:classif ication and nomenclature of viruses. Eighth Report of the International Committee on the Taxonomy of Viruses. San Diego:Elsevier Academic Press, 2005:534-542
    [225]Mohler V., Klahr A., W enzel G., et al. A resistance gene analog useful for targeting disease resistance genes against diferent pathogens on group 164S chromosomes of barley, wheat and rye. Theoretical and Applied Genetics,2002,105(2-3):364-368
    [226]Monique, Beuve, Lauriane Sempe, Olivier Lemaire. A sensitive one-step real-time RT-PCR method for detecting Grapevine leafroll-associated virus 2 variants in grapevine. Journal of Virological Methods 2007,141(2):117-124
    [227]Morita S, Iwabuchi A, Yamazaki K. Relationships between the growth direction of primary roots and yield in rice plants. Japanese Journal of Crop Science,1986,55:520-525
    [228]Moseyko N, Zhu T, Chang H S, et al. Transcription profiling of the early gravitropic response in Arabidopsis using high-density oligonucleotide probe microarrays. Plant Physiology,2002, 130(2):720-728
    [229]Mukesh Jain, Aashima Nijhawan, Akhilesh K.et al. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications,2006,345 (2):646-651
    [230]Nakashima N, Koizumi M, Watanabe H, et al. Complete nucleotide sequence of the Nilaparvata lugens reovirus:A putative member of the genus Fijivirus. Journal of General Virology,1996,77(1):139-146
    [231]Nakashima N, Noda H. Nonpathogenic is transmitted to the brown planthopper through rice plant. Virology,1995,207:303-307
    [232]Noda H, Nakashima N, Omura T. Cloning of the Nilaparvata lugens reovirus genome: Conserved terminal nucleotide sequences and nucleotide sequence of genome segment S10. Journal of General Virology,1994,75:221-225
    [233]Pennazio S, Roggero P1The physiology o f crop species systemically infected with viruse. Petria,1999,9(1-2):27-41
    [234]Qiang Wang, Yang Jian, Zhou Guo Hui, et al. The Complete Genome Sequence of two isolates of Southern rice black-streaked dwarf virus, a New Member of the Genus Fijivirus. Journal of Phytopathol,2010,158(11-12):733-737
    [235]Quint M., Mihalevic R., Dussle M., et al. Development of RGA-CAPS markers and genetic mapping of candidate genes for sugarcan emosaic virus resistance in maize. Theoretical and Applied Genetics,2002,105(2-3):355-363
    [236]R. Lopez., C. Asensio., M. M. Guzman., N. Boonham. Development of real time and conventional RT-PCR assays for the detection of potato yellow vein virus (PYVV). Journal of Virological Methods 2006,136(1-2):24-29
    [237]Radonic A, Thulke S, Mackay I M, Landt O,Siegert W, Nitsche A. Guideline toreference gene selection for quantitative real-time PCR. Biochemical and Biophysical Research Communications,2004,313(4):856-862
    [238]Radwan D E, Fayez K A, Mahmoud S Y, et al. Physiological and metabolic changes of Cucurbita pepo leaves in response to zucchini yellow mosaic virus (ZYMV) infection and salicylic acid treatments. Plant Physiol Biochem,2007,45(6-7):480-489
    [239]Radwan D E, Lu G, Fayez K A, et al. Protective action of salicylic acid against bean yellow mosaic virus infection in Vicia faba leaves. Plant Physiology,2008,165(8):845-857
    [240]Radwan O., Bouzidi M.F., Vear F., et al. Identification of non-TIR-NBS-LRR markers linked to the Pl5/Pl8 locus for resistance to downy mildew in sunflower. Theoretical and Applied Genetics,2003,106(8):1438-1446
    [241]Rajagopal R. Effect of tobacco mosaic virus infection on the endogenous levels of indoleacetic, phenylacetic and abscisic acids of tobacco leaves in various stages of development. Zeitscurift fur Pflanzenphysiol,1977,83(5):403-409
    [242]Ramalingam J., vera Cruz C.M., Kukreja K., et al. Candidate defense genes from rice, barley, and maize and their association with qualitative and quantitative resistance in rice. Molecular Plant Microbe Interact,2003,16(1):14-24
    [243]Rasmussen J B, Hammerschmidt R, Zook M N. Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv syringae. Plant Physiology,1991,97(4):1342-1347
    [244]Russe ⅡS L, Kimmins W C. Growth regulators and the effect of BYDV on barley(Hordeum vulgare L.). Annals of Botany,1971,35:1037-1043
    [245]Shah J, Tsui F, Klessig D F. Characterization of asalicylic acid-insensitive mutant (sai 1) of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the lms2 gene. Molecular Plant Microbe Interact,1997,10(1):69-78
    [246]Shen K A, Meyers B C, Islam-Faridi M N, et al. Resistance gene candidates identified by PCR with degenerate oligonucleo tide primers map to clusters of resistance genes in let tuce. Molecular Plant Microbe Interact,1998,11(8):815-823
    [247]Shi Z X, Chen X M, Line R F, et al. Development of resistance gene analog polymorphism markers for the Yr9 gene resistance to wheat stripe rust. Genome,2001,4 (4):509-516
    [248]Somma F, Hopmans JW, Clausnitzer V. Transient three dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrien tuptake. Plant and Soil, 1998,202(2):281-293
    [249]Song W Y, Wang G L, Chen L L, et, al. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa-21. Science,1995,270:1804-1806
    [250]Stotz H U, Koch T, Biedermann A, et al. Evidence for regulation of resistance in Arabidopsis to Egyptian cotton worm by salicylic and jasmonic acid signaling pathways. Planta,2002,214(4): 648-652
    [251]Sun X, Cao Y, Yang Z, et al. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. Oryzae in rice, encodes an LRR receptor kinase-like protein. The Plant Journal,2004,37(4): 517-527,55
    [252]Susans, R., Pedro, M., Jose, G., Silvia, A., A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. Journal of Virological Methods 2007,145(2):96-105
    [253]Suzuki N, Yoshida A, Nakano Y. Quantitative analysis of Multi-species oral biofilms by TaqMan Real-Time PCR. Clinical Medical Research,2005,3(3):176
    [254]Thomas D Schmittgenl & Kenneth J Livak. Analyzing real-time PCR data by the comparative CT method. Nature Protocols,2008, (6):1101-1108
    [255]Ton J, Van Loon L C, et al. Differential effectiveness of salicyate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Molecular Plant Microbe interactions,2002,15(1):27-34
    [256]Tong Z, Wang T, Xu Y. Evidence for involvement of phytochrome regulation in male sterility of amutant of Oryza sativa L. Photochemical and photobiology,1990,52(1):161-164
    [257]Uchiyama M, Maesawa C, Yashima-Abo A, Tarusawa M, Endo M, Sugawara W, Chida S, Onodera S, Tsukushi Y, Ishida Y, Tsuchiya S, Masuda T. Consensus JH gene probes with conjugated 3'-minor groove binder for monitoring minimal residual disease in acute lymphoblastic leukemia. Journal of Molecular Diagnostics,2005,7(1):121
    [258]Ueno H, Yoshida K, Hirai T. Quantitative detection of carcinoembryonie antigen messenger RNA in the peritoneal cavity of gastric cancer patients by real-time quantitative reverse transcription polymerase chain reaction. Anticaneer Research,2003,23(2C):1701-1708
    [259]Van Camp W, Van montagu M. H2O2 and NO:redox signals in disease resistance. Trends in Plant science,1998,3:330-334
    [260]Van Loon. Effects of auxin on the localization of tobacco mosaic virus in hypersensitively reacting tobacco. Physiological Plant Pathology,1979,14(2):213-226
    [261]Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes. The Plant Journal,1999,19(1):55-64
    [262]Wang Z, Fang S, Xu J, et al. Sequence analysis of the complete genome of rice black-streaked dwarf virus isolated from maize with rough dwarf disease. Virus Genes,2003,27(2):163-168
    [263]Whenham R J, Fraser R S S. Effect of systemic and locallesion-forming strains of tobacco mosaic virus on abscisic acid concentration in tobacco leaves:consequences for the control of leaf growth. Physiological Plant Pathology,1981,18(3):267-278
    [264]Whenham R J, Fraser R S S. Stimulation by abscisic acid of RNA synthesis in discs from healthy and tobacco mosaic virus-infected tobacco leaves. Planta,1990,150(5):349-353
    [265]Xiao J, Grandillo S, Ahn S N, et al. Genes from rice improve yield. Nature,1996,384(6606): 223-224
    [266]Xue Y B, Tang D Z, Zhang Y S, et al. Isolation of candidate R disease resistance gene from rice. Chinese Science Bulletin,1998,43 (6):497-500
    [267]Yamamoto Y, Kamiyan, Marinaka Y, et al. Auxin biosynthesis by the YUCCA genes in rice. Plant Physiology,2007,143(3):1362-1371
    [268]Yamanouchi U, Yano M, Lin H X, et al. A rice apotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proceedings of the National Academy of Sciences of the United States of America,2002,99(11):7530-7535
    [269]Yin JL, Shackel NA, Zekry A, McGuinness PH, et al. Real-time reverse transcdptase-polymerase chain reaction(RT-PCR) for measurement of cytokine and growth factor mRNA expression with fluorogenic probes or SYBR Green I. Immunol Cell Biology, 2001,79(3):213
    [270]Yin X, Xu F F, Zheng F Q, et al. Molecular characterization of segments S7 to S10 of a southern rice black streaked dwarf virus isolate from maize in northern china. Virologica Sinica,2011, 26(1):47-53
    [271]Yoshida S, Forno D A, Cock J H, et al. Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute Philippines,1972,2nd edition:57-63
    [272]Yoshimura S, Yoshimura A, Nelson R J, et al. Tagging Xa-l,the bacterial blight resistance gene in rice, by using RAPD markers. Breeding Science,1995,45:81-85
    [273]Yu Y G, Buss G R, Maroof M A S. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a con-served nucleo tide-binding site. Proceedings of the National Academy of Sciences, USA,1996,93(21):11751-11756
    [274]Zhong H M, Yang J, Chen J P, et al. A black-streaked dwarf disease on rice in China is caused by a novel fijivirus. Archives of Virology,2008,153(10):1893-1898
    [275]Zhang H, Chen J, Adams M. Molecular characterization of segments 1 to 6 of Rice black-streaked dwarf virus from China provides the complete genome. Archives of Virology, 2001,146(12):2331-2339
    [276]Zhou G H, Wen J J, Cai D J, et al. Southern rice black-streaked dwarf virus:A new proposed Fijivirus species in the family Reoviridae. Chinese Science Bulletin,2008,53(23):3677-3685

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700