用户名: 密码: 验证码:
三向压力盒地应力测试与反演方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地应力是引起地下工程围岩变形和破坏的根本作用力,是进行围岩稳定性分析,实现岩石地下工程开挖支护设计所需的基本条件。煤矿深部围岩大多破碎软弱,力学强度低,在这样松软的围岩中进行地应力的有效测试是非常困难的。因此,对松散软弱围岩的地应力进行准确测试,基于测试数据反演分析巷道区域、整个矿井或矿区的地应力场分布,对矿区或矿井规划、巷道和采区整体布局及巷道支护设计等具有重要意义。针对这一构思,本文的研究工作分为软弱岩体地应力测试方法和基于地应力实测数据的地应力场反分析方法两个主要部分部分,具体研究内容如下:
     第一部分,对目前常用的地应力测试方法及其研究现状与使用条件进行了总结,得出“在松软围岩中进行地应力测试目前还没有行之有效的方法”的结论,从而提出了一种适用于松散软弱围岩的地应力测试方法——三向压力盒地应力测试方法。该方法的研究主要包括地应力测试原理、测试步骤和岩土三向压力盒、输送安装杆等测试设备的研制等内容。其中岩土三向压力盒的研制是研究的重点,分析了岩土工程中常用的压力传感原理及测试场地条件限制等因素。三向压力盒以电阻应变式压力测量原理为基础进行设计,主要包括外观设计、内部的压力测控系统及显示电路设计、完全温度补偿技术研究等内容。
     第二部分,概述了初始地应力场反演分析的常用方法,对比各方法的优缺点,提出了自己的研究思路。主要对有限元多元回归分析反演方法作了进一步的研究,针对样本应力场与实际应力场偏差过大的情况提出了该方法的改进算法。通过常规算法与改进算法的算例对比分析,说明了改进算法算出的回归值更接近于实测值,精度更高。
     最后,对全文的研究工作进行了总结,并对今后的研究工作进行了展望。
Geostress is the fundamental stress which causes the rock deformation and damage, which is the necessary precondition of the rock stability analysis and the design of the underground rock excavation engineering. Most deep rock in mine is broken, soft and low mechanical strength, so it is difficult to measure stress accurately. Therefore, making accurate test for geostress of loose and soft rock, and doing inversion analysis of roadway area and the entire mine or mining area based on test data, which will have an important significance for planning of mining or mine area, overall layout of roadway and mining area, and the design of roadway supporting. In response to this idea, the article divide into two parts, which are stress measurement method in soft rock and back analysis of the stress field according to measured stress. The specific contents are as follows:
     In the first part, the article summarized the commonly used method, research status, and useful conditions, which concluded that there was no effective method for stress measurement in the soft rock. So it presented an effective method—stress measurement method by the three-pressure cell, which could use in soft rock. The study of this method included the principles of stress measurement, measurement procedures, geotechnical three-pressure cell, and the install poles and so on. Manufacturing of the geotechnical three-pressure cells was the most important content, which analyzed some factors which included principles of pressure sensing devices commonly using in geotechnical engineering, the measuring site conditions and so on. The design of the three-pressure cell was based on the principles of resistance strain pressure monitoring system. The design included the appearance design, the internal pressure control system, display circuit design, and complete temperature compensation technology and so on.
     In the second part, it summarized some commonly used back analysis methods of initial stress field. By comparing the advantages and disadvantages of each method, the article putted forwards the research ideas. It made further research on the back analysis of multivariate regression model. And it presented an improved algorithm, according to large deviations between the samples stress field and the actual stress field. It compared the results by an example through the use of conventional algorithms and improved algorithm, the latter's regression values closed to the measured values, and achieved higher accuracy.
     Finally, the article summarized the main work of the text, and discussed the future research.
引文
1.蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社,2002,129-179
    2.沈明荣,陈建峰.岩体力学[M].上海:同济大学出版社,2006,120-141
    3. 蔡美峰,乔兰,李华斌.地应力测量原理与技术[M].北京:科学出版社,1995
    4. Lieurance, R. S.. Stress in foundation at boulder dam[J]. Tech. Memo.,1933,346
    5. Hast, N.. The state of stresses in the upper part of the Earth's crust[J]. Technophysics 8, 1969,169-211
    6. Worotnicki, G. and Walton, R.. Triaxial hollow inclusion gauges for determination of rock stresses in situ[J]. Investigation of Stree in Rock-Advances in Sress Messurement,1976, 1-8
    7. Fairhurst, C.. Methods of determing in situ stresses at great depth[J]. Missouri River, 1968,66-68
    8. Haimson. B. C.. Hydraulic fracturing in porous and nonporous rock and its potential for determining in situ stresses at great depth[J]. Missouri River,1968,45-62
    9. 刘允芳.水压致裂法地应力测量的测试原理及其与套孔解除法测量结果的比较[J].全国岩石边坡、地下工程、地基基础监测及处理技术学术会议论文集,1993,96-106
    10.杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996
    11.付成华,汪卫明,陈胜宏.溪洛渡水电站坝区初始地应力场反演分析研究[J].岩石力学与工程学报,2006,25(11):2305-2311
    12.丰定祥,谷先荣,杨家岭等.关于地下工程有限元分析中初始地应力场的假定[J].地下工程,1982,(2):20-27
    13.张有天,胡惠昌.地应力场的趋势分析[J].水利学报,1984,(4):31-38
    14.杨柯,张立翔,李仲奎.地下洞室群有限元分析的地应力场计算方法[J].岩石力学与工程学报,2002,21(11):1639-1644
    15.金艳丽,刘汉东.初始地应力场反演及回归分析方法研究[J],隧道建设,2004,24(2):6-8
    16.何江达,谢红强, 王启智,肖明砾.官地水电站坝址区初始地应力场反演分析[J].岩土工程学报,2009,31(2):166-171
    17.谢红强,肖明砾,何江达,黄桢.锦屏水电站坝区初始地应力场回归反演分析[J].长江科学院院报,2008,25(5):50-54
    18.莫海鸿.某地下厂房初始地应力场的反演分析[J].华南理工大学学报(自然科学版),1995,23(1):159-164
    19.涂兴子,勾攀峰.矿井地应力场的回归分析[J].矿山压力与顶板管理,2003(4):113.115
    20.李青麒.初始应力的回归与三维拟合[J],岩土工程学报,1998,20(5):68-71
    21.谷艳昌,郑东健,郭航忠,何鲜峰.小湾水电站坝址区三维初始地应力场反演回归分析[J].岩土力学,2008,29(4):1015-1020,1026
    22.卢泳,马鹏,陈文华.某水电站地下厂房区初始地应力场回归分析[J].地下空间与工程学报,2006,2(8):1422-1424
    23.邵国建.岩体初始地应力场的反演回归分析[J].水利水电科技进展,2000,20(5):36-38
    24.许传华,刁虎,任青文,李如忠.紫金山金铜矿初始地应力场反演分析[J].岩土力学,2009,30(2):425-432
    25.郭怀志,马启超,薛玺成,王大年.岩体初始应力场的分析方法[J].岩土工程学报,1983,5(3):
    26.胡斌,冯夏庭,黄小华等.龙滩水电站左岸高边坡区初始地应力场反演回归分析[J].岩石力学与工程学报,2005,22(11):4055-4064
    27.艾凯,韩晓玉,李永松.金沙江乌东德水电站地应力场回归分析[J].地下空间与工程学报,2006,6(12):930-933
    28.张建国,张强勇,杨文东,张欣.大岗山水电站坝区初始地应力场反演分析[J].岩土力学,2009,30(10):3071-3078
    29.张延新,宋常胜,蔡美峰,彭华.深孔水压致裂地应力测量及应力场反演分析[J].岩石力学与工程学报,2010,29(4):778-786
    30.戚蓝,丁志宏,马斌等.初始地应力场多元方程回归分析[J].岩土力学,2003,24(增):137-139
    31.李方全.谈谈水压致裂法[J].地展战线,1950,2(6):14.22
    32.张延新,宋常胜,蔡美峰,彭华.深孔水压致裂地应力测量及应力场反演分析[J].岩石力学与工程学报,2010,29(4):778-786
    33.刘允芳.水压致裂法三维地应力测量[J].岩石力学与工程学报,1991,10(3):246-256
    34.刘允芳,罗超文,景锋.水压致裂法地应力测量及其修正和工程应用[J].岩土工程学报,1999,21(4):465-470
    35.刘允芳,钟作武,汪洁.水压致裂法三维地应力测量资料整理探讨[J].岩石力学与工程学报,2002,21(6):833.838
    36.刘允芳,刘元坤.单钻孔中水压致裂法三维地应力测量的新进展[J].岩石力学与工程学报,2006,25(增2):3816-3822
    37.王建军.应用水压致裂法测量三维地应力的几个问题[J].岩石力学与工程学报,2000,19(2):229-233
    38. Leeman, E. R.. The CSIR" doorstopper" and triaxialrock stress measuringinstruments on Determination of stressesin Rock Masses[J]. Laboratorio Nacional de Engenharia Civil, 1969,578-616
    39. Worotnicki, G. and Walton, R. Triaxial" hollowinclusion" gauges for determination of rock stressesinsitu, Investigation ofStressin Rock——Advances in Stress Measurement[J]. Laboratorio Nacional de Engenharia Civil,1976,1-8
    40.王连捷,潘立宙,廖椿庭等.地应力测量及其在工程中的应用[M].北京:地质出版社,1991.
    41. Amadei B, Stephansson O. Rock Stress and Its Measurement[M]. London: Chapman&Hall,1997.
    42.谢红强,何江达,肖明砾.大型水电站厂区三维地应力场回归反演分析[J].岩土力学,2009,30(8):2471-2476
    43.周小平,王建华.测量地应力的新方法[J],岩土力学,2002,23(3):316-320
    44. HART R. Enhancing rock stress understanding through numerical analysis[J]. International Journal of Rock Mechanics and Mining Sciences,2003,40(8):1089-1097
    45.柴贺军,刘浩吾,王明华.大型电站坝区应力场三维弹塑性有限元模拟与拟合[J].岩石力学与工程学报,2002,21(9):1314.1318
    46. Brudy M, Zoback M D, Fuchs K, etal. Estimation of the completestress tensor to 8 km depth in the KTB scientific drill holes:implications for crustal strength[J].Journal of Geophysical Research,1997,102(B8):18 453-18 475
    47.易达,陈胜宏.地表剥蚀作用对地应力场反演的影响[J].岩土力学,2003,24(2): 254.261
    48.秦忠诚,刘承论,赵祉业,李青海.地形及构造应力影响下初始地应力场的3D-FSM反演分析[J].岩土力学,2008,29(7):1848-1852
    49.黄生文,司铁汉,陈文胜,叶光耀.断层对大跨度隧道围岩应力影响的有限元分析[J].岩石力学与工程学报,2006,25(增2):3788-3793
    50.庞作会,陈文胜,邓建辉,葛修润.复杂初始地应力场的反分析[J].岩土工程学报,1998,20(4):44.47
    51.刘允芳,朱杰兵,刘元冲.空心包体式钻子巨向应变计地应力测量的研究[J].岩石力学与工程学报,2001,20(4):448-453
    52.于雷,王爱文,姜国成.空芯包体地应力测量技术在红庙煤矿中的应用[J].煤炭技术,2008,27(7):128-130
    53.梅松华,盛谦,冯夏庭,刘路平,赵海斌.龙滩水电站左岸地下厂房区三维地应力场反演分析[J].岩石力学与工程学报,2004,23(23):4006-4011
    54.李玉寿,王衍森,赵海云.煤巷围岩地应力测量及岩芯断裂形态分析[J].矿山压力与顶板管理,1998(2):78-80
    55.符兴义,燕柳斌,苏国韶.某电站地下厂房区域初始地应力反演分析[J].广西大学学报(自然科学版),2008(33):15-18
    56.丁敏.某矿区基于ANSYS的初始地应力场回归分析[J].山西建筑,2007,33(5):90-91
    57.陈秀铜,李璐.某水电站地下洞室群初始地应力场反演回归分析[J].岩土力学,2007,28:540-544
    58.赵宇.某隧道岩体初始地应力场有限元反演分析[J].山西建筑,2009,35(4):337-338
    59.戴荣,李仲奎.三维地应力场BP反分析的改进[J].岩石力学与工程学报,2005,24(1):83.88
    60.侯明勋,葛修润.三维地应力计算模型研究[J].岩土力学,2007,28(10):2017-2021
    61.何满潮.深部的概念体系及工程评价指标[J].岩石力学与工程学报,2005,24(16):2854.2858
    62.何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803.2813
    63.钟作武,陈云长,刘允芳,固密.深部岩体三维地应力测量技术[J].矿山压力与顶板管理,2005(3):80-85
    64.侯明勋.深部岩体三维地应力测量新方法、新原理及其相关问题研究[J].岩石力学与工程学报,2004,23(24):4258
    65.石林,张旭东,金衍,陈勉.深层地应力测量新方法[J].岩石力学与工程学报,2004,23(14):2355-2358
    66.刘宁,朱维申,辛小丽.双江口水电站初始地应力场反演回归分析[J].山东大学学报(工学版),2008,38(6):121-126
    67.侯明勋,葛修润,王水林.水力压裂法地应力测量中的几个问题[J].岩土力学,2003,24(5):840-844
    68.陈志坚,游庆仲,林闽,李筱艳.振弦式压力盒在刚性接触面应力监测中的应用研究[J].中国工程科学,2002,12,4(12):80-85
    69.张辉,付东波,雷毅,徐刚,齐庆新.振弦式传感器在矿压测量中的应用研究[J].煤矿开采,2007,12,12(6):5-7
    70.邓铁六,白泰礼,马俊亭,徐乐年.单线圈电流型振弦式传感器[J].传感器技术,2000,19(4):22-25
    71.肖旸.基于电阻应变式传感器的测力系统[J].湖北第二师范学院学报,2010,27(2):92-96
    72.袁成友,郭海峰.电阻应变式传感器的温度误差及其补偿[J].中国井矿盐,2008,39(4):34-40
    73.陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,1(1):12-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700