用户名: 密码: 验证码:
水稻超高产株型模式的生理生态基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以直立和弯曲穗型水稻品种杂交组合(晚轮42/沈农265;泸恢99/沈农265;晚轮422/辽粳5号)的不同世代群体为试材,分别在华南稻区广东、西南稻区四川、东北稻区辽宁和长江中下游稻区上海四个生态区同年种植,比较了多生态环境条件下不同世代株型特性、产量构成、亚种属性、穗部性状的差异,并对不同株型类型的差异进行了分析,同时研究了生态环境对其相互关系的影响,为不同地区确定最佳超高产株型模式并发挥其潜力提供科学依据。主要结果如下:
     (1)生态环境对杂交F2代个体株型特性和产量构成因素具有较为明显的影响。从四川到辽宁,株高和颈穗弯曲度显著提高,而穗长、剑叶长、剑叶宽及剑叶弯曲度则表现为降低趋势。辽宁的有效穗数、千粒重、结实率以及产量均显著高于四川,穗粒数则表现为显著低于四川。千粒重、结实率和产量表现为Cw(长剑叶、弯穗)>Cz(长剑叶、直穗)>Dw(短剑叶、弯穗)>Dz(短剑叶、直穗),穗数和穗粒数以Dz最低,Cz和Cw较高。剑叶长与产量构成因素间的相关性均未达到显著水平,而剑叶宽与穗粒数均呈显著或极显著正相关,辽宁剑叶宽与结实率呈显著负相关。颈穗弯曲度只在四川分别与结实率及产量显著或极显著正相关,辽宁则表现为与大多产量构成因素相关不显著。
     (2)不同生态环境下F2代植株籼粳属性均呈接近正态的连续变异,相对于四川,辽宁呈现明显的偏籼分布,生态环境对程氏指数六性状的影响并不完全一致。生态环境对株型特性也有较明显的影响,从四川到辽宁,株高和颈穗弯曲度显著提高,而穗长、剑叶长、剑叶宽及剑叶张角则表现降低趋势。不同地区株高的类型间差异没有明显规律性,剑叶长表现为籼型显著大于其他类型的趋势,剑叶弯曲度地区和类型间大多无显著差异,不同地区剑叶宽的类型间差异因组合而异。总之不同地区从籼型到粳型,均有穗长递减而颈穗弯曲度递增的趋势。籼粳稻杂交F2代植株个体籼粳属性与株型性状表现出一定的相关性,但相关的方向和程度在不同地区和组合间不完全一致。
     (3)不同生态区间杂交后代产量自南向北递增,由低海拔向高海拔递增;株型特性在不同区域间存在较大差异,株高表现为四川、辽宁显著高于上海和广东;穗长区域间呈上海>四川>广东>辽宁的趋势,剑叶长表现为上海>广东>四川>辽宁,差异达显著水平;剑叶宽呈四川>辽宁>上海>广东,剑叶角度辽宁、广东高于上海和四川地区,劲穗弯曲度受遗传因素影响更为显著。在杂交后代所划分的4类株型类型中,具超级杂交稻株型模式的Cw在广东、四川和上海三个生态区表现出明显的优势性;具直立大穗型株型模式的Dz更加适应水稻生育期较长,天气条件较好,穗数水平较高的辽宁稻区。株型性状与产量表现出一定的相关性,但相关的方向和程度在不同地区和组合间表现不完全一致。在水稻理想株型育种实践中,必须适应当地生态条件和生产实际的要求,不仅要求具有“空间”的特点,也要表现出特定的生态型。
     (4)糙米率、精米率、整精米率、直链淀粉含量和食味值在辽宁均显著高于四川;垩白粒率和垩白度在辽宁极显著低于四川。蛋白质含量区域间差异因组合而异,受遗传因素影响更为显著。在杂交后代所划分的4类株型类型中,具直立穗型模式的Dz(短剑叶、直立穗)精米率和整精米率在四川表现较好;辽宁糙米率、精米率和整精米率不同株型类型间差异不明显。不同生态区间垩白度、垩白粒率、蛋白质含量、直链淀粉含量以及食味值株型类型间差异不明显。品质与株型性状的关系受生态环境影响,遗传因素对其相关也存在显著影响。籼粳属性在四川地区对品质性状无明显选择压力,形态学上的分化对四川地区的影响不是很大;辽宁地区籼粳属性的分化对稻米品质具有一定的影响,糙米率、精米率、整精米率以及食味值随粳型血缘的增加而提高,特别是整精米率受籼粳属性影响最为明显;辽宁地区粳型血缘的提高外观品质有改善的趋势。
     (5)不同生态区域间穗部性状发生了显著的变化,但变化的幅度和方向不尽一致。辽宁一次枝梗数显著高于其他生态区;二次枝梗数广东最低;穗粒数、次枝梗结实率和着粒密度辽宁>四川>广东和上海;千粒重四川地区最高,广东最低;总结实率呈辽宁>四川>广东>上海;穗重在不同生态区间表现为四川>辽宁>上海>广东。生态环境是引起穗部性状区域间差异的原因之一。穗部性状与株型性状表现出一定的相关性,但相关的方向和程度在不同地区和组合间表现不完全一致。辽宁稻区在育种实践中可适当引入部分籼性血缘,从而将枝梗数、粒数与结实率、穗重合理地统一起来。四川和上海地区随粳型血缘的增加,结实率也有增加的趋势,在广东地区表现在粒重和穗重的增加。在保证一定穗粒数的前提下,粳性血缘的加入可改善四川和上海籼稻结实性差的缺点,同时提高广东地区的穗重。
The different filial generations of cross between curvature panicle and erect panicle rice varieties were used as the experimental materials and were grown in in south China, Guangdong province; in southwest China, Sichuan province; in northeast China, Liaoning and in middle and lowed Reaches of Yangtze River, Shanghai. It was designed to compare the differences in plant types and rice yields, to reveal the effect of ecological environments on plant type traits, yields, subspecies characteristics and panicle traits of different filial generations of cross between curvature panicle and erect panicle rice varieties; the differences of different plant types were analyzed and to identify the correlation in different ecological environments. The purpose of this study was to provide theoretical basis in identifying the best plant type mode of super high-yeilding rice in different regions. The main results are as follow:
     (1) The ecological conditions had a significant effect on plant type traits and yield traits. From Sichuan to Liaoning, the plant high and panicle curvature had increased significantly, the panicle length, flag leaf length, flag leaf width and Leaf angle decreased. Number of panicles,1000-grains weight, seed setting rate and yields in Liaoning were significantly higher than Sichuan, grains per panicle in Sichuan was significantly greater than the Liaoning. In the four patterns of plant type yield components in the comparison, the no. of panicles1000-grains weight, seed setting rate and yields had demonstrated Cw> Cz> Dw> Dz, the number of panicles and grains per panicle of Dz minimum, Cz and Cw higher. The relationship between flag leaf length and yield traits was not to reached significant, the flag leaf weight and no. of panicles achieved significant level under different environment. in Liaoning, the seed setting rates indicated a significant negative correlation with flag leaf weight. The panicle curvature showed a significantly positive correlation with the Seed setting rate and yield traits in Sichuan, but it's not significant correlation with the most of yield traits in Liaoning.
     (2) The subspecies characters in F2generations were continuously varied in different environments. Two populations were generally normal distribution in Sichuan, but obviously indica-like in Liaoning. The effects of environment on six traits of Cheng's index were incompletely consistent. The ecological conditions had a significant effect on plant type traits. The plant height and panicle curvature increased significantly, but the panicle length, flag leaf length, flag leaf width and leaf angle decreased in Sichuan. Plant height in different subspecies had no obvious regularity in different regions. Flag leaf length was longer in indica(H) than in other types, but flag leaf angle had no significant difference in different subspecies and environments. Flag leaf width was changed with the cross combinations. Generally, panicle length reduced, but panicle curvature increased progressively from indica(H) to japonica(K) type. The subspecies characteristics were certainly related with plant type traits, but the correlation between them was not consistent in different cross combinations and environments.
     (3) the grain yield showed a downward trend from high latitude to low latitude. There existed a large difference in plant type traits across regions. The plant high was significantly higher at Sichuan and Liaoning than that at Shanghai and Guangdong. The panicle length in the four regions showed trend of Shanghai>Sichuan>Guangdong>Liaoning. There was a significant difference in flag leaf length, ie. Shanghai>Guangdong>Sichuan>Liaoning. The flag leaf width was Sichuan>Liaoning>Shanghai>Guangdong. The flag leaf angle in Liaoning and Guangdong was larger than that in Shanghai and Sichuan. Panicle curvature was significantly influenced by genetic factors.(The difference in panicle curvature was due to the different populations in different environment). Hereditary factor played a major role in the selection of panicle type. Cw with characteristics of super hybrid plant type model showed significant vigor in Guangdong, Sichuan and Shanghai. However, erect panicle plant type (Dz) was more adaptable to the environmental conditions in Liaoning, where rice grows longer with relatively fine weather condition and with more spike numbers. There existed a closely correlation between the plant type traits and yield components. Yet, the correlative direction and degree were not completely consistent due to different populations in different ecological environments. In the ideotype breeding practice, the criteria should be regionalized based on local climatic and cultivation conditions. Such breeding should not only have the traits of "space", but also have specific geoecotype.
     (4) The brown rice rate, milled rice rate, head rice rate, amylase content were significantly higher at Liaoning than that at Sichuan. The Chalky grains and Chalkiness were significantly lower at Liaoning than that at Sichuan. The difference in protein content was due to the different populations in different environment and was significantly influenced by genetic factors. In the four patterns of plant type, the milled rice rate and head rice rate of erect panicle plant type (Dz) showed significant vigor in Sichuan, the brown rice rate, milled rice rate and head rice rate at Liaoning had no obvious differences in different plant type model. The Chalky grains, Chalkiness, protent content and amylase content showed no obvious difference among different plant type model. The relationship between grain quality and plant type traits was not only significantly influenced by ecological environments, but by hereditary factor. Subspecies characterictics in Sichuan has no significantly selection pressure on grain quality, the effect of morphological classification on grain quality at Sichuan had not significant. There had a certain effect of Subspecies characterictics on grain quality at Liaoning. With the increasement of japonica ingredient, brown rice rate, milled rice rate, head rice rate and score showed increased trend, especially the head rice rate affected by subspecies characteristics was most significantly. The appearance quality at Liaoning showed an improved trend with the increasement of japonica ingredient.
     (5) Panicle traits had changed significantly under different ecological environments. Yet, the varied direction and degree were not completely consistent. The number of primary branch was significantly higher at Liaoning than that at other regions. The number of Secondary branch at Guangdong showed lowest. The Grains number per panicle, Seed setting rate of primary branch and spikelet density in the four regions showed trend of Liaoning>Sichuan>Guangdong and Shanghai. Thousand grains weight was highest at Sichuan and lowest at Guangdong. The seed setting rate showed trend of Liaoning>Sichuan> Guangdong> Shanghai and the panicle weigth showed Sichuan>Liaoning> Shanghai> Guangdong. The ecological environment was one of the most important causes of the difference of panicle traits under different regions. There existed a closely correlation between the plant type traits and panicle traits. Yet, the correlative direction and degree were not completely consistent due to different populations in different ecological environments. In the Liaoning breeding practice, the partial indica pedigree should be appropriately introduced, thus the branch number, seed number and seed setting rate, grains weight could reasonably integratation. With the increasement of japonica ingredient, seed setting rate showed increased trend at Sichan and Shanghai, yet, grains weight and panicle weight showed trend of increasement at Guangdong. On the premise of guarantee of grains number per panicle, with the join of japonica ingredient could improve the defect of inferior seed setting rate at Sichuan and Shanghai, while could raise the panicle weight at Guangdong.
引文
1.陈冬梅,林文雄,梁康迳.2000.稻米品质形成的生理生态研究现状与展望.福建农业科技,(增刊):81-82.
    2.陈建国,朱军,潘启明.1997.籼粳杂交稻米品质性状与农艺性状之间的遗传协方差分析.湖北大学学报(自然科学版),19(3):278-282
    3.陈温福,徐正进,张龙步.1989.水稻理想株型的研究.沈阳农学院学报,20(4):417-420
    4..陈温福,徐正进,张龙步,等.2002.水稻超高产育种研究进展与前景.中国工程科学,4,31-35.
    5..陈温福,徐正进,张龙步.2003.水稻超高产育种生理基础.沈阳:辽宁科学技术出版社,146-155
    6.陈温福,徐正进,张文忠,等.2001.水稻新株型创造与超高产育种.作物学报,27(5):665-672.
    7.陈温福,徐正进,张龙步.1995.水稻超高产育种生理基础.辽宁:辽宁科技出版社,P 146.
    8.程方民,钟连进,孙宗修.2003.灌浆结实期温度对早籼水稻籽粒淀粉合成代谢的影响.中国农业科学,36(5):492-501.
    9.程方民,钟连进.2001.不同气候生态条件下稻米品质性状的变异及主要影响因子分析.中国水稻科学,15(3):187-191.
    10.程侃声.1993.亚洲栽培稻籼粳亚种的鉴别.昆明:云南科技出版社.P1-23.
    11.程融,孙明,李成荃.1995.杂交粳稻品质性状的遗传研究IV杂交粳稻品质与产量性状间的典范相关分析.杂交水稻,(3):28-30.
    12.崔克辉,彭少兵,邢永忠,等.2002.水稻产量库相关穗部性状的遗传分析.遗传学报,29(2):144-152.
    13.丁颖稻作论文选集编辑组.1983.丁颖稻作论文选集.北京:农业出版社,P25-39.
    14.董桂春,李进前,董燕萍,等.2009.产量构成因素及穗部性状对籼稻品种库容的影响.中国水稻科学,23(5):523-528.
    15.段俊,梁承邺,黄毓文,等.1999.亚种间杂交水稻亚优2号穗部性状特点的观察,作物学报,25(5):647-649.
    16.范桂枝,蔡庆生,王春明,等.2008.高CO2浓度下水稻穗部性状的QTL分析.中国农业科学,41(8):2227-2234.
    17.冯永祥,徐正进,姚占军.2002.行向对不同穗型水稻群体微气象特性影响的研究-行向对群体内太阳直接辐射影响的理论分析.中国农业气象.23(3):18-21
    18.龚金龙,胡雅杰,龙厚元,等.2012.大穗型杂交粳稻产量构成因素协同特征及穗部性状.中国农业科学,45(11):2147-2158.
    19.顾铭洪.2010.水稻高产育种中一些问题的讨论.作物学报,2010,36(9):1431-1439
    20.韩龙植,张三元,乔永利,等.2006.不同生长环境下水稻结实率数量性状位点的检测.作物学报,32(7):1024-1030.
    21.郝宪彬,马秀芳,胡培松,等.2009.北方杂交粳稻株型与稻米品质性状的关系.中国水稻科学,23(4):398-404.
    22.胡凝,姚克敏,张晓翠,等.2011.水稻株型因子对冠层结构和光分布的影响与模拟.中国水稻科学,25(5):535-543.
    23.胡霞,石瑜敏,贾倩,等.2011.影响水稻穗部性状及籽粒碾磨品质的QTL及其环境互作分析.作物学报,37(7):1175-1185.
    24.胡继鑫.2008.水稻穗部性状与产量和品质的关系研究.重庆:西南大学,34-35.
    25.胡培松,翟虎渠,万建民.2002.中国水稻生产新特点与稻米品质改良.中国农业科技导报,4(4):33-39.
    26.黄发松,孙宗修,胡培松,等.1998.食用稻米品质形成研究的现状与展望.中国水稻科学,12(3):172-176.
    27.黄耀祥,林青山.1994.水稻超高产、特优质株型模式的构想与育种实践.广东农业科学,(4):1-6.
    28.黄耀祥.2001.半矮秆、早长根深、超高产、特优质-中国超级稻生态育种工程.广东农业科学,3,2-6.
    29.姜健,李金泉,徐正进,等.2002.水稻籼粳交杂种优势的研究.吉林农业科学, 27(1):3-7.
    30.金峰,徐海,江奕君,等.2013.生态环境对籼粳交后代株型特性和产量构成的影响.中国水稻科学,27(1):49-55.
    31.金峰,陈书强,徐正进,等.2008.直立与弯曲穗型水稻穗上不同部位籽粒碾磨品质的比较,中国水稻科学,22(2):167-174.
    32.匡勇,罗丽华,周倩倩,等.2011.水稻籼粳交重组自交系群体穗部性状的相关和遗传分析.华北农学报,26(3):72-78.
    33.李红宇,侯昱铭,陈英华,等.2009.东北地区水稻主要株型性状比较分析.作物学报,35(5):921-929.
    34.李绍波,杨国华,章志宏,等.2009.直播条件下水稻6个穗部性状的QTL分析.武汉植物学研究,27(5):467-472.
    35.梁康迳.2000.籼粳杂交稻穗部性状的遗传效应及其与环境互作.应用生态学报,11(1):78-82.
    36.吕川根,胡凝,姚克敏,等.2009.超高产杂交稻两优培九齐穗期株型的区域差异及对冠层结构的影响.中国水稻科学,23(5):529-536.
    37.马均,周开达.2001.亚种间重穗型杂交稻穗颈维管束与穗部性状的关系[J].西南农业学报,14(3):1-5.
    38.毛艇,徐海,郭艳华,等.2010.籼粳交重组自交系的亚种属性与稻米品质性状的关系.中国水稻科学,24(5):474-478.
    39.祁玉良,鲁伟林,石守设,等.2005.水稻两系亚种间杂种优势分析及其亲本选配的研究[J].河南农业科学,10:33-36.
    40.裘宗恩,刘钧赞,吴竞仑.1987.云南高原稻在低海拔地区种植植株形态变异的研究.中国农业科学,20(2):13-18.
    41.石全红,刘建刚,王兆华,等.2012.南方稻区水稻产量差的变化及其气候影响因素.作物学报,38(5):896-903.
    42.王红霞,邹德堂,王晓东,等.2010.不同生态条件对水稻产量及其构成要素的影响.黑龙江农业科学,(5):29-30
    43.王敬国,邹德堂,崔晟焕,等.2005.两种株型水稻品种杂交后代品质性状与农艺性状的研究黑龙江农业科学,(1):12-14.
    44.王延颐,防景淮,陈玉泉.1982.水稻株型及受光量的初步研究.农业气象,1,29-36.
    45.王忠,顾蕴洁,陈刚,等.2003.稻米的品质和影响因素.分子植物育种,(2):231-241.
    46.吴文革,张洪程,吴桂成,等.2007.超级稻群体子粒库容特征的初步研究.中国农业科学,40(2):250-257.
    47.吴长明,孙传清,付秀林,等.2003.稻米品质性状与产量性状及籼粳分化度的相互关系研究.作物学报,29(6):822-828.
    48.邢永忠,徐才国,华金平,等.2001.水稻穗部性状的QTL与环境互作分析.遗传学报,28(5):439-446.
    49.徐海,朱春杰,郭艳华,等.2009.生态环境对籼粳稻杂交后代穗部性状的影响及其与亚种特性的关系.中国农业科学,42(5):1540-1549.
    50.徐海,刘宏光,杨莉,等.2007.不同生态条件下籼粳稻杂交后代亚种特性的比较研究.作物学报,33(3):370-377.
    51.徐海,刘宏光,朱春杰,等.2007.生态条件对籼粳稻杂交后代亚种特性与经济性状的影响.自然科学进展,17(9):1197-1202.
    52.徐正进,陈温福,孙占惠,等.2004.辽宁水稻籽粒在穗轴上分布特点及其与结实性的关系.中国农业科学,37(7):963-967.
    53.徐正进,陈温福,张龙步,等.1990.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,23(3):6-11.
    54.徐正进,陈温福,张龙步,等.2005.水稻理想穗型设计的原理与参数.科学通报,50(1):1-4.
    55.徐正进,陈温福,张树林,等.2005.辽宁水稻穗型指数品种间差异及其与产量和品质的关系.中国农业科学,38(9):1926-1930.
    56.徐正进,陈温福,韩勇,等.2007.辽宁水稻穗型分类及其与产量和品质的关系.作物学报,33(9):1411-1418.
    57.徐正进,陈温福,张文忠,等.2004.北方粳稻新株型超高产育种研究进展.中国农业科学,37(10):1407-1413.
    58.徐正进,李金泉,姜键,等.2003.籼粳稻杂交育成品种的亚种特性性状及其与 经济性状的关系.作物学报,29(5):735-739.
    59.杨从党,袁平荣,周能,等.2001.叶型特性与产量构成因素的相关分析.中国水稻科学,15(1):70-72.
    60.杨守仁,沈锡英,顾慰连.1962.籼粳稻杂交育种研究作物学报,1(2):97-102.
    61.杨守仁,赵纪书.1959.籼粳稻杂交问题之研究[J].农业学报,10(4):256-268.
    62.杨守仁,张龙步,陈温福,等.1996.水稻超高产育种的理论和方法.中国水稻科学,10(2):115-120.
    63.杨守仁,张龙步,陈温福,等.1996.水稻超高产育种的理论和方法.作物学报,22(3):295-304
    64.杨守仁.1982.水稻株型研究进展.作物学报,3(3):205-209.
    65.杨守仁.1987.水稻超高产育种的新动向—理想株型与优势利用相结合.沈阳农业大学学报,18(1):1-5.
    66.杨占烈,余显权,黄宗洪,等.2006.不同生态条件下影响稻米品质变化的气象因子研究.种子,25(7):78-81.
    67.袁隆平.1990.两系法杂交水稻研究的进展.中国农业科学,23(3):1-6.
    68.袁隆平.1997.杂交水稻超高产育种.杂交水稻,12(6):1-3.
    69.袁隆平.2002.杂交水稻学.北京:中国农业出版社,P192-204.
    70.张庆,殷春渊,张洪程,等.2010.水稻氮高产高效与低产低效两类品种株型特征差异研究.作物学报,36(6):1011-1021.
    71.张小明,王仪春,石春海,等.2002.稻米蒸煮营养品质性状的遗传研究进展.植物遗传资源科学,3(2):51-55.
    72.张尧忠,徐宁生.1998.酯酶酶带籼粳分类法及稻种籼粳分类体系的讨论.11(3):88-93.
    73.张再君,梁承邺.2003.两个籼粳交杂种F2代几个重要性状的分布.中国农业科学,17(2):129-133.
    74.赵全志,李梦琴,刘慧超,等.2003.粳稻品质与株型的关系研究.河南农业大学学报,37(1):13-17.
    75.赵明珠,金峰,周平,等.2012.生态条件对籼粳交F2穗部性状与程氏指数的影响.植物遗传资源学报,13(6):1082-1087.
    76.中国农业科学院.中国稻作学.1984.北京:农业出版社,P 309-316.
    77.周开达,马玉清,刘太清,等.1995.杂交水稻亚种间重穗型组合的选育—杂交水稻超高产水稻育种的理论与实践.四川农业大学学报,13(4):403-407.
    78.周开达,汪旭东,李仕贵,等.1997.亚种间重穗型杂交稻研究.中国农业科学,30(5):91-93.
    79.朱春杰,徐海,郭艳华,等.2007.籼粳稻杂交后代穗部性状变异及其相互关系研究.沈阳农业大学学报,38(4):57-461.
    80.朱振华,金基永,袁平荣,等.2009.不同生态条件对云南和韩国粳稻品质及淀粉RVA谱特性的影响.应用生态学报,20(12):2949-2954.
    81.Chen, W., Xu, Z., Zhang, L.,et al..2002. Advances and prospects of rice breeding for super high yield. Chin. Eng. Sci.4:31-35.
    82.Donald, C.M..1968. The breeding of crop ideotypes. Euphytica 17:385—403.
    83.Fan Ye-yang, Chen Chen, Wu Ji-rong, et al..2011. Quantitative Trait Loci for Yield Traits Located Between Hd3a and Hdl on Short Arm of Chromosome 6 in Rice. Rice Science,18(4):257-264.
    84.Ganghua Li, Lihong Xue, Wei Gu, et al..2009. Comparison of yield components and plant type characteristics of high-yield rice between Taoyuan, a'special eco-site'and Nanjing, China. Field Crops Research 112:214-221.
    85.Hittalmani S, Huang N, Courtois B, Venuprasad R, et al..2003. Identification of QTL for growth-and grain yield-related traits in rice across nine location of Asia. Theoretical and Applied Genetics,107:679-690.
    86.Horie, T., Ohnishi, M., Angus, J.F.,et al..1997. Physiological characteristics of high-yielding rice inferred from cross-location experiments. Field Crops Res.52, 55-67.
    87.Horie, T., Shiraiwa, T., Homma, K., et al..2005. Can yields of lowland rice resume the increases that they showed in thel980s? Plant Prod. Sci.8,259-274.
    88.Internationdal Rice Research Institute (IRRI). IRRI towards 2000 and beyond [M]. Manila:IRRI,1989.36-37.
    89.Jianrong Lin, Chunhai Shi, Mingguo Wu, et al..2005. Analysis of genetic effects for cooking quality traits of japonica rice across environments. Plant Science,168: 1501-1506.
    90.Jianrong Lin, Chunhai Shi, Mingguo Wu, et al..2005. Analysis of genetic effects for cooking quality traits of japonica rice across environments. Plant Science,168: 1501-1506.
    91.Katsura, K., Maeda, S., Lubis, I.,Horie, T., et al..2008. The high yield of irrigated rice in Yunnan China:a cross-location analysis. Field Crops Res.107,1-11.
    92.Khush G S.1995. Breaking the yield frontier of rice. Geo J,35:329-332.
    93.Lee, K., Akita, S.,2000. Factors causing the variation in the temperature coefficient on dark respiration in rice (Oryza sativa L.). Plant Prod. Sci.3:38-42.
    94.Mu Ping, Huang Chao, Li Jun-Xi,et al..2008. Yield Trait Variation and QTL Mapping in a DH Population of Rice Under Phosphorus Deficiency. Acta Agron Sin,34(7):1137-1142.
    95.Peng, S., Khush, G.S., Cassman, K.G.1994. Evaluation of a new plant ideotype for increased yield potential. In:Cassman, K.G (Ed.), Breaking the Yield Barrier: Proceedings of a Workshop on Rice Yield Potential in Favourable Environments. International Rice Research Institute, Los Baos, Philippines, pp.5-20.
    96.Peng, S., Khush, G.S., Virk, P., Tang, Q., Zou, Y.2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Res.108,32-38.
    97.Qiang Fu, Peijiang Zhang, Lubin Tan et al..2010. Analysis of QTLs for yield-related traits in Yuanjiang common wild rice (Oryza rufipogon Griff.) J. Genet. Genomics 37:147-157.
    98.Rosegrant, M.W., Sombilla, M.A., Perez, N.,1995. Global food projections to 2020: implications for investment. Food, Agriculture and the Environment Discussion Paper No,5. IFPRI, Washington, DC.
    99.Sarah B. Lanning, Terry J. Siebenmorgen et al..2011. Extreme nighttime air temperatures in 2010 impact rice chalkiness and milling quality. Field Crops Research,124:132-136.
    100.Sarah B. Lanning, Terry J. Siebenmorgen, Paul A. Counceb, et al..2011. Extreme nighttime air temperatures in 2010 impact rice chalkiness and millingquality. Field Crops Research 124:132-136.
    101.Sharifi Peyman, Dehghani Hamid, Mumeni Ali,et al..2009. Genetic and genotype x environment interaction effects for appearance quality of rice. Agricultural Sciences in China.8(8):891-901.
    102.Sheehy, J.E., Mitchell, P.L., Ferrer, A.B.,2006. Decline in rice grain yields with temperature:models and correlations can give different estimates. Field Crops Res.98,151-156.
    103.Teng Sheng, Qian Qian, Zeng Da Li, et al..2002. QTL analys is of rice peduncle vascular bundle system and panicle traits. Acta Bo tanica Sinica.44 (3):301-306.
    104.Tsunoda S, Takahashi N. Biology of Rice. Tokyo:Japan Science Society Press, 1984. pp 89-115(in Japanese).
    105.Tsunoda, S.,1959a. A developmental analysis of yielding ability in varieties of field crops. I. Leaf area per plant and leaf area ratio. Jpn. J. Breed.9,161-168.
    106.Tsunoda, S.,1959b. A developmental analysis of yielding ability in varieties of field crops. II. The assimilation-system of plants as affected by the form, direction and arrangement of single leaves. Jpn. J. Breed.9,237-244.
    107.Tsunoda, S.,1960. A developmental analysis of yielding ability in varieties of field crops. III. The depth of green color and the nitrogen content of leaves. Jpn. J. Breed. 10,107-111.
    108.Tsunoda, S.,1962. A developmental analysis of yielding ability in varieties of field crops. IV. Quantitative and spatial development of the stem-system. Jpn. J. Breed. 12,49-55
    109.Williams, R.L.,1992. In:Beecher, H.G., Dunn, B.W. (Eds.), Physiological comparison of Amaroo and YRL 39. Yanco Agricultural Report. Yanco Agricultural Institute,NSW, Australia, pp.81-85.
    110.Xu Zheng-jin, Chen Wen-fu, Huang Rui-dong, et al..2010. Genetical and physiological basis of plant type model of erect and large panicle japonica super rice in northern China. Sci Agric Sin,9(4):457-462.
    111.Ying, J., Peng, S., Yang, G, Zhou, N., Visperas, R.M., Cassman, K.G,1998a. Comparison of high-yield rice in tropical and subtropical environments. I. Determinations of grain and dry matter yields. Field Crops Res.57:71-84.
    112.Ying, J., Peng, S., Yang, G., Zhou, N., Visperas, R.M., Cassman, K.G, 1998b.Comparison of high-yield rice in tropical and subtropical environments nitrogen accumulation and utilization efficiency. Field Crops Res.57:85-93.
    113.Yuan Guo, Delin Hong.2010. Novel pleiotropic loci controlling panicle architecture across environments in japonica rice (Oryza sativa L.) J. Genet. Genomics 37:533-544.
    114.Yuan, L.,2001. Breeding of super hybrid rice. In:Peng, S., Hardy, B. (Eds.), Rice Research for Food Security and Poverty Alleviation. International Rice Research Institute, Los Banos, Philippines, pp.143-149.
    115.Yuan, L., Yang, Z., Yang, J.,1994. Hybrid rice in China. In:Virmani, S.S. (Ed.), Hybrid rice technology:new developments and future prospects. International Rice Research Institute, Los Banos, Philippines, pp.143-147.
    116.Yue Bing, Xue Wei-Ya, Luo Li-Jun, et al..2006. QTL analysis for flag leaf characteristics and their relationships with yield and yield traits in rice. Acta Genetica Sinica, September,33 (9):824-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700