用户名: 密码: 验证码:
蔬菜保护地氮素利用与去向研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保护地蔬菜生产中,过量氮肥投入导致的环境问题日益突出。亟待开展相关的基础研究。本试验在北京市典型集约化农区保护地条件下,通过根菜类→茄果类—填闲—叶菜类蔬菜轮作试验,重点研究不同氮素施用水平下,作物氮素养分利用、土壤无机氮的累积、分布和淋溶规律、土壤—作物系统氮素表观平衡等。获得如下结果:
     (1)高肥力条件下,增施氮肥不能显著提高第一茬大萝卜产量和经济效益。第二茬番茄产量与施氮量呈二次函数关系,当季施氮量高于647.7kg/hm2时增产幅度、产值和效益下降。第四茬芹菜产量与当季投入量符合线性+平台模型,当施氮量高于617.7 kg/hm2时产值和效益不再显著增加。全年化肥氮投入效益和产投比均随氮肥投入量的增加而降低。大萝卜、油菜和芹菜硝酸盐含量显著高于番茄,且显著受施氮量影响。施氮对蔬菜Vc含量、可溶性糖和可溶性蛋白含量没有显著影响。
     (2)随蔬菜生长阶段推进,不施氮肥,0~100cm土体硝态氮贮量逐渐降低,单施有机肥没有引起硝态氮贮量显著变化。第一茬大萝卜和第二茬番茄生长期间,减量施氮、推荐施氮和增量施氮下土体硝态氮贮量呈波状变化。第四茬芹菜生长期间,当施氮量高于617.7kg/hm2时,土体硝态氮贮量在第二次追肥前连续降低,第二次追肥后呈增加趋势。大萝卜和芹菜阶段氮素吸收呈单峰曲线变化。番茄阶段氮素吸收呈双峰曲线变化。推荐施氮下,蔬菜生长中后期,土壤氮素供应与需求同步。农户习惯施氮导致蔬菜生长中后期氮素供应过量。
     (3)不合理氮肥投入对200cm以上土体硝态氮累积影响突出,且随种植季节的延续影响程度加深。第一茬不施氮肥根层土壤硝态氮含量下降,农户习惯施氮下根层和根层以下土壤硝态氮显著累积。连续两茬不施氮肥0~200cm土体硝态氮含量下降,农户习惯施氮导致0~200cm土体硝态氮含量增加。四茬蔬菜种植后,减量施氮、推荐施氮下0~60cm土体硝态氮含量无显著变化。施氮量低于增量施氮,0~400cm土体硝态氮贮量显著降低。农户习惯施氮下显著增加了1651.8kg/hm2。
     (4)蔬菜种植初期,氮肥施用对土壤硝态氮淋失没有显著影响。随种植季节延续,增量施氮和农户习惯施氮下,土壤硝态氮淋失量显著增加。氮肥用量在推荐量以下,土壤硝态氮没有显著淋失。整个轮作周期,土壤无机氮淋失总量为23.3~46.8 kg/hm2,氮肥淋失系数为0.2~0.6%。硝态氮平均淋失浓度为35.9 mg/L,超过饮用水卫生标准(10mg/L)。春夏季土壤氮素淋失量占全年总淋失量的60.0%~73.1%。
     (5)随氮肥投入量增加,蔬菜氮肥利用率降低,土壤残留和损失增加。大萝卜总吸氮量随施氮量升高,化肥氮吸收量没有变化。当季化肥氮利用率为7.2%~51.1%。土壤中残留40.7%~69.9%,损失率为8.2%~22.9%。氮肥投入量高于647.7kg/hm2时,番茄植株总吸氮量显著下降。化肥氮利用率为3.2%~14.3%,土壤中残留率和损失率分别为58.6%~79.1%,13.5%~30.6%。芹菜总吸氮量在氮肥投入量高于617.7 kg/hm2时不再显著增加,化肥氮的吸收量没有显著变化。当季化肥氮利用率为3.7%~30.8%,土壤中氮残留率为65.3%~72.0%。损失率为11.3%~32.7%;第一茬施用的化肥氮,对第二茬的后效显著,在第四茬已无明显作用。减量施氮下,化肥氮累加利用率为66.7%。
     (6)氮肥投入和播前残留Nmin是季节性土壤——蔬菜系统氮素主要输入项,土壤残留Nmin是主要输出项。第一茬农户习惯施氮下,季节性和阶段性表观平衡值均显著增加。第二、第四茬氮素表观平衡值和阶段表观平衡值均随施氮量增加显著增大。填闲季节,习惯施氮下表观平衡值显著增加。年度氮素平衡体系中,氮素投入是主要输入项。播前残留Nmin和土壤矿化氮为次要输入项。年施氮量低于2171.5kg/hm2时,作物氮素吸收是主要输出项,继续增加施氮量,土壤残留Nmin比重加大。年度表观平衡值与施氮量显著正相关(r0.01=0.917)。
     结合当地生产条件,在磷钾肥和有机肥配施的基础上,确定每年化肥氮适宜投入量为370~740 kg/hm2。每季化肥氮肥投入量以现阶段推荐施氮为上限,0.5倍推荐量为下限,以0~60cm土体硝态氮贮量变化为指标,重视氮肥后效作用和作物养分吸收高峰期的氮素调控。益于氮素利用率提高,获得较高产量和经济效益,保证蔬菜卫生品质安全,降低氮素淋流失风险。
The environmental problems that resulted from excessive inputs of nitrogen (N) in planting vegetables in protected soils were more and more important. Rational management ways and strategy of N need to be researched and developed. However, foundation questions still need be deeper researched. This study targeted at vegetable production of protected soils in representative intensive agricultural zone in Beijing, main research on the dynamics of accumulation and distribution of N in soils, N use efficiency, distribution and apparent balance of N in soil~plant systems. The results showed as following:
     (1) There was not effect of N application increased on yield of radish (Raphanus stativus L.) and economic profits planting in high degree fertility soils. The conic model described the relationship between tomato yield and the rate of N application during the second vegetable growing, when the rate of N application was more than 647.7 kg/hm2, the margin of increasing production , production vale and economic profits begin reduce. The liner~plateau model described the relationship between celery yield and the rate of N application during the fourth season vegetable growing, when the rate of N application was more than 617.7 kg/hm2, the production value and economic profits were significant decreased . With the increasing of N rate, profits of inputting fertilizer N and output~input ratio were decreased in one year. The nitrate content of radish, rape and celery increased significantly due to the rate of N application increased, but the nitrate content of tomato little response on higher rate of N application. However, there was not effect significant of the rate of N application increased on the contents of Vc, soluble sugar and protein in vegetables.
     (2) With the continuations of vegetables growing seasons, the N application rates impacted significantly on accumulative amounts of nitrate in 0~100cm soil profiles. The nitrate storage was decreased under the condition of no N application. Accumulative amounts of nitrate in soils were not significant changed with organic fertilizer application alone. There was a wave trend in the treatments with lower, recommendation and higher N application rate during the first and second seasons. When N rates were more than 617.7kg/hm2, the nitrate storage of soil body was reduced during the beginning of celery, was increased during the ending. The changes were a single apex curve during radish and celery planting, and double apex curve during tomato growing. The supply of N nutrition and demand of vegetables were changed in Synchronization with the recommendation rate of N application. The nitrate storages in soil body were significantly increased with farmers’traditional N application rates during the middle and ending period of vegetables growing season,it was resulted to excessive supply of N nutrition.
     (3) After four season vegetables planting, the nitrate storage in 0~400cm soil body were significantly decreased as the N rate was lower than the higher N application rate in every season , there was increased by 1652 kg/hm2 significantly in farmers tradition N application rate. There was a net lost of nitrate in 0~200cm soil body without N fertilizer application. The nitrate storages in 0~60cm soil body was not significant changed in lower and recommended N application rate. Input of N impacted significantly on accumulation nitrate in 0~200cm soil body, but little response to soils below 200cm. Nitrate content decreased in root zoon soil without N added in first season. However, nitrate content in 0~100cm soil body was great accumulation with farmers’tradition N application rate. After continuous two seasons, nitrate content decreased in 0~200cm soil body without N application, but increased significantly in farmers’tradition N application rate treatments. After continuous applying three times of farmers tradition N application rate, nitrate content rapid increased in 0~200cm soil profiles, accumulated in top soil layer moved down along soil profiles, and accumulated in 100~200cm soil profiles. The effect was not obvious through rape planting to decrease nitrate content in catch season.
     (4) Nitrate~N is the mostly forms of Inorganic nitrogen leaching, that 96.4%~99.2% accounts in total Inorganic nitrogen leached. There was not significant effect of N application on the concentration of nitrate in leaching liquid of soils in the first vegetable planted. The concentration of nitrate in leaching liquid of soils increased significantly in higher and farmers tradition N application rate from the second season. There was not significant change of the concentration of nitrate in leaching liquid in treatments that the rate of N application less than that of higher N application rate. Leaching amount of ammonium~N was low and little response to N application. The soil leaching amount of inorganic N was 23.3~46.8 kg/hm2 during whole rotation period. The coefficient of soil leaching amount of inorganic N was 0.2~0.6%, there was difference significant among treatments. The mean concentration of nitrate in leaching liquid of soils was 35.9 mg/L which great exceeded the standard of drinking water (10mg/L). The leaching amount of N in spring~summer was higher significantly than that of in autumn~winter, that 60.0%~73.1% accounts for whole year.
     (5) With the increasing of N rate, recovery efficiency of N fertilizer reduced, residual rate of inorganic N fertilizer in soil and losses increased. The total N uptake of radish (Raphanus stativus L.) increased significantly with rate of N application increased, but the amounts of fertilizer N uptake was not significant changed. The 7.2%~51.1%, 40.7%~69.9% and 8.2%~22.9% of total inorganic N application was taken up by plants, left in soil and lose, respectively. When rate of N application was higher than 647.7kg/hm2, the total N uptake of tomato plant was decreased significantly. The 3.2~14.3%, 58.6~79.1% and 13.5~30.6% of total seasonal fertilizer N application was taken up by plants, left in soils and lose, respectively. The total N uptake of celery will not increased significantly when the N rate was more than 617.7 kg/hm2. The 3.7~30.8%, 65.3~72.0% and 11.3~32.7% of total seasonal inorganic N application was taken up by plants, left in soils and lose, respectively. Residual N of the first season has significant after~effect on the growth of tomato in second season, but there was not significant residual effect on celery yield in fourth season. The total recovery efficiency of fertilizer N was 66.7% with lower N application rate.
     (6) The main N was from the input of N fertilizer and residual Nmin in the beginning stage in the seasonal N balance of soil~vegetable. The total N input increased significantly with the increases of N fertilizer application. The main N output was residual Nmin in soils in this system. The apparent balance of seasonal N was not change significantly in soils with organic fertilizer alone and lower N application during the first season. The apparent balance values decreased in soils with recommendation and higher N application rate. The apparent balance values increased significantly in the treatments with traditional N application rates was not change significantly in the other treatments in the phase system. The apparent balance of season N and of phase increased significantly with the increases of N application rate during the second and fourth seasons. In spare season, the N apparent balance still increased significantly in soils with traditional N application rate in last season. The annual input of N was the second main resources in the N balance system of soil~vegetable. The residual Nmin before seeding and mineralization N from initial soils self were the second N resources. When annual N application rate was less than 2171.5kg/hm2, the radio of crop N uptake to total N output was relative high; When annual N application rate was more than 2171.5kg/hm2, the radio of residual Nmin in soils to total N output was high. There was a positive relationship between apparent balance of system N and annual N application rate (r0.01 = 0.917).
     According to the native conditions, on the base of mixing organic fertilizer and phosphor (P) fertilizer and potassium (K) fertilizer together, the annual rate of N fertilizer should control in 370-740 kg/hm2. The upper limit of N rate in every season should be at the recommendation N application rate in current stage., the lower limit be at 0.5 times of the recommendation N application rate. The nitrate storage in 0~60cm soil layer should be looked as a index, and focusing on aftereffect of N fertilizer and regulation of N during the fastigium of crop take up nutrients. Benefit to increase N use efficiency, gain high crop yields and economic benefit, ensure vegetables sanitation and quality safety, decrease the risk of N leaching and losing.
引文
[1]白优爱.京郊保护地番茄养分吸收及氮素调控研究[D].硕士学位论文.北京:中国农业大学,2003.
    [2]北京市统计局,国家统计局北京调查队.北京市统计年鉴[M].中国统计出版社,2008.
    [3]曹红霞,康绍忠,何华.田间管理措施对土壤硝态氮迁移影响研究进展[J].灌溉排水学报,2005.24.1:72-76.
    [4]陈宝明.施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响[J].生态环境,2006,15(3):630-632.
    [5]陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响[J].麦类作物学报,2006,26(5):101-105.
    [6]陈清,张福锁.蔬菜养分资源综合管理理论与实践[M].北京:中国农业大学出版社,2007.
    [7]陈振华,陈利军,武志杰,等.下辽河平原潮棕壤稻田的无机态氮淋溶[J].水土保持学报,2006,20(1):
    [8]陈子明,氮素产量环境.北京:中国农业科技出版社[M],1996 ,183
    [9]崔振岭,陈新平,张福锁,等.华北平原冬小麦/夏玉米轮作体系土壤硝态氮的适宜含量[J].应用生态学报,2007,18(10):2227-2232.
    [10]戴明宏,陶洪斌,王利纳,等.不同氮肥管理对春玉米干物质生产、分配及转运的影响[J].华北农学报,2008,1(23):154-157.
    [11]单玉华.对脲酶抑制剂增产效应评价[J].土壤通报,1994,25(3):104-10.
    [12]党廷辉,蔡贵信.黄土旱塬黑垆土—冬小麦系统中尿素氮的去向及增产效果[J].土壤学报,2002,39,(2):199-205.
    [13]党延辉.黄土区旱地深层硝酸盐累积机理、生物有效性与环境效应[D].博士学位论文.陕西:西北农林科技大学,2005.
    [14]董钰翥.日光温室自封顶番茄和无限生长类型番茄套种高产栽培[J].北方园艺,2004(3):26-27.
    [15]杜春先,聂俊华,王介勇.不同水肥条件下硝态氮在土壤剖面中垂直分布规律研究[J].土壤通报,2006.37.2:278-281.
    [16]杜红斌,王秀峰,崔秀敏.植物NO-3-N累积的生理机制研究[J].中国蔬菜,2001,(2):49-51.
    [17]杜连凤.长江三角洲菜地系统氮肥利用与土壤质量变异研究[D].博士学位论文,中国农业科学院,2005.
    [18]樊军,郝明德,党廷辉.长期定位施肥土壤剖面NO3--N分布和累积[J].土壤与环境,2000,9 (1):23-26.
    [19]樊军,邵明安,郝明德,等.黄土旱塬塬面生态系统土壤硝酸盐累积分布特征[J].植物营养与肥料学报,2005.11(1):8-12.
    [20]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21.
    [21]范明生,刘学军,江荣风,等.覆盖旱作方式和施氮水平对稻-麦轮作体系生产力和氮素利用的影响[J].生态学报,2004,24(11):2591-2596.
    [22]范亚宁,李世清,李生秀.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化[J].应用生态学报,2008,19(4):799-806.
    [23]付玉芹,雷玉平,郑力,等.不同施氮水平下深层土壤硝态氮淋失特征研究[J].中国农学通报, 2006,22(6):245-248.
    [24]付玉芹,雷玉平,郑力,等.农田厚不饱和层硝态氮分布特征初探[J].干旱地区农业研究,2006,24(1):373-376,107.
    [25]高兵,任涛,李俊良,等.灌溉策略及氮肥施用对设施番茄产量及氮素利用的影响[J].植物营养与肥料学报,2008,14(6):1104-1109.
    [26]高祥照,马文奇,杜森,等.我国施肥中存在问题的分析[J].土壤通报,2001,32,6:258-261.
    [27]高亚军,李生秀,李世清,等.施肥与灌水对硝态氮在土壤中残留的影响[J].水土保持学报,2005,19(6):61-64.
    [28]高亚军,李云,李生秀,等.旱地小麦不同栽培条件对土壤硝态氮残留的影响[J].生态学报,2005,25(11):2901-2910.
    [29]高砚芳,段增强,郇恒福.宜兴市温室土壤理化性质的调查和分析[J].土壤, 2007, 39 (6):968-972.
    [30]郭春秋,方元久.脲酶抑制剂在棉花上的应用效果探讨[J].作物研究,2000,1,35-37.
    [31]郭熙盛,张辛,朱宏斌,等.稻田肥水管理对氮肥效益的影响[J].安徽农业科学,1992.3(30):254-254.
    [32]郭颖,赵牧秋,吴蕊,等.有机肥对设施菜地土壤-植物系统硝酸盐迁移累积的影响[J].农业环境科学学报,2008,27(5):1831- 1835.
    [33]韩晓增,王守宇,宋春雨,等.黑土区水田化肥氮去向的研究[J].应用生态学报,2003,14 (11):1859-1862.
    [34]何飞飞,任涛,陈清,等.日光温室蔬菜的氮素平衡及施肥调控潜力分析[J].植物营养与肥料学报,2008,14(4) :692–699.
    [35]何飞飞.设施番茄生产体系的氮素优化管理及其环境效应研究[D].博士学位论文.北京:中国农业大学,2006.
    [36]侯晶,陈振楼,许世远.大田蔬菜地春季硝态氮淋溶特征研究[J].土壤通报,2006,4(37):691-695.
    [37]侯振安,李品芳,吕新,等.不同滴灌施肥方式下棉花根区的水、盐和氮素分布[J].中国农业科学,2007,40(3):549-557.
    [38]胡春胜,高鹭.太行山山前平原冬小麦田深层土体硝态氮累积特征研究[J].中国生态农业学报,2001,9(1):19-20.
    [39]胡焕平.氮素水平对日光温室黄瓜品质的影响[J].北方园艺,2007(6):13-14.
    [40]胡璐,李心清,黄代宽,等.中国北方蒙古干旱半干旱区土壤铵态氮的分布及其环境控制因素[J].2008,6(37):572-580.
    [41]黄化刚,张锡洲,李廷轩.典型设施栽培地区养分平衡及其环境风险[J].农业环境科学学报,2007,26(2):676-682.
    [42]黄丽华,沈根祥,钱晓雍,等.滴灌施肥对农田土壤氮素利用和流失的影响[J].农业工程学报,2008,24(7)49-53.
    [43]黄丽华,沈根祥,钱晓雍,等.砂质梨园和蔬菜地氮素流失及其影响因素研究[J].农业环境科学学报,2008,27(2):687-691.
    [44]黄明蔚,刘敏,陆敏,等.稻麦轮作农田系统中氮素渗漏流失的研究[J].环境科学学报, 2007,27(4):629–636.
    [45]黄绍敏,宝德俊,皇甫湘荣,等.长期施用有机和无机肥对潮土氮素平衡与去向的影响[J].植物营养与肥料学报,2006,12(4):479-484.
    [46]黄绍敏,宝德俊.小麦—玉米轮作制度下潮土硝态氮的分布及合理施氮肥研究[J].土壤与环境,1999,8(4):271-273.
    [47]黄绍敏,皇甫湘荣,宝德俊,等.土壤中硝态氮含量的影响因素研究[J].农业环境保护,2001,20(5):351-354.
    [48]黄学芳,池宝亮,张冬梅,等.长期施肥对晋西北农田硝态氮累积与分布的影响[J].华北农学报,2008,23(4):204-207.
    [49]季云美,任旭琴.不同肥料对小白菜产量及品质的影响[J].江苏农业科学,2004(6):38-40.
    [50]贾丽华,费良军,程东娟.不同灌溉施肥方式的土壤硝态氮分布特性试验研究[J].干旱地区农业研究,2008,26(2):44-48.
    [51]金继运.以测土配方施肥实现平衡施肥[J].中国农资,2002,50-51.
    [52]金雪霞,范晓晖,蔡贵信.菜地土氮素的主要转化过程及其损失[J].土壤,2005,37(5): 492-499.
    [53]巨晓棠,刘学军,张福锁.冬小麦/夏玉米轮作中NO3--N在土壤剖面的累积及移动[J].土壤学报,2003,40 (4):538-546.
    [54]巨晓棠,刘学军,张福锁.冬小麦与夏玉米轮作体系中氮肥效应及氮素平衡研究[J].中国农业科学,2002,35(11):1361-1368.
    [55]巨晓棠,刘学军,张福锁.尿素配施有机物料时土壤不同氮素形态的动态及利用[J].中国农业大学学报,2002,7(3):52-56.
    [56]巨晓棠,张福锁.关于氮肥利用率的思考[J].生态环境,2003,12(2):192-197.
    [57]巨晓棠,张福锁.中国北方土壤硝态氮的累积及其对环境的影响[J].生态环境,2003,12(1):24-28.
    [58]柯连科夫(尹崇仁等译).氮肥的农业化学[M].农业出版社,1983.
    [59]寇长林,巨晓棠,高强,等.两种农作体系施肥对土壤质量的影响[J].生态学报,2004,24(11):2548-2556.
    [60]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [61]李宏光,赵正雄,杨勇,等.施肥量对烟田土壤氮素供应及烟叶产质量的影响[J].西南师范大学学报(自然科学版),2007,32(4):37-42.
    [62]李华,王朝辉,李生秀.地表覆盖和施氮对冬小麦干物质和氮素积累与转移的影响[J].植物营养与肥料学报,2008,14(6):1027-1034 .
    [63]李会合,王正银.施氮对小白菜产量和品质的效应[J].中国土壤与肥料,2007(4):53-55.
    [64]李俊良,陈新平.大白菜氮肥施用的产量效应、品质效应和环境效应[J].土壤学报,2003,40(2):261-266.
    [65]李俊良,崔德杰,孟祥霞,等.山东寿光保护地蔬菜施肥现状及问题的研究[J].土壤通报,2002,33(2):126-128.
    [66]李俊良,朱建华,张晓晟,等.保护地番茄养分利用与氮素淋失[J].应用与环境生物学报,2001,7(2):126-129.
    [67]李生秀,付会芳,袁虎林,等.几种测定方法在反映土壤供氮能力方面的效果[J].土壤,1990,22(4):194-197.
    [68]李世清,李生秀.半干旱地区农田生态系统中硝态氮的淋失[J].应用生态学报,2000,11(2) :240-242.
    [69]李双来,胡诚,乔艳,等.潮土性水稻土氮肥后效试验研究[J].湖北农业科学,2007,46(5):727-729.
    [70]李晓林,张福锁,米国华.平衡施肥与可持续优质蔬菜生产[M].北京:中国农业大学出版社,2000.
    [71]李晓鸣,孙彬,孙磊,等.黑土土壤硝态氮时空变异对蔬菜硝酸盐含量的影响[J].中国农学通报,2006.22(2):241-244.
    [72]李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土中硝态氮累积的影响[J].干旱地区农业研究,2003,2(31):38-42.
    [73]李新鹏,童依平.植物吸收转运无机氮的生理及分子机制[J].植物学通报,2007,24(6):714-725.
    [74]李艳,王娟,马腾飞,等.基于颜色特征的加工番茄叶片氮素评价初步研究[J].西北农业学报,2007,16(3):175-179.
    [75]李元,高丽红,吴艳飞,等.夏季填闲作物对日光温室土壤环境的影响[J].沈阳农业大学学报,2006,37(3):531-534.
    [76]李战国.樱桃番茄在滴灌栽培时氮肥的合理施用量研究[J].长江蔬菜,2008,B08:42-44.
    [77]李志宏,刘宏斌,张云贵.叶绿素仪在氮肥推荐中的应用研究进展[J].植物营养与肥料学报,2006,12(1):125-132.
    [78]李志宏,张福锁,郭素英.菜田土壤有效氮的动态研究[J].土壤通报,2001,1(32):19-21.
    [79]李宗新,董树亭,王空军,等.不同肥料运筹对夏玉米田间土壤氮素淋溶与挥发影响的原位研究[J].植物营养与肥料学报,2007,13(6):998-1005.
    [80]栗岩峰,李久生,李蓓.滴灌系统运行方式和施肥频率对番茄根区土壤氮素动态的影响[J].水利学报,2007,38(7):857-865.
    [81]梁运江,依艳丽,许广波,等.水肥耦合效应对保护地辣椒肥料氮、磷经济利用效率的影响[J].土壤通报,2007,38 (6) :1141-1144.
    [82]刘春增,寇长林,王秋杰.长期施肥对砂土肥力变化及硝态氮积累和分布的影响[J].土壤通报,1996,27 (5):216–218.
    [83]刘宏斌,李志宏,张维理,林葆.露地栽培条件下大白菜氮肥利用率与硝态氮淋溶损失研究[J].植物营养与肥料学报,2004,10(3):286-91.
    [84]刘宏斌,李志宏,张云贵,等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692-698.
    [85]刘军,高丽红,黄延楠.日光温室不同温光环境下番茄对氮磷钾吸收规律的研究[J].中国农业大学学报,2004 ,9(2):27-30.
    [86]刘敏超,曾长立.氮肥施用对冬小麦氮肥利用率及土壤剖面硝态氮含量动态[J].农业现代化研究,2000,21(5):309-312.
    [87]刘瑞显,郭文琦,陈兵林,等.棉花花铃期短期干旱下氮素对干物质及氮素累积分配的影响[J].西北植物学报, 2008,28(6):1179-1187.
    [88]刘伟,徐坤,王惠林,等.氮肥用量对菠菜生长及产量和品质的影响[J].中国蔬菜,2007(1):21-23.
    [89]刘永刚,武志杰,陈利军,等.抑制剂尿素施用对芹菜生长和品质的影响[J].生态学杂志,2006,25(9):1024-1027.
    [90]刘永立,王宏燕,孙聪姝,等.黑龙江省麦田系统氮肥效益分析[J].东北农学院学报,1992,23(1):6-11.
    [91]刘兆辉,江丽华,张文君,等.氮、磷、钾在设施蔬菜土壤剖面中的分布及移动研究[J].农业环境科学学报,2006,25(增刊):537-542.
    [92]刘子凡,黄洁.作物栽培总论[M].北京:中国农业科学技术出版社,2007.
    [93]龙锦林,杨守祥,史衍玺.控释氮肥对温室番茄增产效应及利用率的研究[J].北方园艺,2003,5:38-40.
    [94]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2001.
    [95]鲁如坤.我国30、40年代南方土壤的养分概况和作物产量水平[J].土壤.1999(1):19-27.
    [96]陆安祥,赵云龙,王纪华,等.不同土地利用类型下氮、磷在土壤剖面中的分布特征[J].生态学报,2007,27(9):3923-3929.
    [97]马文奇,毛达如,张福锁.山东省蔬菜大棚养分累积状况[J].磷肥与复肥,2000,15(3):65-67.
    [98]马秀顷,杜春红.亚硝酸盐中毒临床分析[J].中国社区医师(综合版),2005,7(110):29-30.
    [99]孟建,李雁鸣,党红凯.施氮量对冬小麦氮素吸收利用、土壤中硝态氮积累和籽粒产量的影响[J].河北农业大学学报,2007,30(2):1-5.
    [100]宁建凤,邹献中,杨少海,等.有机无机氮肥配施对土壤氮淋失及油麦菜生长的影响[J].农业工程学报,2007,23(11):95-100.
    [101]潘家荣,巨晓棠.高肥力土壤冬小麦/夏玉米轮作体系中化肥氮去向研究.核农学报,2001,15(4):207-212.
    [102]彭家元,苏旭光.广东土壤之肥料田间试验一报[J].土壤与肥料(浙江省化学肥料管理处编),1937,1(1-2):3-24.
    [103]钱海燕,王兴祥,黄国勤,等.施肥对连作蔬菜地蔬菜产量和土壤氮素含量的影响[J].中国农学通报,2008,24(7):270-275.
    [104]秦巧燕,贾陈忠,同延安,等.施用氮肥对设施栽培土壤硝态氮累积量的影响[J].安徽农业科学,2007,35(1):152-153.
    [105]屈兴红,何文寿,何进智.填闲作物防治保护地土壤硝酸盐淋溶损失的研究进展[J].农业科学研究,2007,28(2):72-75.
    [106]冉伟,谢永生,郝明德.渭北旱塬苹果园土壤矿质氮累积与分布研究[J].干旱地区农业研究,2008,26(3):157-160.
    [107]任智慧,李花粉,陈清,等.甜玉米填闲减缓菜田土壤硝酸盐淋溶的研究[J].农业工程学,2006,22(9):245-249.
    [108]任智慧.京郊露地菜田土壤硝酸盐累积及阻控因素[D].硕士学位论文.北京:中国农业大学,2003.
    [109]任祖淦,邱孝煊,蔡元呈,等.施用化学氮肥对蔬菜硝酸盐的积累及其治理研究[J].土壤通报,1999,30(6):265- 267.
    [110]宋玉芳,任丽萍,许华夏.不同施肥条件下旱田养分淋溶规律实验研究[J].生态学杂志,2001,20(6):20–24.
    [111]孙爱文,石元亮,张德生,等.硝化/脲酶抑制剂在农业中的应用[J].土壤通报,2004,35(3):357-361.
    [112]孙波,王兴祥,张桃林.红壤养分淋失的影响因子[J].农业环境科学学报,2003,22(3):257-262.
    [113]孙文涛,娄春荣,王聪翔,等.不同灌溉方法对不同氮肥在温室土壤--植株中的氮素分配影响[J].土壤通报,2008.39(4):770-774.
    [114]孙文涛,张玉龙,娄春荣.灌溉方法对温室番茄栽培尿素氮利用影响的研究[J].核农学报,2007,21(3):295-298,267.
    [115]孙小凤.不同供氨水平对油白菜产量和品质的影响[J].土壤肥料,2005,(4):11-13.
    [116]孙志梅,刘艳军,梁文举,等.新型脲酶抑制剂LNS与双氰胺配合施用对菜田土壤尿素氮转化及蔬菜生长的影响[J].土壤通报,2005.36(5):803-805.
    [117]汤丽玲,陈清,李晓林,等.日光温室秋冬茬番茄氮素供应目标值的研究[J].植物营养与肥料学报,2005,11(2):230-235.
    [118]汤丽玲,陈清,张福锁,等.日光温室番茄的氮素追施与反馈调控[J].植物营养与肥料学报,2004,10(4):391-397.
    [119]汤丽玲,陈清,张宏彦,等.不同灌溉与施氮措施对露地菜田土壤无机氮残留的影响[J].植物营养与肥料学报,2002,8(3):282-287.
    [120]汤丽玲,张晓晟,陈清,等.蔬菜氮素营养与品质[J].北方园艺,2002(3):6-7.
    [121]汤丽玲.日光温室番茄的氮素追施调控技术及其效益评估[D].博士学位论文.北京:中国农业大学,2004.
    [122]唐莉莉,陈竹君,周建斌.蔬菜日光温室栽培条件下土壤养分累积特性研究[J].干旱地区农业研究,2006.24(2):70-74.
    [123]同延安,石维,吕殿青,等.陕西三种类型土壤剖面硝酸盐累积、分布与土壤质地的关系[J].植物营养与肥料学报,2005,11(4):435-441.
    [124]王百群,戴鸣钧.土壤不同形态氮素在剖面中移动特征的模拟研究[J].水土保持研究,2000.7(4):117-122.
    [125]王朝辉宗志强李生秀.菜地和一般农田土壤主要养分累积的差异[J].应用生态学报,2002,13(9):1091-1094.
    [126]王朝辉,李生秀,王西娜,等.旱地土壤硝态氮残留淋溶及影响因素研究[J].土壤,2006,38(6):676-683.
    [127]王朝辉,田霄鸿,李生秀.叶类蔬菜的硝态氮累积及成因研究[J].生态学报,2001,21(7): 1136-1141.
    [128]王朝辉,宗志强,李生秀,等.蔬菜硝态氮累积及菜地土壤硝态氮残留[J].环境科学,2002,23(3):79-83.
    [129]王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点[J].中国生态农业学报,2001,9(1):16-18.
    [130]王东,于振文,于文明,等.施氮水平对高产麦田土壤硝态氮时空变化及氨挥发的影响[J].应用生态学报,2006,17(9):1593-1598.
    [131]王红霞,周建斌,雷张玲,等.有机肥中不同形态氮及可溶性有机碳在土壤中淋溶特性研究[J].农业环境科学学报,2008,27(4):1364-1370.
    [132]王辉,董元华,安琼,孙红霞高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究─以南京市南郊为例[J].土壤,2005,37(5):530-533.
    [133]王克武,肖艳,贾小红,等.滴灌施肥条件下番茄施氮量的确定[J].中国蔬菜,2005,z1:67-69.
    [134]王丽娜.春玉米-蔬菜轮作与春玉米单作农学、环境和经济效益评价[D].硕士学位论文.北京:中国农业大学,2006.
    [135]王利,杜森,王激清,等.中国氮肥消费状况及其发展展望[J].化肥工业,2006,4(33):1-6.
    [136]王柳,张福墁,魏秀菊,等.不同氮肥水平对日光温室黄瓜品质和产量的影响[J].农业工程学报,2007,23(12):225-229.
    [137]王敏,张胜全,方保停,等.氮肥运筹对限水灌溉冬小麦产量及氮素利用的影响[J].中国农学通报,2007,23(7):349-353.
    [138]王平,田长彦,赵振勇.新疆新和县郊区菜地硝态氮的淋洗调查[J].干旱区研究,2004,21(1):64-66.
    [139]王启现,王璞,王秀玲,等.黄淮海平原玉米施氮量对后茬小麦土壤剖面硝态氮和产量的影响[J].生态学报,2006,26(7):2275-2280.
    [140]王庆,王丽,赫崇岩,等.过量氮肥对不同蔬菜中硝酸盐积累的影响及调控措施研究[J].农业环境保护,2000,19(1):46-49.
    [141]王荣萍,黄建国,袁玲,等.重庆市主要土壤类型硝酸氮淋失及其影响因素[J].水土保持学报,2004,18(5):35-38.
    [142]王少平,高效江,胡雪峰,等.上海西郊麦期氮素淋溶定位研究[J].环境污染与防治,2002,24(2):68-70.
    [143]王思萍.大棚栽培对土壤盐渍化的影响[J].安徽农业科学,2007,35(10):2950-2951.
    [144]王西娜,王朝辉,李生秀.黄土高原旱地冬小麦/夏玉米轮作体系土壤的氮素平衡[J].植物营养与肥料学报,2006,12(6):759-764.
    [145]王西娜,王朝辉,李生秀.施氮量对夏季玉米产量及土壤水氮动态的影响[J].生态学报,2007,27(1):197-204.
    [146]王霞,董元华.太仓菜地土壤硝态氮状况[J].土壤,2004,36(1):68-70.
    [147]王晓英,贺明荣,刘永环,等.水氮耦合对冬小麦氮肥吸收及土壤硝态氮残留淋溶的影响[J].生态学报,2008,28(2):685-694.
    [148]王鑫.控释尿素对大棚黄瓜氮素利用和品质的影响[J].干旱地区农业研究,2008,26(6):124-128.
    [149]王兴武,于强,张国梁.鲁西北平原夏玉米产量与土壤硝态氮淋失[J].地理研究,2005,24(1):140-15.
    [150]王正银,李会合,李宝珍,等.氮肥、土壤肥力和采收期对小白菜体内硝酸盐含量的影响[J].中国农业科学,2003,36(9):1057-1064.
    [151]王志勇,红梅,杨殿林,等.供氮水平和有机无机配施对夏玉米产量及土壤硝态氮的影响[J].中国土壤与肥料,2008,6:11-14.
    [152]魏迎春,李新平,刘刚,等.杨凌地区大棚土壤硝态氮累积效应研究[J].水土保持学报,2008,22(2):570-670,190.
    [153]吴建繁.北京市无公害蔬菜诊断施肥与环境效应研究[D].博士学位论文.武汉:华中农业大学,2001.
    [154]吴金水,郭胜利,党廷辉.半干旱区农田土壤无机氮积累与迁移机理[J].生态学报,2003,23(10):2040-2049.
    [155]吴永成,周顺利,王志敏,等.华北地区夏玉米土壤硝态氮的时空动态与残留[J].生态学报,2005,25(7):1620-1625.
    [156]习金根,周建斌,赵满兴,等.滴灌施肥条件下不同种类氮肥在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2004,10(4):337-342.
    [157]习金根,周建斌.不同灌溉施肥方式下尿素态氮在土壤中迁移转化特性的研究[J].植物营养与肥料学报,2003,9(3):271-275.
    [158]肖时运,刘强,荣湘民,等.不同施氮水平对莴苣产量、品质及氮肥利用率的影响[J].植物营养与肥料学报,2006,12(6):913-917.
    [159]谢红梅,朱波,朱钟麟.无机与有机肥配施下紫色土铵态氮、硝态氮时空变异研究—夏玉米季[J].中国生态农业学报,2006,14(2):103-106.
    [160]谢红梅,朱波,朱钟麟.紫色土NH4+-N、NO3--N的吸附-解吸特性研究[J].土壤肥料,2006,(2):19-22.
    [161]熊亚梅,梁银丽,周茂娟,等.氮肥水平对甘蓝产量和品质及土壤硝态氮含量的影响[J].西北植物学报,2007,27(4):0839-0843.
    [162]熊又升,陈明亮,何圆球,等.包膜尿素对芹菜产量、品质和氮素平衡的影响[J].植物营养与肥料学报,2005,11(1):104-109.
    [163]徐坤范,李明玉,艾希珍.氮对日光温室黄瓜呈味物质、硝酸盐含量及产量的影响[J].植物营养与肥料学报,2006.12(5):717-721.
    [164]徐明刚,梁国庆,张夫道,等.中国土壤肥力演变[M].北京:中国农业科学出版社,2006.
    [165]许爱霞,黄高宝,李玲玲,等.半干旱地区春小麦氮肥后效的研究[J].甘肃农业大学学报,2008,2(43):105-109.
    [166]许安民,张英利,李紫燕,等.西安地区日光温室土壤养分与盐分累积状况研究[J].干旱地区农业研究,2007,25(6):193-196.
    [167]许映祥,周志宏.大棚番茄徒长原因与防治技术[J].上海蔬菜,2008,6:86-86.
    [168]杨学云,张树兰,袁新民,等.长期施肥对娄土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-138.
    [169]杨雅杰.应用15N尿素研究硅对水稻吸收肥料氮的影响[J].黑龙江农业科学,2003,(3):15-16.
    [170]杨玉惠,张仁陟.黄土高原半干旱地区施氮对土壤硝态氮分布与累积的影响[J].甘肃农业大学学报,2006,6:102-107.
    [171]杨治平,陈明昌,张强,等不同施氮措施对保护地黄瓜养分利用效率及土壤氮素淋失影响[J].水土保持学报,2007.21(2):57-60.
    [172]杨治平,周怀平,张强,等.不同施肥措施对旱地玉米土壤硝态氮累积的影响.中国生态农业学报,2006,14(1):122-124.
    [173]尧水红,张斌,胡锋.不同利用年限不同坡位的红壤水稻田化肥氮去向[J].土壤,2007,4:582-588.
    [174]姚春霞,陈振楼,陆利民,等.上海市蔬菜地土壤硝态氮状况研究[J].生态环境,2005,14(2):220-223.
    [175]易镇邪,王璞,刘明,等不同类型氮肥与施氮量下夏玉米水、氮利用及土壤氮素表观盈亏[J].水土保持学报,2006,20(1):63-67.
    [176]尹飞,毛任钊,傅伯杰,等.盐渍区农田氮肥施用量对土壤硝态氮动态变化的影响[J].生态学报,2007,27(2):596-602.
    [177]于红梅,曾燕舞.填闲作物的种植对下茬蔬菜产量及土壤硝态氮含量的影响[J].安徽农业科学,2007,5(8):2336-2337,2339.
    [178]于红梅,李子忠,龚元石,等.氮肥投入水平对蔬菜地硝态氮淋洗特征的影响[J].土壤, 2006,38(6):703-707.
    [179]于红梅,李子忠,龚元石.传统和优化水氮管理对蔬地土壤氮素损失与利用效率的影响[J].农业工程学报,2007,23 (2):54-59.
    [180]于红梅.不同水氮管理下蔬菜地水分渗漏和硝态氮淋洗特征的研究[D].博士学位论文.北京:中国农业大学,2005.
    [181]余贵芳,毛知耘,周则芳.氯素在紫色土中的移动和淋失特点[J].土壤,1999,31(4):214-216.
    [182]袁新民,同延安,杨学云,等.有机肥对土壤NO3--N累积的影响[J].土壤与环境,2000,9(3):197-200.
    [183]袁新民,王周琼.硝态氮的淋洗及其影响因素[J].干旱地区农业研究,2000,17(4):46-52.
    [184]袁新民,杨学云.不同施氮量对土壤NO3--N累积的影响[J].干旱地区农业研究,2009,19(1):8-13,39.
    [185]张春伦,朱兴明,胡思农.缓释尿素的肥效及氮素利用率研究[J].土壤肥料,1998(6):17-20.
    [186]张大克.蔬菜产量氮肥效应预测的理论模型[J].生物数学学报,1998,1(13):118-123.
    [187]张国红,袁丽萍,郭英华,等.不同施肥水平对日光温室番茄生长发育的影响[J].农业工程学报,2005.21(增刊):151-154.
    [188]张含彬,伍晓燕,杨文钰.氮肥对套作大豆干物质积累与分配的影响[J].大豆科学,2006,4(25):404-409.
    [189]张宏彦,陈清,李晓林,等.利用不同土壤Nmin目标值进行露地花椰菜氮肥推荐[J].植物营养与肥料学报,2003,9(3):342-347.
    [190]张宏彦,陈清,汤丽玲,等.不同水氮管理对菠菜生长和水氮利用的影响[J].植物营养与肥料学报,2002,8(1):48-53.
    [191]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    [192]张建新,王爱云,吕昭智,等.不同节水灌溉方式下N肥在土壤中的空间变异研究[J].农业环境科学学报,2006.25(B09):543-545.
    [193]张庆忠,陈欣,沈善敏.农田土壤硝酸盐积累与淋失研进展[J].应用生态学报,2002 ,13 (2):233-238.
    [194]张石宝,李树云,胡虹,等.氮对冬玉米干物质生产及生理特性的影响[J].广西植物,2002,22(6):543-546,552.
    [195]张树兰,同延安,梁东丽,等.氮肥施用量和施用时期对土壤剖面硝态氮移动的影响[J].土壤学报,2004,41 (2):270-277.
    [196]张维理,武淑霞,冀宏杰.中国农业面源污染形势估计及控制对策I.21世纪初期中国农业面源污染的形势估计[J].中国农业科学, 2004,37(7):1008-1017.
    [197]张霞,罗延庆,张胜全,等.氮肥对节水栽培冬小麦产量、土壤硝态氮残留的影响[J].水土保持学报,2006,20(4):102-105.
    [198]张晓晟.集约化蔬菜生产中氮素综合管理系统建立和应用[D].博士学位论文.北京:中国农业大学,2005.
    [199]张学军,赵营,陈晓群,等.滴灌施肥中施氮量对两年蔬菜产量、氮素平衡及土壤硝态氮累积的影响[J].中国农业科学,2007,40(11):2535-2545.
    [200]张学军,赵营,陈晓群,等.氮肥施用量对设施番茄氮素利用及土壤NO3--N累积的影响[J].生态学报,2007,27(9):3761-3768.
    [201]张永丽,于振文.灌水量对不同小麦品种籽粒品质、产量及土壤硝态氮含量的影响[J].水土保持学报,2007,21(5):155-158,174.
    [202]章明清,陈防,林琼,等.施肥对菜园土壤养分淋溶流失浓度的影响[J].植物营养与肥料学报,2008,14 (2):291-99.
    [203]赵风艳,魏自民,陈翠玲.氮肥用量对蔬菜产量和品质的影响[J].农业系统科学与综合研究,2001,17 (1):43-47.
    [204]赵凤霞,姜远茂,彭福田,等.甜樱桃对15N尿素的吸收、分配和利用特性[J].应用生态学报,2008,3(19):686-690.
    [205]赵继献,程国平,任廷波,等.不同氮水平对优质甘蓝型黄籽杂交油菜产量和品质性状的影响[J].植物营养与肥料学报,2007,13(5):882-889.
    [206]赵俊晔,于振文.高产条件下施氮量对冬小麦氮素吸收分配利用的影响[J].作物学报,2006,4:484-490.
    [207]赵宇,任涛,刘新明,等.氮素供应及修剪方式对设施樱桃番茄产量及氮素营养的影响[J].植物营养与肥料学报,2008,14(5):982-986.
    [208]赵允格,邵明安.不同施肥条件下农田硝态氮迁移的试验研究[J].农业工程学报,2002,18(4):37-40.
    [209]郑险峰,李紫燕,李世清.农田浅层土壤氮素空间分布研究[J].土壤与环境,2002,11(4):370-372.
    [210]中华人民共和国统计局[M].中国统计年鉴.北京:中国统计出版社,2008.
    [211]周建斌,陈竹君,唐莉莉.日光温室土壤剖面矿质态氮的含量、累积及其分布特性[J].植物营养与肥料学报,2006,12(5):675-680.
    [212]周建斌,翟丙年,陈竹君,等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):332-33.
    [213]周礼恺,严昶昇,武冠云,等.土壤肥力实质的研究Ⅲ.红壤[J].土壤学报,1986,23(3):193-203.
    [214]周顺利,张福锁,王兴仁.土壤NO3--N时空变异与土壤氮素表观盈亏研究Ⅱ冬小麦[J].生态学报,2001.21(11):1782-1789.
    [215]周顺利,张福锁.土壤硝态氮时空变异与土壤氮素表观盈亏Ⅱ.夏玉米[J].生态学报,2002,22(1):48-53.
    [216]朱建华.蔬菜保护地氮素去向及其利用研究[D].博士学位论文.北京:中国农业大学,2002.
    [217]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [218]朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    [219]朱兆良.中国土壤氮素[M].南京,江苏科技出版社,1992.
    [220]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):778-783.
    [221]诸海焘,吕卫光,余廷园.不同氮肥用量对青花菜品质和产量的影响[J].北方园艺,2006 (1):6-7.
    [222]庄舜尧,孙秀廷.肥料氮在蔬菜地中的去向及平衡[J].土壤,1997,2:80-83.
    [223]左海军,张奇,徐力刚.农田氮素淋溶损失影响因素及防治对策研究[J].环境污染与防治, 2008,l2(30):83-89.
    [224] Abril A,Baleani D, Casado-Murillo N, et al.Effect of wheat crop fertilization on nitrogen dynamics and balance in the Humid Pampas[J]. Argentina , Agric. Ecosyst.Environ,2007,(2):171–176.
    [225] Allaire-Leung S E,Wu L,Mitchell JP,et al.Nitrate leaching and soil nitrate content as affected by irrigation uniformity in a carrot field[J].Agricultural Water Management,2001,48(1):37-50.
    [226] Amr A,Hadidi N.Effect of cultivar and harvest date on nitrate (NO3) and nitrite (NO2) content of selected vegetables grown under open field and greenhouse conditions in Jordan[J].Journal of Food Composition and Analysis,2001,14(1):59-67.
    [227] Andraski TW,Bundy LG,Brye KR.Crop management and corn nitrogen rate effects on nitrate leaching[J].Journal of Environmental Quality,2000,29(4):1095-1103.
    [228] Aneja V P ,Chauhan J P,WalkerJT.Characterization of atmospheric ammonia volatilizations from swine wastes storage and treatment lagoons[J]. Geophysics.Ress.Atoms,2000,105:11535-11545.
    [229] Aparicio V,Costa J L,Zamora M. Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina[J].Agricultural Water Management,2008,95(12):1361-1372.
    [230] Askegaard M,Olesen J E, Kristensen K.Nitrate leaching from organic arable crop rotations:effects of location,manure and catch crop[J].Soil Use Manage,2005,21:181-188.
    [231] Babiker I S, Mohamed A.Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system[J].Environment International,2004,29(8):1009-1017.
    [232] Barton L,ColmerTD.Irrigation and fertil,izer strategies for minimizing nitrogen leaching from turfgrass[J].Agric.Water Manage,2006,80,160-175.
    [233] Bassanino M,Grignani C, SaccoD,et al.Nitrogen balances at the crop and farm-gate scale in livestock farms in Italy. Agriculture, Ecosystems & Environment
    [234] Beaudoin N,Saad J K,Laethem C V,et al.Nitrate leaching in intensive agriculture in Northern France : Effect of farming practices , soils and crop rotations[J].Agriculture,Ecosystems & Environment,2005,111(1-4):292-310.
    [235] Beegle D B,Carton O T,Baily JB.Nutrient management planning:justification, theory,practice[J].Environ.Qual,2000,29(1):72-79.
    [236] Belanger G,Ziadi N,Walsh J R,et al.Residual soil nitrate after potato harvest[J].Environ.Qual,2003,32(2):607-612.
    [237] Bengtsson H,Oborn I,Jonsson S,etal.Field balances of some mineral nutrients and trace elements in organicand conventional dairy farming-a case study at Ojebyn,Sweden[J].European journal of agronomy,2003,20:101-116.
    [238] Berger A.Research on Dicyandiamide as a nitrification inhibitor and future outlook[J].Commum Soil Sci Plan,1989,20(18 &20):1933-1956.
    [239] Bergstrom L,Brink N.Effects of differentiated applications of fertilizer N leaching losses and distribution of inorganic N in soil[J]. Plant and Soil,1986 93 (3):333-345.
    [240] Berntsen ?,Olesen J E,Petersen B M,et al.Long-term fate of nitrogen uptake in catch crops[J].European Journal of Agronomy, 2006,25(4):383-390.
    [241] Bottex B,Dorne JLCM,Carlander D,et al. Risk-benefit health assessment of food - food fortification and nitrate in vegetables[J].Trends in food science & technology,2008,19(1):0924-2244.
    [242] Bremer E,Kuikman P.Influence of competition for nitrogen in soil on net mineralization of nitrogen[J].Plant and Soil,1997,190:119-126.
    [243] Brown K W,Duble R L ,Thomas J C. Influence of management and season on fate of N applied to golf greens[J].Agron.J,1977,69:667-671.
    [244] Chang C Y, Cormick P V M, Newman S,et al .Isotopic indicators of environmental change in a subtropical wetland[J].Ecological Indicators,2009,9(5): 825-836.
    [245] Chen BM,Wang ZH,Li SX,et al.Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reeducates activity in three leafy vegetables[J].Plant Science, 2004,167(3):635-643.
    [246] Chen Q,Zhang X S,Zhang H Y,et al .Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing regin[J].Nutrient Cycling in Agroecosystens,2004,69(1):51-58.
    [247] Cookson WR,Rowarth JS,Cameron KC.The effect of autumn applied 15N-labelled fertilizer on nitrate leaching in a cultivated soil during winter[J]. Nutrient Cycling in Agroecosystems, 2000,56(2):99-107.
    [248] Darwish T,Atallah S,Hajhasan , et al. Management of nitrogen by fertigation of potato in Lebanon[J].Nutr Cycl Agroecosyst, 2003,67:1-11.
    [249] Di HJ,Cameron KC.Nitrate leaching in temperate agro ecosystems:Sources, factors and mitigating strategies[J].Nutrient Cycling in Agro ecosystems,2002,46:237-256.
    [250] Facia J M,Bensacia A,Slatinb A,et al.A case study for irrigation modernization I . Characterization of the district and analysis of water delivery records[J] .Agricultural Water Management,2000,42(3):313-314.
    [251] Fan J,Hao M D,Dang T H.Effects of fertilization on NO3--N distribution in soilprofiles [J].Soil and Environmental Science,2000,9(1):23-26.
    [252] Fink M,Scharpf H C.N-EXPERT-a decision support system for vegetable fettilization in field[J].Acta Horticulture,1993,339:67-74.
    [253] Gaines T P,Gaines S T.Soil texture effect on nitrate leaching in soil percolates[J].Communications in Soil Science and Plant Analysis,1994,25(13-14) :2561-2570.
    [254] Gallardo M,Thompson R B,Fernández M D,et al.Effect of applied N concentration in a fustigated vegetable crop on soil solution nitrate and nitrate leaching loss[J].Acta Hort, 2006,700:221–224.
    [255] Galloway J N,Dentener FJ,Marmer E,et al. The Environmental Reach of Asia[J].Annual Review of Environmentalment and Rresources,2008,33:1543-5938.
    [256] Galloway J N.Nitrogen mobilization in Asia[J].Nutrient Cycling in Agro ecosystems, 2000,57(1):1385-1314.
    [257] Gelfand I,Yakir D.Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest[J]. Soil Biology and Biochemistry,2008,2(40):415-424. Geophysics.Rees.Atoms,2000,105:11535–11545.
    [258] Gheysaria M,Mirlatifia S M, Homaeeb M,et al.Nitrate leaching in a silage maize field under different irrigationand nitrogen fertilizer rates[J].Agricultural Water Management,2009 ,96:946–954.
    [259] Ghuman B S,Verma S M,Prihar S S.Effect of application rate,initial soil wetness,and redistribution time on salt displacement bv water[J].Soil Sci Soc Amer Proc,1975,39:7-10.
    [260] Goswamia D,Kalitab P K,Cookeb R A C.Nitrate-N loadings through subsurface environment to agricultural drainage ditches in two flat Midwestern (USA) watersheds McIsaac[J]. Agricultural Water Management,2009,96:1021–1030.
    [261] Granados M R,Thompson R B,Fernández M D,et al.Gázquez, Pérdida de nitratos por lixiviación de un cultivo de tomate en suelo bajo condiciones de invernadero[J].Actas del XXIII Congreso Nacional de Riegos El Eche,Spain,2005,85–87.
    [262] Gustafson A,Fleischer S,Joelsson A.A catchment-ori-ented and cost effective policy for water protection[J]. Ecological Engineering,2000,14(4):419-427.
    [263] Halberg,N,Verschuur,G,Goodlass,G.Farm level environmental indicators;are they useful? An overview of green accounting systems for European farms[J]. Agriculture, Ecosystems & Environment,2005,105:195-212.
    [264] Halvorson A D,Curtis A.Nitrogen fertilizer requirements in an annual dry land cropping system[J].Agron J,1994,86:315-318.
    [265] HartT K,Bendixen W E,Wierdsma L.The value of persidedress soil nitrate testingas a nitrogen management tool in irrigated vegetable production[J].HortScience, 2000,35(4):651-656.
    [266] Hauugaard-Nielsen H,Ambus P,Jensen E S.The comparison of nitrogen use and leaching in sole cropped versus intercropped pea and barley[J]. Nutr Cycl Agroecosyst,2003,65:289-300.
    [267] Heckman J R,Morris T,Sims J T,et al.Pre-sidedress soil nitrate testing is sffsctive for fall cabbage[J].Hort Science,2002,37(1):113-117.
    [268] Hedlund A,Witter E,Bui Xuan A.An assessment of N,P and K management by nutrient tbalances and flows on peril-urban smallholderfarms in Southern Vietnam[J].Eur.Agron,2003,20:71-87.
    [269] Heppner C,Jean LC. Dorne M,et al.The first risk benefit assessment of nitrate in vegetables:A European perspective[J].Toxicology Letters, 2008,180:65
    [270] Hochmuth GJ.Efficiency ranges for nitrate nitrogen and potassium for vegetable petiole sap quick test[J].Hort Technology,1994 (4) :218-222.
    [271] Huang W Y,Hewitt T I,Shank D.An analysis of on-farm costs of timing N applications to reduce N losses [J].Journal of agricultural and resource economics,1998,23(2):445-467.
    [272] Jalali M. Nitrates leaching from agricultural land in Hamadan,western Iran[J]. Agric.Ecosystem Environ,2005,110:210–218.
    [273] Jégo G,Martínez M,Antigüedad I,et al.Evaluation of the impact of various agricultural practices on nitrate leaching under the root zone of potato and sugar beet using the STICS soil–crop model[J].Science of The Total Environment,2008,394(2-3):207-221.
    [274] Jolley V D ,Pierre W H.Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen rate experiments with corn[J].Soil Sci.Soc.Am.J,1977,41:373-378.
    [275] Ju X T,Kou C L,Zhang F S ,et al.Nitrogen balance and groundwater nitrate contamination:Comparison among three intensive cropping systems on the North China Plain[J]. Environmental Pollution,2006,143:117-125.
    [276] Ju XT,Liu XJ,Zhang FS,et al.Nitrogen fertilization ,soil nitrate accumulation, and policy recommendations[J].Ambio,2004,3(6):300-305.
    [277] Ju XT,Xing G X,Chen X P,et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS,2009,106:3041-3046.
    [278] K?nk?nen H,Eriksson C.Effects of undersown crops on soil mineral N and grain yield of spring barley[J].European Journal of Agronomy,2007,27(1): 25-34.
    [279] Koelsch R . Evaluating livestock system environmental performance with whole-farm nutrient balance[J].Environ.Qual ,2005,34:149-155.
    [280] Kraft GJ,Stites W.Nitrate impacts on groundwater from irrigated-vegetablesystems in a humid north-central US sand plain[J]. Agriculture, Ecosystems & Environment,2003,100(1) :63-74.
    [281] Kristensen H L,Thorup-Kristensen K.Root growth and nitrate uptake of three different catch crops in deep soil layer[J].Soil Science Society of America Journa,2004,68(2):1803-1813.
    [282] Lecompte F,Bressoud F, Pares L, et al.Root and nitrate distribution as related to the critical plant N status of a fustigated tomato crop[J].The journal of horticultural science & biotechnology,2008,2(83):223-231.
    [283] Li XX,Hu CS,Delgado J A,et al.Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in north china plain[J].Agricultural Water Management,2007,89(1-2):137-147.
    [284] Liang B C,Mackenzie A F.Changes of soil nitrate-nitrogen and de nitrification as affected by nitrogen fertilizer on two Quebec soils[J]. Journal of Environmental quality.1994,23 (3):521-525.
    [285] Linville KW,Smith G E.Nitrate content of soil cores from corn plots after repeated nitrogen fertilization[J].Soil Science,1971,112(4):249-255.
    [286] Mack U D,Feger K H,Gong Y,et al.Soil water balance and nitrate leaching in winter wheat–summer maize double-cropping systems with different irrigation and N fertilization in the North China Plain[J],Plant Nutr Soil Sci,2005,168:454-460.
    [287] Magdoff F R,Ross D,Amadon J.A soil test for nitrogen availability to corn[J].Soil Society of America Journal,1984,48:1301-1304.
    [288] Mengel K,Kirkby E A,Kosegarten H,et al.Principles of plant nutrition[M]. Baker & Taylor Books,2001.
    [289] Morton T G,Gold A J,Sullivan W M.Influence of overwatering and fertilization on nitrogen losses from home lawns[J].Environ.Quality,1988,17:124–130.
    [290] Ng HYF, Tan CS, Drury CF,Gaynor JD.Controlled drainage and sub-irrigation influences tile nitrate loss and corn yields in a sandy loam soil in Southwestern Ontario[J].Agric.Ecosyst.Environ.2002,90(1) :81–88.
    [291] Nuttal W F,Zandstra H G,Bowern K E.Exchangeable ammonium and nitrate-nitrogen relate to yield of Conquest barley grown as second or third crop after fallow in northeastern Saskatchewan.Can.J.5011Sei,1971,51:371-377.
    [292] Parris K.Agricultural nutrient balances as agri-environmental indicators:an OECD perspective[J].Environmental Pollution,1998,102:219-225.
    [293] Prakasa R E,Puttanna K.Evaluation of Dicyandiamide treated urea in Java citronella[J].Indian Soil Sci,1994,42(1):54-59.
    [294] Rajput T B S,Patel N.Water and nitrate movement in drip-irrigated onion under fustigation and irrigation treatments[J].Agric.Water Manage,2006,79:293–311.
    [295] Ramos C,Agut A , Lidon A L.Nitrate leaching in important horticultural crops ofthe Valencian Community region (Spain) [J].Environ.Pollut,2002,118:215–223.
    [296] Ramos C.Effect of agricultural practices on the nitrogen losses to the environment[J]. Fert.Res,1996,43:183–189.
    [297] Randall G W,Mulla D J.Nitrate-nitrogen in surface waters as influenced by climatic conditions and agricultural practice s [J].J.Environ.Qual,2001 30,337–344
    [298] Randall G W,Vetsch J A,Huffman J R.Nitrate losses in subsurface drainage from a corn–soybean rotation as affected by fall and spring application of nitrogen and nitrifying[J].J.Environ.Qual,2003,32,1764-1772.
    [299] Raun WR,Johnson GV.Soil2plant buffering of inorganic nitrogen in continuous winter wheat[J].Agron.J,1995,87:827- 834
    [300] Ren LP,Song YF,Xu HX,et al.Evaluation of nutrients in glebe2soiland its influence on groundwater[J].Journal of Agro environment Science,2001,20(3):133-136.
    [301] Riaz M,Mian I A, Malcolm S,et al. Extent and causes of 3D spatial variations in potential N mineralization and the risk of ammonium and nitrate leaching from an N-impacted permanent grassland near York[J]. UK.Environmental Pollution,2008,156(3):1075-1082
    [302] Riley J,Ortiz-onasterio I,Matson PA. Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico[J].Nutr Cycl Agro ecosyst,2001,61:223-236.
    [303] Rosati A,Troisi. Seasonal patterns of N uptake in eggplant grown with different N fertilizer levels[J].Acta Hor,2001,563:195-200.
    [304] Russell,E.J.The nature and amount of the Fluctuation in nitrate contents of arable soils[J].Agr.Sci,1914,6:18-57.
    [305] Russow R,Stange C F,Neue H U.Role of nitrite and nitric oxide in the processes of nitrification and gentrification in soil: Results from 15N tracer experiments[J]. Soil Biology and Biochemistry, 2009,4(41): 785-795.
    [306] Salo T,Turtola E.Nitrogen balance as an indicator of nitrogen leaching in Finland[J].Agriculture,Ecosystems and Environment,2006,113:98-107.
    [307] Sieling K,Kage H.N balance as an indicator of N leaching in an oilseed rape–winter wheat–winter barley rotation[J].Agric.Ecosystem.Environ,2006,115:261-269.
    [308] Singh B R,Uriyo A P,Lontu B J.Distribution and stability of organic forms of nitrogen in forest soil profiles in Tanzania[J].Soil Biology and Biochemistry,1978,10(2):105-108.
    [309] Singh B R,Uriyo A P,Tiisekwa B P M.Forms of nitrogen in cultivated soil profiles in Tanzania[J].Soil Biology and Biochemistry,1981,13(6):441-446。
    [310] Snyder G H,Augustin B J, Davidson J M. Moisture sensor-controlledirrigation for reducing N leaching in Bermuda grass turf[J].Agron.J,1984,76:964–969.
    [311] Song XZ,Zhao CX, Wang X L,et al.Study of nitrate leaching and nitrogen fate under intensive vegetable production pattern in northern China[J].Competes Rends Biologist,2009,332(4):385-392.
    [312] Stoddard C S,Grove J H,Coyne M S,Thom W O.Fertilizer, Tillage, and Dairy Manure Contributions to Nitrate and Herbicide leaching[J].Journal of Environmental Quality,2005,34(4):1354-1362.
    [313] Ten Berge H F M,Burgers S L G E,Van der Mee H Gr,et al.Residual inorganic soil nitrogen in grass and maize on sandy soil[J].Environmental Pollution, 2007,145(1):22-30.
    [314] Thompson R B,Granados M R,Gázquez J C, et al.Nitrate leaching losses from a recently developed intensive horticultural system in a previously disadvantaged region[J]. In: J J Schroder and J J Neeteson, Editors, N Management in Agroeco systems in Relation to the Water Framework Directive, Proceedings of 14th N Workshop, Plant Research International, The Netherlands ,2006, 420–422.
    [315] Thompson R B,Martínez-Gaitan C,Gallardo M,et al.Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of comprehensive survey[J].Agricultural Water Management, 2007,89(3):261-274.
    [316] Thorup-Kristensen K,Magid J,Jensen LS.Catch crops and green manures as biological tools in nitrogen management in temperate zones[J].Adv Agron,2003,79:227-301.
    [317] Thorup-Kristensen K,Nielsen NE.Modeling and measuring the effect of nitrogen catch crops on the nitrogen supply for succeeding crops[J].Plant Soil,1998,203:79-89.
    [318] Thorup-Kristensen K.Are differences in root growth of nitrogen catch crops important for their ability to reduce soil nitrate-N content, and how can this be measured[J]. Plant Soil ,2001,230:185–195.
    [319] Thorup-Kristensen K.Effect of deep and shallow root systems on the dynamics of soil inorganic N during 3-year crop rotations[J].Plant Soil,2006,288:233-248.
    [320] Umezawa Y,Hosono T,Onodera S,Siringan F,et al.Sources of nitrate and ammonium contamination in groundwater under developing Asian mega cities[J].Science of The Total Environment,2008,404(2-3):361-376.
    [321] Van Beak C L,Brower L,One-man O.The use of farm gate balances and soil surface balance as estimator for nitrogen leaching to surface water[J]. Nutrient Cycling in Agree ecosystems,2003,67:233-244.
    [322] Vázquez N,Pardo A,Suso M L ,et al.Drainage and nitrate leaching underprocessing tomato growth with drip irrigation and plastic mulching[J]. Agric.Ecosystem Environ,2006,112:313–323.
    [323] Vázquez N,Pardo A,Susoa M L,et al.A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetable crops[J].Plant Soil, 2005,269:297–308.
    [324] Vos J , Lvander P E. Nutrient cycling in a cropping system with potato, spring wheat,sugar beet,oats and nitrogen catch crops.I.Input and off take of nitrogen[J].phosphorus and potassium Nutrient Cycling in Agro ecosystems,2000,.56: 87–97.
    [325] Vos J ,Lvander P E. Nutrient cycling in a cropping system with potato, spring wheat, sugar beet oats and nitrogen catch crops. II.Effect of catch crops on nitrate leaching in autumn and winter[J].Patten Nutrient Cycling in Agro ecosystems,2004,70: 23-31.
    [326] Vos J ,Vander PU Tten P E L.Field observation on nit rogen catch crops.I. Potential and actual growth and nit organ accumulation in relation to sewing date and crop species [J].Plant and Soil,1997,195(2):299-309.
    [327] Waddell J T,Gupta S C,Moncrief J F,et al.Irrigation- and nitrogen-management impacts on nitrate leaching under potato[J].Journal of Environmental Quality,2000,29(1):251-261.
    [328] Wang HJ,Wu,LH,Zhu,YH,et al.Growth,nitrate accumulation,and macronutrient concentration of poncho as affected by external nitrate-N:Amino acid-N ratio[J].Journal of Plant Nutrition,2008.10-12(31):1789-1799.
    [329] Wang XB,Bailey LD,Grant CA.A review of fertilizer N behavior in soils,and effective N management under con2servation tillage systems[J].Progr Soil Sci,1995,23 (2):1-11.
    [330] Wei YP,Chen DL, Kelin H ,et al.Policy incentives for reducing nitrate leaching from intensive agriculture in desert oases of Alxa , Inner Mongolia ,China[J].Agricultural Water Management, 2009,96(7):1114-1119.
    [331] Wesaerman R L ,Boman R K,Raun W R,et al.Ammonium and nitrate nitrogen in soil profile of longterm winter wheat fertilization experiments[J].Agron.J,1994,86 :94-99.
    [332] Whitmore A P,Schr?der J J.Intercropping reduces nitrate leaching from under field crops without loss of yield:A modelling study[J].European Journal of Agronomy, 2007,27(1):81-88.
    [333] William R R ,Solie J B,Johnson G V ,et al .Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application[J] .Agron J ,2002,94:815-820.
    [334] Wyland L J,Jackaon L E,Schulbach K F.Soil-plant nitrogen dynamics followingincorporation of mature rye cover croon a lettuce production system[J].Journal of Agricultural Science(Cambridge),1995,124:17-25.
    [335] Yang L,Xue DS,Henry CL,et al. The effects of biosolids on nitrogen cycle and nitrate leaching in soil,Agro-nvi ron Protect.1997,16(4):182-186.
    [336] Yao L X, Li G L,Tu S H,et al.Salinity of animal manure and potential risk of secondary soil Stalinization through successive manure application[J].Science of The Total Environment,2007,383(1-2):106-114.
    [337] Yi X.On nitrogen fertilizer pollution by leaching.Agro-Environ Protect,1991,10 (5):223-226.
    [338] Zamora D S,Jose S,Napolitano K.Competition for 15N labeled nitrogen in a loblolly pine–cotton alley cropping system in the southeastern United States [J].Agriculture, Ecosystems & Environment,2009,1-2(131):40-50.
    [339] Zhao R F,Chen X P,Zhang F S,et al.Fertilization and Nitrogen Balance in a Wheat-Maize Rotation System in North China[J].Agron.J,2006,98(4):938-945.
    [340] Zhu Z,Wen Q,Freney J R ed.Fate and management of fertilizer nitrogen in agro ecosystemsin[J].The Netherlands,1997:239-279.
    [341] Zotarelli L,Scholberg J M,Dukes M D ,et al.Monitoring of nitrate leaching in sandy soils[J].Environ.Qual,2007,36:953–962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700