用户名: 密码: 验证码:
日光温室栽培土壤固—液相离子累积及交换特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,日光温室在我国的发展十分迅速,已成为我国设施农业产业的主体。生产中十分重视肥料的施用,导致过量施肥、养分比例失调等问题相当普遍,由此产生了一系列不良后果,包括土壤盐分累积、养分利用率低、土壤质量退化及环境风险增加、有害物质积累、生物多样性衰退等,严重影响了日光温室产业的可持续发展。这些问题已引起不少研究者的重视,但已有研究更多的集中在温室土壤盐分累积及合理施肥等方面。土-液界面离子交换作用是陆地生态系统固相与液相物质交换的主要方式,不仅与土壤养分的保持和供应,而且与养分在土壤中的迁移和转化有紧密的联系。日光温室大量的养分投入,无疑会频繁地影响土壤固-液界面离子交换过程进行的方向和程度。日光温室栽培下出现的上述问题,实际上是过量施肥影响土-液界面离子交换后的表象。目前,关于日光温室这一高强度集约栽培方式下土壤养分累积导致的土壤离子组成变异而产生的土壤不健康问题以及土壤固-液相界面离子交换作用特性变化等对土壤质量和生态环境风险影响的研究相对较少。
     本文以陕西省关中地区日光温室为研究对象,采用常规化学分析方法、模拟试验与物理化学方法相结合,研究了日光温室栽培下不同土壤养分累积及交换性养分(K~+、Ca~(2+)、Mg~(2+)等)含量及比例的变化,不同氮肥品种(尿素、碳酸氢铵、硫酸铵)及磷钾肥施用对日光温室土壤溶液电导率(EC)和不同离子组成及比例的影响,外源不同K~+、Ca~(2+)、Mg~(2+)比例和浓度对土壤离子吸附交换特性的效应,以及温室栽培对土壤K-Mg、K-Ca交换选择系数、自由能变化等的影响。旨在揭示日光温室栽培土壤固-液相离子组成、比例、盐分累积和离子交换特性的演变趋势和机理,为有效评价土壤固-液界面养分离子交换特性与土壤养分供应的关系,针对性地调节土液界面养分离子的平衡状况,协调作物养分供应,维持和提高土壤质量和降低生态风险提供理论依据。研究取得了以下主要结论:
     (1)采用高速离心法提取土壤溶液方法,比较了温室栽培土壤和大田土壤溶液离子含量及比例差异后发现,温室栽培土壤溶液电导率(EC)、K~+、Na~+、Ca~(2+)、Mg~(2+)、NO_3~-离子浓度以及K~+/Ca~(2+)、K~-/Mg~(2+)比例分别为大田土壤的2.5、95.0、16.6、1.9、3.2、4.0、31和39倍,表明日光温室土壤盐分累积及养分比例失调问题突出。
     (2)与大田土壤相比,日光温室土壤交换性K~+含量显著增加,土壤交换性Ca~(2+)含量无明显差异,土壤交换性Mg~(2+)的含量及其离子饱和度有所提高,而日光温室土壤钙饱和度、Ca/K和Mg/K均明显低于大田土壤,这与日光温室栽培下大量施用钾肥有关。研究地区日光温室栽培番茄频频出现缺镁问题。研究表明,日光温室土壤交换性Mg~(2+)含量及其离子饱和度与大田土壤相比并不低,且有所提高,而Mg/K均明显低于大田土壤。由于K~+与Mg~(2+)之间又存在明显的拮抗作用,再加上番茄是需镁较多的作物,因此,Mg/K比例失调可能是石灰性土壤地区日光温室栽培番茄频频出现缺镁的主要原因。
     (3)土培模拟与高速离心法直接提取土壤溶液相结合,研究了不同氮肥品种及用量对日光温室土壤溶液离子组成、比例的影响。结果表明,施用不同氮肥品种(尿素、碳酸氢铵和硫酸铵)对土壤溶液EC的影响有所差异,培养起始时硫酸铵对土壤溶液EC明显大于尿素和碳酸氢铵处理,之后不同氮肥品种对土壤溶液EC影响的差异变小。与氮肥种类相比,其施用量对土壤溶液EC更为明显,随着氮肥施用量的增加日光温室土壤培养过程中土壤溶液EC显著增加,说明氮肥施用量与土壤盐分累积具有十分密切的关系。同时,增施氮肥还促使土壤固相等量的将Ca~(2+)、Mg~(2+)、K~+、Na~+等离子解离进入土壤溶液中,从而造成盐分累积状况加剧。
     (4)采用土培模拟与高速离心法直接提取土壤溶液相结合,研究了磷钾肥不同配比对日光温室土壤溶液离子组成、比例的影响。结果表明,增加磷施用量,显著降低土壤溶液EC和Ca~(2+)、Mg~(2+)离子含量,对土壤溶液K~+、NO_3~--N和NH_4~+-N离子浓度均无显著影响。增施钾肥,土壤溶液EC和K~+、Na~+、Ca~(2+)、Mg~(2+)、K~+/Ca~(2+)、K~+/Mg~(2+)比例均呈增加趋势。依据土壤特性,合理施用有机肥、氮、磷、钾肥,是防止温室栽培土壤盐分累积、阳离子养分比例失调,保持土壤结构的有效途径。
     (5)日光温室栽培土壤钾素Q/I曲线及参数与大田土壤明显不同,温室栽培下塿土和潮土土壤钾素活度比(AR_0)较相应大田土壤分别提高了14.8和6.9倍。土壤对外源钾的缓冲能力下降;从K~+和Ca~(2+)+Mg~(2+)的交换自由能看,温室土壤存在因钾素过多可能引发钙、镁缺乏的风险。
     (6)塿土和潮土无论温室还是大田土壤K-Mg、K-Ca交换等温线均属“S”型曲线。随固相吸附K饱和度的增加,选择系数均呈指数趋势降低。K-Mg、K-Ca交换等温线与非选择交换等温线比较结果和选择系数变化均表明,土壤对K~+离子的吸附选择均有转折点,对于K-Mg交换,大田塿土、温室塿土、大田潮土和温室潮土K~+离子吸附选择转折点对应的交换性K~+含量分别为1385.5、1355.5、1007.1和1106.3 mg/kg,对于K-Ca交换,K~+离子吸附选择转折点对应的交换性K~+含量分别为580.3、575.6、415.4和355.1mg/kg时,当土壤交换性K~+含量分别小于转折点交换性K~+含量时,K~+可以自发代换Ca~(2+)、Mg~(2+)离子被土壤胶体吸附。
The cultivating areas of sunlight greenhouse in China during the past 20 years haveincreased rapidly,and it has become one of main types of protected cultivation in China.Mostfarmers have paid a great attention to the application of fertilizer in sunlight greenhouses.Excessive application of fertilizers is very common in most regions.It resulted in a series ofproblems,including nutrient imbalances,over-accumulation of salts and harmful substancesin soils,low use efficiency of fertilizers,degradation of soil quality.These problems havelimited the sustainable development of sunlight greenhouse in China.Although someresearchers had dealt with these problems,most of them have concentrated on saltaccumulation in soil and the optimum application of fertilizers in greenhouses.Ion exchangein soil and solution interface is one of major exchange way of substances between soilparticles and growing plant roots in terrestrial ecosystem.Ion exchange in soil has a closerelationship not only with the supply of nutrient in soil,but nutrient movement andtransformations in soils.Obviously,the excessive application of fertilizers in sunlightgreenhouse will affect the ion exchange balances in the soils.The problems taken place insunlight greenhouse is the phenomena of ion imbalances in soil.However,there are limitedstudies about the effect of sunlight greenhouse cultivation on nutrient accumulation and ionexchanging properties in soils.
     Therefore,we carried out this research in the sunlight greenhouse bases located inGuanzhong plain,Shaanxi Province with the different methods(chemical analysis,incubationmethod,and physi-chemical methods)to study the effects of sunlight greenhouse cultivationon the nutrient accumulation and ion balances(K~+,Ca~(2+),Mg~(2+))in the soils,and effects ofaddition of different forms of nitrogen fertilizers(urea,ammonium carbonate,and ammoniumsulfate)and phosphorus and potassium fertilizers on the electric conductivity(EC)and ioncompositions and ratios of soil solution,and the effects of different concentrations and ratiosof K~+ and Mg~(2+)ions on the adsorptions of K~+,Ca~(2+)and Mg~(2+)ions by the soils.The majorconclusions were as follows:
     (1)The EC and concentrations of K~+,Na~+,Ca~(2+),Mg~(2+),NO_3~-ions and ratios of K~+/Ca~(2+), K~+/ Mg~(2+)in soil solution of greenhouse obtained with the centrifugation method withoutadditioin of fertilizer were 2.5,95.0,16.6,1.9,3.2,4.0,31 and 39 times of that in arable soil,respectively,indicating the serious accumulation and imbalances of ions in the sunlightgreenhouse soil in research regions.
     (2)Compared to the openland soils,the sunlight greenhouse cultivation significantlyincreased the contents of exchangable K~+ and Mg~(2+)ions in the soils,and had not significanton the content of exchangable Ca~(2+)ions in the soils.On the contrary,the sunlight greenhousecultivation significantly decreased the saturation of Ca~(2+)ions in soil colloids,and the ratioesof Ca/K and Mg/K in the soils.This is related to the excessive application of K fertilizers inthe sunlight greenhouses.Tomato deficient in magnesium usually occurs in some greenhousesin the research region.This could not be explained by the contents and saturation ofexchangable Mg~(2+)ions in the soils,because of higher levels in greenhouse soil than that inopenland soil.The ratio of Mg/K in the greenhouse soils was lower than the openland soil.Imbalance of Mg/K in the greenhouse soils is considered as the major reasons for magnesiumdeficiency in tomato due to the antagonistic interaction between K~+ and Mg~(2+)ions and highneed of Mg~(2+)ion by tomato.
     (3)Addition of different forms of nitrogen fertilizers only had some effects on the EC ofsoil solution in the first week of incubation,after that the differences among the differentforms of N fertilizers were not significant.The EC of soil solution was significantly increasedas the increasing of N application rate,indicating the high contribution of nitrogen rate to theaccumulation of salts in the soil.The nitrate concentration in soil solution was increased withthe rates of N fertilizer added and the incubation time.The application of N fertilizer alsoincreased the concentrations of K~+,Na~+,Ca~(2+)and Mg~(2+)in soil solution,especially theconcentration of Ca~(2+)and Mg~(2+)ions.More attention is need to pay to the effects of Napplication rates on the accumulation of salts in soil,and the leaching of K~+,Na~+,Ca~(2+)andMg~(2+)from soil solution.
     (4)The application of P and K fertilizers had different effects on ion composition of soilsolution.Addition of P fertilizer significantly decreased the EC and concentrations of Ca~(2+),Mg~(2+)ions both in arable and greenhouse soils,its effect on concentrations of K~+,NO_3~--N andNH_4~+-N ions in the soils was not significant.As the increasing addition of K fertilizer,the ECand concentrations of K~+,Na~+,Ca~(2+),Mg~(2+)ions and ratios of K~+ / Ca~(2+),K~+ / Mg~(2+)in solutionsof arable and greenhouse soils increased.It is concluded that adquate application of Kfertilizer is important in preventing the excessive accumulations of salts,cation imbalancesand poor structure of greenhouse soils.
     (5)The activity ratios between K~+,Ca~(2+),and Mg~(2+)ions of two greenhouse soils used(i.e., Loess soil and fluvo-aquic soil)at the point where no change of exchangeable K~+ takes place(AR_0)were about 14.8 and 6.9 higher than the corresponding open land soils,respectively.The buffer capacities of greenhouse soils to add K+ were lower than that of open land soil.The changes of Gibbs free energy of K~+,Ca~(2+),and Mg~(2+)exchange(△G)of greenhouse soilsindicated these soils had the potential deficiencies of Ca~(2+),and Mg~(2+)induced by the excessiveapplication of potassium fertilizer.
     (6)Ion adsorption isotherm curves of K-Mg and K-Ca both in greenhouse and openlandsoils followd the S-shape curve.As the increasing of K~+ ion saturation in soil particles,theselectivity coefficients of the K-Mg and K-Ca equilibria decreased.The selectivitycoefficients of the K-Mg and K-Ca of the preference and non-preference isotherms indicatedthat the soils used had a turn-point for selectively adsorbing K~+ ions.For K-Mg equilibrium,the exchangeable K~+ ions in soils corresponded for the turn-points for selectively adsorbingK~+ ions were 1385.5,1355.5,1007.1 and 1106.3 mg/kg for the Loess soils in openland andgreenhouse,and the fluvo-aquic soil in openland and greenhouse,respectively;For K-Caequilibrium,the exchangeable K+ ions in soils corresponded for turn-points for selectivelyadsorbing K~+ ions were 580.3,575.6,415.4 and 355.1 mg/kg for the Loess soils in openlandand greenhouse,and the fluvo-aquic soil in openland and greenhouse,respectively.When theconcentrations of exchangeable K+ ions in soils were lower than the correspondedexchangeable K~+ ions at the turn-points,K~+ ions could exchange the exchangeable Ca~(2+),andMg~(2+)ions adsorbed by soil colloids.
引文
[1]陈伦寿,陆景陵.蔬菜营养与施肥技术[M].北京:中国农业出版社,2002.
    [2]李天来.我国日光温室产业发展现状与前景[J].沈阳农业大学学报,2005,36(2):131~138.
    [3]余海英,李廷轩,周健民.典型设施栽培土壤盐分变化规律及潜在的环境效应研究[J].土壤学报,2006,43(4):571~576.
    [4]李廷轩,周健民,段增强,等.中国设施栽培系统中的养分管理[J].水土保持学报,2005,19(4):70~75.
    [5]张桃林,李忠佩,王兴祥.高度集约农业利用导致的土壤退化及其生态环境效应[J].土壤学报,2006.43:843~850.
    [6]余海英,李廷轩,周健民.设施土壤盐分的累积、迁移及离子组成变化特征[J].植物营养与肥料学报,2007,13(4):642~650.
    [7]周建斌,翟丙年,陈竹君,等.设施栽培菜地土壤养分的空间累积及其潜在的环境效应[J].农业环境科学学报,2004,23(2):332~335.
    [8]马文奇,毛达如,张福锁.山东省蔬菜大棚养分积累状况[J].磷肥与复肥,2000,3:65~67.
    [9]刘建玲,张福锁,杨奋翮.北方耕地和蔬菜保护地土壤磷素状况研究[J].植物营养与肥料学报,2000,6(2):179~186.
    [10]吴凤芝,刘德.大棚蔬菜连作年限对土壤主要理化性状的影响[J].中国蔬菜,1998,(4):5~8.
    [11]童有为,陈淡飞.温室土壤次生盐渍化的形成和治理途径研究[J].园艺学报,199l,18(2):159~162.
    [12]刘德,吴凤芝.哈尔滨市郊蔬菜大棚盐分状况及影响[J].北方园艺,1998(6):1~2.
    [13]黄化刚,张锡洲,李廷轩等.典型设施栽培地区养分平衡及其环境风险[J].农业环境科学学报2007,26(2):676~682
    [14]Phillips I,Burton E.Nutrient leaching in undisturbed cores of an acidic sandy Podosol following simultaneous potassium chloride and di-ammonium phosphate application[J].Nutr Cycl Agroecosys, 2005,73:1~14
    [15]Gonz(?)lez C,Quintana J.R,Moreno L,V(?)quez A,Lafuente A.L,Romero A.Applying multivariate methods to soil-solution interactions in carbonate media[J].Geoderma,2007,137(3~4)352~359
    [16]周健民,石元亮.面向农业与环境的土壤学科[M].北京:科学出版社,2004.29-35.
    [17]高翔,齐新丹,李骅.我国设施农业的现状与发展对策分析[J].安徽农业科学,2007,35(11):3453~3454
    [18]张志斌.我国设施蔬菜存在的问题及发展重点[J].中国蔬菜,2008,(5):1~3.
    [19]王朝辉, 宗志强,李生秀.菜地和一般农田土壤主要养分累积的差异[J].应用生态学报,2002,13(9):1091~1094.
    [20]刘兆辉,江丽华,张文君等.山东省设施蔬菜施肥量演变及土壤养分变化规律[J].土壤学报,2008,45(2):296~303.
    [21]古巧珍,杨学云,孙本华等.日光温室蔬菜地土壤主要养分含量及其累积特征分析[J].西北农林科技大学学报(自然科学版),2008,26(3):130~134.
    [22]郭文忠,李丁仁.宁夏日光温室土壤次生盐渍化发生原因及治理[J].长江蔬菜, 2003(4):39~40.
    [23]冯永军,陈为峰,张蕾娜等.设施园艺土壤的盐化与治理对策[J].农业工程学报,2001,17(2):111~114.
    [24]张振华,姜冷若,胡永红等.设施栽培土壤养分、盐分调查分析及其调控技术[J].江苏农业科学,2003(1):73~75.
    [25]夏立忠,杨林章,王德建.苏南设施栽培中旱作人为土养分与盐分状况的研究[J].江苏农业科学,2001(6):43~46.
    [26]周建斌,翟丙年,陈竹君,等.西安市郊区日光温室大棚番茄施肥现状及土壤养分累积特性[J].土壤通报,2006,37(2):287~290.
    [27]陈竹君,王益权,周建斌等.日光温室栽培对土壤养分累积及交换性养分含量和比例的影响[J].水土保持学报,2007,21(1):5~8.
    [28]葛晓光,张恩平,高慧,等.长期施肥条件下菜田—蔬菜生态系统变化的研究(Ⅱ).土壤理化性质变化[J].园艺学报,2004,31(2):178~182.
    [29]赵凤艳,吴凤芝,刘德,姚禾雨.大棚菜地土壤理化特性的研究[J].土壤肥料,2000,(2):11~13.
    [30]黄锦法,李艾芬,马树国等.浙江嘉兴保护地土壤障碍的农化性状指标研究[J].土壤通报,2001,32(4):160~162
    [31]薛继澄,毕德义,李家金,殷永娴,吴志行..保护地栽培蔬菜生理障碍的土壤因子与对策.土壤肥料,1994(1):4~9.
    [32]李文庆,贾继文,李贻学.大棚种植蔬菜对土壤理化及生物性状的影响.见:谢建昌等编著,菜园土壤肥力与蔬菜合理施肥[M].南京:河海大学出版社,1997,76~79.
    [33]王绪奎,陈光亚.设施农业中的土壤问题及对策[J].江苏农业科学,2001,(6):39~42
    [34]吴凤芝,赵凤艳,刘元英.设施蔬菜连作障碍原因综合分析与防治措施.东北农业大学学报,2000,31(3):241~247
    [35]余同海,陈美娜.设施栽培对青紫泥土壤理化性状的影响[J].浙江农业科学,2005,6:438~440
    [36]王辉,董元华,安琼等.高度集约化利用下蔬菜地土壤酸化及次生盐渍化研究[J].土壤,2005,37(5):530~533.
    [37]孟鸿光,李中,刘乙俭,等.沈阳城郊温室土壤特性调查研究[J].土壤通报,2000,31(2):70~73.
    [38]史桂芳,毕军,夏光利,等.保护地蔬菜土壤障碍指标界定及应用研究[J].耕作与栽培,2003,(3):49-50.
    [39]赵其国主编.中国东部红壤地区土壤退化的时空变化和机理及调控措施[M].北京:科学出版社,2002.
    [40]徐仁扣,Coventry D R.某些农业措施对土壤酸化的影响[J].农业环境保护,2002,21(5):385~388
    [41]Wang Huo-yan,Zhou Jian-min,Chen Xiao-qin,et al.Interaction of N P K fertilizers during their transformation in soils:I.Dynamic changes of soil pH[J].Pedosphere,2003,13(3):257-262.
    [42]Malhi S S,Nyborg M,Harapiak J T.Effects of long-term N fertilizer induced acidification and liming on micronutrients in soil and in bromegrass hay[J].Soil & Tillage Research,1998,48(12):91-101.
    [43]胡克伟,贾冬艳,王东升.保护地土壤次生盐渍化及其调控措施[J].北方园艺,2002(1):12~13.
    [44]何文寿.设施农业中存在的土壤障碍及其对策研究进展[J].土壤,2004,36(3):235~242
    [45]赵福庚.植物逆境生理生态学[M].北京:化学工业出版社,2004.
    [46]吕福堂,司东霞.日光温室土壤盐分积累及离子组成变化的研究[J].土壤,2004,36(2):208~210.
    [47]孙松发,陈剑中,盛正国等.温室土壤次生盐渍化的研究[J].上海农学院学报,1992,10(2):132~140.
    [48]侯云霞,线光熹,王建民上海蔬菜保护地的土壤盐分状况[J].上海农业学报,1987,3(4):31~38.
    [49][日]长谷川治著.谭俊杰,孙绥中译.科学施肥新方法[M].北京:化学工业出版社,1989.
    [50]余海英,李廷轩.辽宁设施栽培土壤盐分累积变化规律研究[J].水土保持学报,2005,19(4):80~83.
    [51]李先珍.京郊蔬菜大棚土壤盐离子积累状况的研究初报[J].中国蔬菜,1993,(4):15~17.
    [52]李海云,王秀峰,禹贤.设施土壤盐分积累及防治措施的研究进展[J].山东农业大学学报,2001,32(4):535-538.
    [53]张文英,尹孝萍.蔬菜施肥污染及防治措施[J].青海农林科技,2002(3):54-55.
    [54]白纲义,赵杨景,梁惠英.京郊菜地土壤肥力状况及其培肥问题[J].土壤肥料,1984(2):8-12.
    [55]奚振邦,施秀珠.蔬菜作物的吸肥特性与推荐施肥[J].土壤,1990,22(4):218-221.
    [56]葛晓光主编.菜田土壤与施肥[M].北京:中国农业出版社,2002.
    [57]路磊,李忠佩,车玉萍.不同施肥处理对黄泥土微生物量碳氮和酶活性的影响[J].土壤,2006,38(3):309~314.
    [58]张华勇,尹睿,黄锦法,等.稻麦轮作田改为菜地后生化指标的变化[J].土壤,2005,37(2):182~186.
    [59]马艳,常志洲,朱万宝,等.土壤硝态氮含量对辣椒疫病的影响及机理的初步研究[J].土壤肥料,2004,2:12~15
    [60]林英华,杨学云,张夫道,等.长期施肥对黄土区农田土壤动物群落的影响[J].中国农业科学,2005,38(6):1213~1218.
    [61]姚健,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,20(6):1021~1027.
    [62]周艺敏.天津菜田施肥对土壤环境及蔬菜品质的影响[A].施肥与环境学术讨论会论文集[C].中国农业科技出版社,1994:11~22.
    [63]徐瑞富,王小龙.花生连作田土壤微生物群落动态与土壤养分关系研究[J].花生学报,2003,32(3):19~24.
    [64]Wang Z H,Li S X.Effects of N forms and rates on vegetable growth and nitrate accumulation[J].Pedosphere,2003,13(4):309~316.
    [65]Grattan S R,Grieve C M..Salinity-mineral nutrient relations in horticultural crops[J].Sci.Horticult.,1999(78):127~157.
    [66]牟咏花,张德威.NaCl胁迫下番茄苗的生长和营养元素积累[J].植物生理学通讯,1998,24(1):14~16
    [67]沈善敏主编.中国土壤肥力[M].北京:中国农业出版社,1998.
    [68]国家环境保护总局.中东部地区生态环境现状调查报告[J].环境保护,2003,8:3~8.
    [69]Tilman D,Fargione J,Wolff B,et al.Forecasting agriculturally driven global environmental change. Science,2001,292:281 ~284
    [70]Nieder R,and Richter J.C and N accumulation in arable soils of West Germany and its influence on the environment Developments 1970 to 1998.Journal of Plant Nutrition and Soil Science,2000,163: 65 ~72.
    [7l]李文庆,张民,李海峰等.大棚土壤硝酸盐状况研究[J].土壤学报,2002,39(2):283~287.
    [72]刘宏斌,张云贵,李志宏等.北京市平原农区深层地下水硝态氮污染状况研究[J].土壤学报,2005,42(3):411~418.
    [73]刘宏斌,李志宏,张云贵等.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37(5):692~6981.
    [74]Chen Q,Zhang X S,Zhang H Y et al.Evaluation of current fertilizer practice and soil fertility in vegetable production in the Beijing region[J].Nutrient Cycling in Agroecosystems,2004,69:51-58.
    [75]袁新民,同延安,杨学云等.灌溉与降水对土壤NO_3~--N累积的影响[J].水土保持学报,2000,14(3):71~741
    [76]Babiker I S,Kato K,Ohta K,et al.Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system[J].Environment International 2004,29(8):1009~ 1017.
    [77]Zhang M,Geng S,Smallwood K S.Assessing groundwater nitrate contamination for resource and landscape management[J].Ambio,1998,27(3):170~174.
    [78]Cahn M D.Cation and nitrate leaching in an oxisol of Brazilian Amazonl[J].Agronomy Journal, 1993,85:334~340
    [79]张光亚,方柏山,闵航等.设施栽培土壤氧化亚氮排放及其影响因子的研究[J].农业环境科学学报,2004,23(1):144-147.
    [80]徐文彬,洪业汤,陈旭辉等.区域农业土壤N20释放的研究一一以贵州省为例[J].中国科学(D辑),1999,29(5):450-456.
    [81]黄耀.地气系统碳氮交换——从实验到模型[M].北京:气象出版社,2003.
    [82]Li Z P,Zhang T L,Han F X,et al.Changes in soil C and N contents and mineralization across a cultivation chronosequence of paddy fields in subtropical China[J].Pedosphere,2005,15(5): 554~562.
    [83]李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析.土壤学报,2002,39(3):351~360.
    [84]Sharpley A N,Menzel R G.The impact of soil and fertilizer on the environment[J].Adv Agron, 1987,41:297~320
    [85]宋菲,郭玉文,刘孝义等.土壤中重金属镉锌铅复合污染的研究[J].环境科学学报,1996,16(4):431~436.
    [86]周娟娟,高超,李忠佩等.磷对土壤砷固定与活化的影响[J].土壤,2005,37(6):645-648.
    [87]Heckrath G.Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment[J].Journal of Environmental Quality,1995,24:904~910.
    [88]Hesketh N,Brookes P C.Development of an indicator for risk of phosphorus leaching[J].Journal of Environmental Quality,2000,29:105 ~ 110
    [89]章明奎,周翠,方利平等.蔬菜地土壤磷饱和度及其对磷释放和水质的影响[J].植物营养与肥料学报2006,12(4):544~548.
    [90]赵小蓉,钟晓英,李贵桐等.我国23个土壤磷素淋失风险评估.Ⅱ.淋失临界值与土壤理化性质 和磷吸附特性的关系[J].生态学报,2006,26(9):3011~3017.
    [91]Vander Molen D T,Breeuwsma A,Boers P C M.Agricultural nutrient losses to surface water in the Netherlands:Impact,strategies,and perspectives[J].J.Environ.Qual.,1998,27:4~11.
    [92]Maguire R O,Sims J T.Soil testing to predict phosphorus leaching[J].Journal of Environmental Quality,2002,31(5):1601 ~ 1609.
    [93]芒森 R D 主编.范钦桢等译.农业中的钾[M].北京:科学出版社,1995.
    [94]Ohno T,Grunes D L,Sanchirico C A.Nitrogen and potassium fertilization and environmental factors affecting the grass tetany hazard of wheat forage[J].Plant and Soil,1985,86:173~184.
    [95]Ohno T,Grunes D L.potassium-magnesium interactions affecting nutrient uptake by wheat forage[J]. Soil Sci.Soc.Am.J,1985,45:685~690.
    [96]陈怀满,郑春荣,周东美,等.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002.
    [97]鲁如坤.土壤-植物营养学原理和施肥[M].北京:化学工业出版社,1998.
    [98]Francesco Morari,Emanuele Lugato,Luigi Giardini.Olsen phosphorus,exchangeable cations and salinity in two long-term experiments of north-eastern Italy and assessment of soil quality evolution[J]. Agriculture Ecosystems and Environment,2008,124:85~96.
    [99]G(?)ransson A,Eldhuset T D.Is the Ca+K+Mg/Al ratio in the soil solution a predictive tool for estimating forest damage?[J].Water Air and Soil Pollution,2001,1:57~74.
    [100]Billett M F,Cresser M S.Evaluation of the use of soil ion exchange properties for predicting streamwater chemistry in upland catchments[J].J.Hydrol.1996,186:375~394.
    [101]Grieve I C.Effects of parent material on the chemical composition of soil drainage waters. Geoderma,1999,90:49-64.
    [102]Karathanasis A D.Seasonal variation in solution composition and mineral stability of two Kentucky Alfisols[J].Soil Science Society of America Journal,1991,55:881~890.
    [103]Csillag J,T(?)th T,R(?)dly M.Relationships between soils solution composition and soil water content of Hungarian salt-affected soils[J].Arid Soil Research and Rehabilitation,1994,9:245~260.
    [104]Tyler G,Olsson T.Concentrations of 60 elements in the soil solution as related to the soils acidity[J]. European Journal of Soil Science,2001,52:151~165.
    [105]Stutter M I,Billet M F.Biogeochemical controls on stream water and soils solution chemistry in a high Artic environment[J].Geoderma,2003,113:127~146.
    [106]Parfitt R L,Percival H J,Dahlgren R A,Hill L F.Soil and solution chemistry under pasture and radiata pine in New Zealand[J].Plant and Soil,1997,191:279~290.
    [107]Brady N C,Well R R.The Nature and Properties of Soils[M].11~(th),Prentice Hall,New Jersey,1996, 241~270.
    [108]Thomas GW.Historical developments in soil chemistry:ion exchange[J].Soil Sci Soc Am J 1977, 41:230~238.
    [109]Bohn H L,McNeal B L,O'Connor G A.Soil Chemistry[M].2th,John Wiley & Sons,New York, 1985,pp:153~183
    [110]蒋以超,张一平.土壤化学过程的物理化学[M].北京:中国科学技术出版社,1993
    [111]Sparks D L.Elucidating the fundamental chemistry of soils:past and recent achievements and future frontiers[J].Geoderma 2001,100:303~319
    [112]Talibudeen O.Cation exchange in soil.:The Chemistry of Soil Processes,Greenland D J and Hayes M H BEds,Wiley-Interscience,New York,1981,115
    [113]Levy G J,Vander Watt H V H,Shainberg I.Potassium-calcium and sodium-calcium exchange on kaolinite and kaolinitic soils[J].Soil Sci.Soc.Am.J,1988,52:1259~1264.
    [114]Carson C D,Dixon J B.Potassium selectivity in certain montmorillonite soil clays[J].Soil Sci.Soc. Am.J,1972,36:838~843
    [115]Shaviv A,Mattigod S V,Pratt P F.Potassium exchange in five southern California soils with high potassium fixation capacity[J].Soil Sci.Soc.Am.J.,1985,49:1128~ 1133.
    [116]Eriksson E.Cation-exchange equilibria on clay minerals[J].Soil Sci.,1952,74:103~113
    [117]Thomas G W.Historical developments in soil chemistry ion exchange[J].Soil Sci.Soc.Am.J.,1977, 41:230~237.
    [118]Gaines G I,Thomas H C.Adsorption studies on clay minerals.Ⅱ.A formulation of the thermodynamics of exchange adsorption.J.Chem.Phys.1953,21:714~718.
    [119]Tan K H.Principles of Soil Chemistry.Marcel Dekker,New York,USA,1982,pp:162~171
    [120]Beckett P H T.Studies on soil potassium.Ⅰ.Confirmation of the ratio law:Measurement of potassium potential[J].Journal of Soil Science,1964,15:1~8.
    [121]Beckett P H T.Studies on soil potassium.Ⅱ.The immediate Q/I relations of labile potassium in the soil[J].Journal of Soil Science,1964,15:9~23.
    [122]Ganeshamurthy A N,Biswas C R.Q/I relationship of potassium in two soil of long-term experiments[J].Fertilizer Research,984,5:197~201.
    [122]李国富,李华兴,简放陵等.广东不同质地水稻土Q/I特性与钾肥施用技术的关系研究[J].热带亚热带土壤科学,1995,4(1):36~40.
    [123]阮建云,吴洵,Hardter R.茶园土壤钾素容量/强度关系及施用钾镁肥的影响[J].茶叶科学,1996,16(20:93~98.
    [124]Rupa T R,Srivastava S,Swarup A,et al.Potassium supplying power of a typic Ustochrept profile using quantity/intensity technique in a long-term fertilizaed plot[J].Journal of Agricultural Science, 2001,137:195~203.
    [125]Swarup A,Singh K N.Effect of continuous fertilizer use on Q/1 relationship of K in sodic soil cropped with rice and wheat for twelve years[J].Journal of Indian Society of Soil Science,1989,37:399~401
    [126]de la Horra A M,Effron D,Jimenez M P,et al.Effect of potassium fertilizers on quantity/intensity parameters on some Aegentine soil[J].Communications in Soil Science and Plant Analysis,1998, 29(5/6):671~680
    [127]Evangelou V P,Blevins R L.Effect of long-term tillage systems and nitrogen addition on potassium quantity/intensity relationships[J].Soil Sci.Soc.Am.J.,1988,52:1047~1054.
    [128]Elkhatib E A,Hern J L.Kinetics of potassium desorption from Appalachian soil[J].Soil Science, 1988,145(1):11-19
    [129]Sparks D L,Jardine P M.Comparison of kinetic equations to describe K-Ca exchange in pure and in mixed system[J].Soil Sci,1984,138:115~122.
    [130]Sharpley A N.The kinetics of soil potassium desorption[J].Soil Sci Soc Am J,1987,51:912~917.
    [131]Eick M J,Bar T A,Sparks D L,et al.Analyses of adsorption kinetics using a stirred-flow chamber Ⅱ.Potassium-calcium exchange on clay minerals[J].Soil Sci Soc Am J,1990,54(5):1278~1282.
    [132]Sparks D L.Potassium dynamics in soils[J].Advances in Soil Science,1987,6:1~62.
    [133]龙怀玉,蒋以超,李韵珠.褐土和潮土K~+吸附动力学研究[J].土壤学报,2000,37(4):563,~568.
    [134]Mashayekhi H H,Malakouti M J.Kinetics of potassium desorption in some calcareous soils[J].Soil and Water Journal,1997,10(1):55~62.
    [135]Tu C,Zheng C R,Chen H M,et al.Effects of heavy metal pollu-tion on potassium behavior in Typic Udic Ferrisol[J].Pedosphere,2000,10(1):21 ~30.
    [136]Appel C,Ma L Q,Rhue R D,Reve W.Selectivities of potassium-calcium and potassium-lead exchange in two tropical soils.Soil Sci.Soc.Am.J.,2003,67(6):1707~ 1714.
    [137]de Matos A T,Fontes M P F,da Costa L M,Mart(?)nez M A.Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilians soils[J].Environmental Pollution,2001,111: 429~435.
    [138]Mielke H W,Gonzales C R,Smith M K,Mielke P W.Quantities and associations of lead,zinc, cadmium,manganese,chromium,nickel,vanadium,and copper in fresh Mississippi delta alluvium and New Orleans alluvium soils[J].Science of the Total Environment,2000,246:249~259.
    [139]Vidal J,P(?)rez-Sirvent C,Mart(?)nez S(?)nchez M J,Navarro M C.Origin and behaviour of heavy metals in agricultural Calcaric Fluvisols in semiarid conditions.Geoderma 2004,121:257~270.
    [140]Wolt J D.Soil Solution Chemistry:Application to environmental science and agriculture.John Wiley & Sons,New York,1994,pp:169~180
    [141]Turpault M P,Uterano C,Boudot J P,Ranger J.Influence of mature Douglas fir roots on the solid soil phase of the rhizosphere and its solution chemistry[J].Plant and Soil,2005,275:327~336
    [142]Jonathan AF,Ruth D,Gregory PA et al.Global consequences of land use[J].Science,2005, 309:570~574.
    [143]Matson P A,Parton W J,Power A G,Swift M J.Agricultural intensification and ecosystem properties[J].Science,1997,277:504~509
    [144]Vitousek PM,Mooney HA,Lubchenco J,Melillo JM.Human domination of earth's ecosystems[J]. Science,1997,277:494~499
    [145]Markewitz D,Davidson E A,Figueiredo R O,et al.Control of cation concentrations in stream waters by surface soil processes in an Amazonian watershed.Nature 2001,410:802~805
    [146]Carnol M,Ineson P,Dickinson A L.Soil solution nitrogen and cation influenced by(NH_4)_2SO_4 deposition in a coniferous forest.Environmental Pollution 1997,97(1-2):1~10
    [147]Hüttl R F,Schneider B U.Forest ecosystem degradation and rehabilitation.Ecological Engineering 1998,10:19-31.
    [148]孙本华,胡正义,吕家珑等.模拟氮沉降下南方针叶林红壤的养分淋溶和酸化[J].应用生态学报,2006,17(10):1820~1826.
    [149]Yanai J,Robinson D,Young I M,Kyuma K,et al.Effects of the chemical form of inorganic nitrogen fertilizers on the dynamics of the soil solution composition and on nutrient uptake by wheat[J].Plant and Soil 1998,202:263~270
    [150]Kashem M A,Singh B R.The effect of fertilizer additions on the solubility and plant-availability of Cd,Ni and Zn in soil[J].Nutr Cycl Agroecosys 2002,62:287~296.
    [150]Hartman A,Horn W G R.Cation exchange processes in structured soils at various hydraulic properties[J].Soil & Tillage Research,1998,47:67~72.
    [151]葛晓光,张恩平,张昕等.长期施肥条件下菜田—蔬菜生态系统变化的研究:(Ⅰ)土壤有机质的变化.园艺学报,2004,31(1):34~38.
    [152]于天仁.我国农业持续发展和生态环境中重大土壤问题的化学机理研究建议[J].2001,3:119~122.
    [153]姜勇,张玉革,梁文举.温室蔬菜栽培对土壤交换性盐基离子组成的影响[J].水土保持学报,2005,19(6):78~81.
    [154]周建斌,翟丙年,陈竹君等.西安市郊区日光温室大棚番茄施肥现状及土壤养分累积特性[J].土壤通报,37(2):287~290.
    [155]Miller RW,Donahue RL.Soils in Our Environment.7th,Prentice Hall,New Jersey,1995,141~149:354~356.
    [156]Stutter M I,Deeks L K,Billett MF.Spatial variability in soil ion exchange chemistry in a granitic upland catchment[J].Soil Sci Soc Am J 2004,68(4):1304~ 1314.
    [157]夏立忠,李忠佩,杨林章.大棚栽培番茄不同施肥条件下土壤养分和盐分组成与含量的变化[J].土壤,2005,37(6):620~625.
    [158]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    [159]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000.
    [160]Nakayama F S.Calcium activity complex and ion-pair in saturated CaCO_3 solution[J].Soil Sci., 1976,106:429~433.
    [161]袁可能编著.植物营养元素的土壤化学[M].北京,科学出版社,1983.85~124.
    [162]Chapman H D主编,庄伊美,江油,等译.园艺植物营养诊断标准[M].上海:上海科学技术出版社.1986,85~127.
    [163]汪洪,褚天铎.植物镁素营养的研究进展[J].植物学通报,1999,16(3):245~250.
    [164]汪洪,褚天铎.植物镁素营养诊断及镁肥施用[J].土壤肥料,2000(4):4~7.
    [165]李学垣.土壤化学[M].北京:高等教育出版社,2001.168~180.
    [166]奚振邦.现代化学肥料学(第二版)[M].北京:中国农业出版社,2003.
    [167]李世清,李生秀.影响土壤尿素水解速率的一些因子[J].植物营养与肥料学报,1999,5(2):156~162.
    [168]Sparks D L,Liebhardt W C.Effect of long-term lime and potassium application on quantity-intensity (Q/I)relationships in sandy soil[J].Soil Sci.Soc.Am.J.,1981,45:786~790.
    [169]李菊梅,王朝辉,李生秀.有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J].土壤学报,2003,40(2):232~238.
    [170]凌莉,李世清,李生秀.石灰性土壤氨挥发损失的研究[J].土壤侵蚀与水土保持学报,1999,5(6):119~122.
    [171]陈四根,白锦麟,张一平,等.几种土壤NH_4-Ca交换平衡及热力学参数[J].土壤通报,1994,25(2):71~73.
    [172]黄吕勇.土壤学[M].北京:中国农业出版社,2000.
    [173]孙本华,胡正义,吕家珑,等.大气氮沉降对阔叶林红壤淋溶水化学模拟研究[J].生态学报,2006,26(6):1872~1881.
    [174]程红艳,谢英荷,王雅琼等.太谷县蔬菜大棚中土壤肥力分析与评价[J].山西农业大学学报(自然科学版),2007,27(1):46~50
    [175]沈其荣.土壤肥料学通论[M].北京:高等教育出版社,2001.
    [176]张竹青,鲁剑巍.施钾水平对油菜吸收钙和镁的影响[J].安徽农业大学学报,2003,30(3):276~279.
    [177]丁玉川,罗伟,徐国华.镁、钾营养及其交互作对水稻产量、产量构成因素和养分吸收的影响[J].水土保持学报,2008,22(3):178~182.
    [178]陈竹君,王益权,许安民等.施用不同种类氮肥对日光温室土壤溶液离子组成的影响[J].植物营养与肥料学报,2008,14(5):907-913.
    [179]Mengel K,Kirkby EA.Principles of Plant Nutrition.5th,Kluwer Academic Publisher,2001.
    [180]Moore W J.Physical chemistry(4th ed)[M].Englewood Cliffs N J:Prentice-Hall Co,1972.[181]
    [181]Sparks D L.Soil physical chemistry[M].CRC Press,1986.
    [182]Woodruff C M.Cation activities in the soil solution and energies of cation exchange[J].Proceeding of Soil Science Society of America.1955a,19:98~99.
    [183]Woodruff C M.The energies of replacement of calcium by potassium in soil[J].Proceeding of Soil Science Society of America.1955b,19:167~171.
    [184]Schouwenburg J.Van C H,Schuffelen A C.Potassium-exchange behavior of an illite[J].Netherlands Journal of Agricultural Science,1963,11:13~22.
    [185]张会民,徐明岗,吕家珑,刘红霞.不同生态条件下长期施钾对土壤钾素固定影响的机理[J].应用生态学报,2007,18(5):1009-1014.
    [186]陈际型,宣家祥.低盐基土壤K、Ca、Mg的交互作用对水稻生长与养分吸收的影响[J].土壤学报,1999,36(4):433~439.
    [187]Escudey M,Diaz P,Foerster J E,Galindo G.Adsorbed ion activity coefficients in K-Ca exchange on soil fractions derived from volcanic materials.Aust.J.Soil Res,1997,35:123~ 130.
    [188]Goladi J T,Agbenin J O.The cation exchange properties,and the microbial biomass carbon,nitrogen and phosphorus as influenced by inorganic fertilizers and organic manure[J].J.Sci.Food Agric., 1997,75:412~418.
    [189]Sparks D L.Environmental Soil Chemistry[M].Academic Press,San Diego.2003.
    [190]John O A,Samuel Y.Potassium-calcium and potassium-magnesium exchange equilibria in an acid savanna soil from northern Nigeria[J].Geoderma,2006,136:542~554.
    [191]陈四根,张一平,白锦麟等.几种土壤K-Ca交换特性及热力学函数的研究[J].西北农业大学学报,1990,18(增刊):9~15.
    [192]Sposito G.The Chemistry of Soil[M].Oxford University Press,New York,1989.
    [193]Sparks D L.Soil phycical chemistry[M].CRC Press,1986.
    [194]Udo E J.Thermodynamics of potassium-calcium and magnesium-calcium exchange reactions on kaolinitic clays[J].Soil Sci.Soc.Am.J.1978.42:556~560.
    [195]Sposito G,Holtzclaw K.M,Jouany C,Carlet L.Cation selectivity in sodium-calcium, sodium-magnesium and calcium-magnesium exchange on Wyoming bentonite at 298 K[J].Soil Sci. Soc.Am.J,1983,47:917~921.
    [196]Naylor D V,Overstreet R.Sodium-calcium exchange behaviour in organic soils[J].Soil Sci.Soc.Am. J.,1969,33:848~851.
    [197]Goulding K W T.Thermodynamics of potassium exchange in soils and clay minerals[J].Adv.Agron. 1983,36:215~264.
    [198]胡全才,卢朝东.不同土壤对钾的选择吸附特性[J].土壤学报,2002,39(5):707~713.
    [199]Shainberg I,Kemper W D.Hydration status of adsorbed cations[J].Soil Sci.Soc.Am.Proc., 1966,30:707~713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700