用户名: 密码: 验证码:
新型钼酸盐晶体的可控制备及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工业化发展带来的环境污染日益严重,越来越多的有毒有害物质通过大气、水体和土壤进入食品从而危及人类的健康。环境污染因素已成为威胁食品安全的重要因素之一,而半导体光催化剂在解决环境污染方面有着巨大的应用前景。由于光催化剂的晶相、比表面积、微观形貌和表面结构等性质与性能直接相关,因此,通过改变制备方法和条件来实现晶相、尺寸、微观形貌和表面结构等局部可控的微/纳米材料的制备,探讨其形成机理及其对光催化性能的影响具有重要的理论价值和实际意义。为此,本论文开展了具有特殊微观形貌和暴露晶面的NiMoO4、PbMoO4和Bi2Mo06的合成研究,深入探讨了反应条件等对产物的晶相、微观形貌、暴露晶面、光吸收和光催化性能的影响,初步揭示了其形成机理,并推测光催化材料具有较高的催化活性的内在因素。最后,选择高活性具有可见光响应的光催化材料用于对食品安全构成较大隐患的抗生素的光催化降解研究。
     主要内容如下:
     (1)采用简单的水热法制备了具有一维结构的NiMoO4·0.91H2O纳米棒,探讨了反应条件对产物晶相、微观形貌的影响。在500-900℃下煅烧5小时得到单斜晶相的a-NiMoO4,其微观形貌仍为纳米棒结构。将a-NiMoO4负载Ag后考察其光催化降解罗丹明B的活性,相比于a-NiMoO4,负载Ag后光催化降解活性有明显的增强。
     (2)采用十六烷基三甲基溴化铵(CTAB)为晶面导向剂,通过简单的水热法成功制备了(001)面优势暴露的PbMoO4微晶体。讨论了CTAB的加入量和水热温度对PbMoO4微晶体微观形貌与暴露晶面的影响。实验结果表明,控制CTAB加入量与水热温度能够控制(112)与(001)晶面的衍射峰强度比(I112/I004)。当CTAB浓度为0.05mol/L时,180℃水热反应24h得到的产品表现出明显的(001)优先暴露,I12/I004=0.08。另外,所得(001)晶面优先暴露的PbMoO4微晶体的光催化降解罗丹明B(RhB)活性优于常规水热法制备的(112)晶面优势暴露的PbMoO4微晶体以及商用二氧化钛光催化剂(P25)。
     (3)在HN03辅助的条件下,通过调节水热反应条件可控地制备了具有分等级结构的PbMoO4微米球,并初步探讨了水热温度、水热时间和HNO3浓度对产物的微观形貌、晶相及其光吸收性能的影响及其形成机理。实验结果表明,在0.5-1.0mol/L的HN03溶液中160℃水热反应24 h制备得到由-230 nm的板状微米片自组装形成的直径为5-10μm的微米球;不存在HNO3时,只得到了不规则的PbMoO4纳米粒子和由纳米粒子组成的团聚体。这一简单的制备方法可以为合成其他分等级结构的微/纳米材料提供了一条可供借鉴的途径。光催化降解实验结果表明,分等级的PbMoO4微米球表现出卓越的光催化性能。
     (4)采用简单的水热反应,通过调节pH值成功制备了(010)面优势暴露的Bi2Mo06纳米片。并初步探讨了水热pH、水热时间、水热温度和CTAB浓度对产物的晶相、微观形貌及其光吸收性能的影响及其形成机理。结果表明,控制水热pH能够控制(131)与(010)晶面的衍射峰强度比(I131/I010)。当pH=10时,140℃水热反应72 h得到的产品表现出明显的(010)优先暴露,I131/I010=0.54。光催化降解实验结果表明,该(010)晶面暴露的Bi2Mo06纳米片表现出更优越的光催化降解性能。
     (5)利用具有可见光响应的(010)晶面暴露的Bi2M006纳米片作为光催化剂,应用于对食品安全构成较大隐患的抗生素-土霉素(OTC)和四环素(TC)的光催化降解研究。探讨了溶液pH,催化剂的用量,初始浓度等对光催化降解OTC和TC的影响。结果表明,对于初始浓度为20 mg/L的OTC和TC溶液,加入140 mg光催化剂,在pH=11的条件下,可见光照射1h即可降解42.1%的OTC和58.8%的TC。对OTC和TC的光催化降解动力学曲线符合Langmuir-Hinshelwood模型,其动力学常数分别为0.00664和0.00845 mmin-1。利用自由基清除剂来考察在光催化过程中由哪些活性物质起主要作用。结果表明,空穴对光催化降解OTC和TC起主要作用。
With the industrialization of the increasingly serious environmental pollution caused by more and more toxic and harmful substances through the atmosphere, water and soil into the food and thus endanger human health. Environmental factors have become important factors threatening food security, one of the semiconductor photocatalyst in solving environmental pollution has a great prospect. As photocatalyst crystalline phase, specific surface area, morphology and surface structure are directly related to the nature and properties. Thus, by changing the preparation methods and conditions to achieve the crystalline phase, size, morphology and surface structure of local control of micro/nano materials, to explore the formation mechanism of its photocatalytic properties, which has important theoretical and practical significance. Hence, in the present paper, NiMoO4 nanorods, PbMoO4 microcrystals with preferentially exposed (001) facets, hierarchical PbMoO4 microspheres and Bi2MoO6 microcrystals with preferentially exposed (010) facets were prepared. Moreover, the effects of reaction conditions on crystalline phase, morphology, exposed crystal facets, light absorption and photocatalytic performance of the obtained samples were also primarily discussed, which is initially revealed their formation mechanism, and speculated the underlying factors on the photocatalytic material with high photocatalytic activity. The photocatalysis degradation of two antibiotics widely used in both human and veterinary medicine:oxytetracycline (OTC) and oetracycline (TC) in aqueous were investigated by Bi2MoO6 nanoplates with preferentially exposed (010) facets under visible light irradiation. The detail researches and the conclusions are summarized as follows:
     1. One dimensional NiMoO4·0.91H2O nanorods has been synthesized by a facile hydrothermal method. The effect of different synthetic conditions on the morphologies of the final products was investigated. NiMoO4·0.91H2O nanorods can be further converted to monoclinic a-NiMoO4 nanorods by calcinating at 500-900℃for 5 h without significant alteration of the nanorod structure. The photocatalytic property of the obtained a-NiMoO4 nanorods and Ag-loaded a-NiMoO4 nanorods has been tested by degradation of Rhodamine B (RhB) under UV light irradiation.
     2. Lead molybdate (PbMoO4) microcrystals with preferentially exposed (001) facets have been synthesized by a facile surfactant-assisted hydrothermal process in the presence of cetyltrimethylammonium bromide (CTAB). The effects of the CTAB addition amount, hydrothermal temperature on the morphologies and the crystal facets of PbMoO4 were investigated in detail. Experimental results indicate that the diffraction peak intensity ratio of (112) to (001) crystal facets for the product can be delicately controlled by simply adjusting the addition amount of CTAB and hydrothermal temperature. And the products derived from hydrothermal treatment at 180℃for 24 h in the presence of 0.05 mol/L CTAB exhibit an obvious exposed (001) facets with minimum peak intensity ratio (I112/004=0.08) of the (112) and (004) crystal facets. Moreover, the obtained PbMoO4 with preferentially exposed (001) facets exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under UV light irradiation in comparison with the PbMoO4 obtained in absence of CTAB and the commercial phototcatalyst (P25).
     3. Hierarchical PbMoO4 microcrystals were synthesized via a simple nitric acid-assisted hydrothermal process without addition of template or organic directing reagent. The scheelite-type tetragonal PbMoO4 with various hierarchical microstructures can be controllably fabricated by adjusting the experimental conditions such as hydrothermal temperature, time and nitric acid concentration. Experimental results indicate that hierarchical PbMoO4 microspheres with a size of 5-10μm, which are assembled by slablike microcrystals with an average thickness of~230 nm, can be obtained from a hydrothermal treatment at 160℃for 24 h in the presence of HNO3 solution, whereas only irregular particles and aggregations are obtained without HNO3 solution. The hierarchical PbMoO4 microspheres show more excellent photocatalytic activity than the irregular PbMoO4 particles for the degradation of rhodamine B (RhB) under UV light irradiation. Furthermore, a possible nitric acid-assisted formation mechanism for the hierarchical PbMoO4 microspheres is proposed, which might represent a new fabrication strategy for other nano/microstructures with desired morphology.
     4. Bismuth molybdate (Bi2MoO6) nanoplates with preferentially exposed (010) facets have been synthesized by a facile hydrothermal process. The effects of pH, hydrothermal temperature and the CTAB addition amount on the morphologies and the crystal facets of Bi2MoO6 were investigated in detail. Experimental results indicate that the diffraction peak intensity ratio of (131) to (010) crystal facets for the product can be delicately controlled by simply adjusting the pH value of the reactant. And the products derived from pH=10 at 140℃for 72 h in the presence of 0.03 mol/L CTAB exhibit an obvious exposed (131) facets with minimum peak intensity ratio (I131/I010=0.54) of the (131) and (010) crystal facets. Moreover, the obtained Bi2MoO6 nanoplates with, preferentially exposed (010) facets exhibits greatly enhanced photocatalytic activity for the degradation of Rhodamine B (RhB) under visible light irradiation.
     5. The aim of this study is the evaluation of photocatalysis to degrade two antibiotics widely used in both human and veterinary medicine:oxytetracycline (OTC) and oetracycline (TC), in Bi2MoO6 aqueous suspension under visible light irradiation. The effects of catalyst amount, initial pH value, and initial concentration of each substrate on the photocatalytic degradation rates were investigated in detail. Experimental results indicate that pH has a significant effect on OTC and TC degradation. The optimal values of the operation parameters under the related constraint conditions were found at pH= 11.0, BilMoO6 concentration of 1.4 g/L and initial concentration of 20 mg/L. Under this condition,42.1% of OTC and 58.8% of TC were degraded under visible light irradiation for 60 min, respectively. The disappearance of these two compounds follows a pseudo-first-order kinetics according to the Langmuir-Hinshelwood (L-H) model and the rate constants were 0.00664 and 0.00845 min-1 for OTC and TC, respectively. It was observed that the surface reaction on BiiMoO6 played a important role in the degradation of OTC and TC, and the further study of reactive oxygen species (ROSs) indicated that the photohole (h+) was responsible for the major degradation of OTC and TC.
引文
1.于笑潇.分等级纳米复合光催化材料的制备及其光催化性能研究.博士学位论文,2010,武汉:武汉理工大学.
    2.刘玲玲.环境污染与食品安全.中国食品与营养,2006,2,12-14.
    3.周樨.金属氧化物微纳米晶体晶面可控生长与其特性研究以及纳米晶体在生物分子检测中的应用.博士学位论文,2009,厦门:厦门大学.
    4.姜晓辉.钨酸盐、钼酸盐纳米材料的合成制备及发光性能的研究.硕士学位论文,2008,青岛:中国海洋大学.
    5.姚书山.新型可见光催化剂的制备及评价.博士学位论文2009,山东:山东大学.
    6.柯丁宁.新型光催化材料的制备及其可见光催化制氢或制氧性能研究.博士学位论文,2010,武汉:武汉大学.
    7.温福宇,杨金辉,宗旭,马艺,徐倩,马保军和李灿.太阳能光催化制氢研究进展.化学进展,2009,21(11),2285-2302.
    8.蔡伟民和龙明策.环境光催化材料与光催化净化技术(第一版).上海交通大学出版设,2011,1-7.
    9. Abellan, M. N., Bayarri, B., Gimenez, J., and Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B-Environmental,2007,74(3-4),233-241.
    10. Ahmed, S., Rasul, M. G, Brown, R., and Hashib, M. A. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review. Journal of Environmental Management,2011,92(3),311-330.
    11. An, T. C., Yang, H., Li, G. Y, Song, W. H., Cooper, W. J., and Nie, X. P. Kinetics and mechanism of advanced oxidation processes (AOPs) in degradation of ciprofloxacin in water. Applied Catalysis B-Environmental,2010,94(3-4), 288-294.
    12. Ayame, A., Uchida, K., Iwataya, M., and Miyamoto, M. X-ray photoelectron spectroscopic study on alpha-and gamma-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Applied Catalysis A-General,2002,227(1-2), 7-17.
    13. Bao, N. Z., Shen, L. M., Takata, T., and Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials,2008,20(1),110-117.
    14. Baran, W., Adamek, E., Sobczak, A., and Makowski, A. Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiOi/FeCl3 in aquatic environment-Kinetics and degradation pathway. Applied Catalysis B-Environmental,2009,90(3-4),516-525.
    15. Beltran, F. J., Aguinaco, A., Garcia-Araya, J. F., and Oropesa, A. Ozone and photocatalytic processes to remove the antibiotic sulfamethoxazole from water. Water Research,2008,42(14),3799-3808.
    16. Belver, C., Adan, C., and Fernandez-Garcia, M. Photocatalytic behaviour of Bi2MO6 polymetalates for rhodamine B degradation. Catalysis Today,2009,143, 274-281.
    17. Benotti, M. J., Stanford, B. D., Wert, E. C., and Snyder, S. A. Evaluation of a photocatalytic reactor membrane pilot system for the removal of pharmaceuticals and endocrine disrupting compounds from water. Water Research,2009,43(6), 1513-1522.
    18. Bi, J. H., Wu, L., Li, H., Li, Z. H., Wang, X. X., and Fu, X. Z. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Materialia,2007,55(14),4699-4705.
    19. Bi, J. H., Wu, L., Zhang, Y. F., Li, Z. H., Li, J. Q., and Fu, X. Z. Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4. Applied Catalysis B-Environmental,2009,91(1-2),135-143.
    20. Blake, D. M. NREL/TP-430-6084. National Renewal Energy Laboratory,1994, Golden, Co.
    21. Blake, D. M. NREL/TP-340-22197. National Renewal Energy Laboratory,1997, Golden, Co.
    22. Blake, D. M. NREL/TP-570-26797. National Renewal Energy Laboratory,1999, Golden, Co.
    23. Blake, D. M. NREL/TP-640-28297. National Renewal Energy Laboratory,2002, Golden, Co.
    24. Bu, W. B., Xu, Y. P., Zhang, N., Chen, H. R., Hua, Z., and Shi, J. L. Controlled construction of uniform pompon-shaped microarchitectures self-assembled from single-crystalline lanthanum molybdate nanoflakes. Langmuir,2007,23(17), 9002-9007.
    25. Calza, P., Medana, C., Pazzi, M., Baiocchi, C., and Pelizzetti, E. Photocatalytic transformations of sulphonamides on titanium dioxide. Applied Catalysis B-Environmental,2004,53(1),63-69.
    26. Cao, L. X., Gao, Z., Suib, S. L., Obee, T. N., Hay, S. O., and Freihaut, J. D. Photocatalytic oxidation of toluene on nanoscale TiO2 catalysts:Studies of deactivation and regeneration. Journal of Catalysis,2000,196(2),253-261.
    27. Carey, J. H., Lawrence, J., and Tosine, H. M. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bulletin of Environmental Contamination and Toxicology,1976.16(6),697-701.
    28. Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Varela, J. A., Longo, E., and Orlandi, M. O. Growth mechanism of octahedron-like BaMoO4 microcrystals processed in micro wave-hydrothermal:Experimental observations and computational modeling. Particuology,2009,7(5),353-362.
    29. Chain, E., Florey, H. W., Hardner, A. D., Heatley, N. G, Jennings, M. A., Orr-Ewing, J., and Sanders, A. G. Penicillin as a Chemotherapeutic Agent. Lancet, 1940,239,226-228.
    30. Chatzitakis, A., Berberidou, C., Paspaltsis, I., Kyriakou, G, Sklaviadis, T., and Poulios, I. Photocatalytic degradation and drug activity reduction of Chloramphenicol. Water Research,2008,42(1-2),386-394.
    31. Chen, J. S., Tan, Y. L., Li, C. M., Cheah, Y. L., Luan, D. Y., Madhavi, S., Boey, F. Y. C., Archer, L. A., and Lou, X. W. Constructing Hierarchical Spheres from Large Ultrathin Anatase TiO2 Nanosheets with Nearly 100% Exposed (001) Facets for Fast Reversible Lithium Storage. Journal of the American Chemical Society,2010,132(17),6124-6130.
    32. Chen, J. Y., Liu, T. Y., Cao, D. H., and Zhao, G. J. First-principles study of the electronic structures and absorption spectra for the PbMoO4 crystal with lead vacancy. Physica Status Solidi B-Basic Solid State Physics,2008a,245(6), 1152-1155.
    33. Chen, J. Y, Zhang, Q. R., Liu, T. Y., and Shao, Z. X. First-principles study of color centers in PbMoO4 crystals. Physica B-Condensed Matter,2008b,403(4), 555-558.
    34. Chen, X. B., Liu, L., Yu, P. Y, and Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science, 2011a, DOI:10.1126/science.1200448.
    35. Chen, X. B., Shen, S. H., Guo, L. J., and Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews,2011b,110(11), 6503-6570.
    36. Choina, J., Duwensee, H., Flechsig, G. U., Kosslick, H., Morawski, A. W., Tuan, V. A., and Schulz, A. Removal of hazardous pharmaceutical from water by photocatalytic treatment. Central European Journal of Chemistry,2010,8(6), 1288-1297.
    37. da Cruz, L. H., Henning, F. G., dos Santos, A. B., and Peralta-Zamora, P. Photocatalytic degradation of sulfametoxazole, trimethoprim and diclofenac in aquoeus solutions. Quimica Nova,2010,33(6),1270-1274.
    38. Dai, K., Peng, T. Y., Chen, H., Liu, J., and Zan, L. Photocatalytic degradation of commercial phoxim over La-Doped TiO2 nanoparticles in aqueous suspension. Environmental Science & Technology,2009a,43(5),1540-1545.
    39. Dai, Y Q., Cobley, C. M., Zeng, J., Sun, Y M., and Xia, Y. N. Synthesis of anatase TiO2 nanocrystals with exposed{001} facets. Nano Letters,2009b,9(6), 2455-2459.
    40. Dalton, J. S., Janes, P. A., Jones, N. G., Nicholson, J. A., Hallam, K. R., and Allen, G. C. Photocatalytic oxidation of NOx gases using TiO2:a surface spectroscopic approach. Environmental Pollution,2002,120(2),415-422.
    41. Delepee, R., Maume, D., Le Bizec, B., and Pouliquen, H. Preliminary assays to elucidate the structure of oxytetracycline's degradation products in sediments Determination of natural tetracyclines by high-performance liquid chromatography-fast atom bombardment mass spectrometry. Journal of Chromatography B,2000.748(2),369-381.
    42. Di Paola, A., Addamo, M., Augugliaro, V., Garcia-Lopez, E., Loddo, V., Marci, G, and Palmisano, L. Photodegradation of lincomycin in aqueous solution. International Journal of Photoenergy,2006.
    43. Ding, S. J., Chen, J. S., Wang, Z. Y, Cheah, Y. L., Madhavi, S., Hu, X. A., and Lou, X. W. TiO2 hollow spheres with large amount of exposed (001) facets for fast reversible lithium storage. Journal of Materials Chemistry,2011,21(6), 1677-1680.
    44. Ding, Y, Wan, Y, Min, Y. L., Zhang, W., and Yu, S. H. General synthesis and phase control of metal molybdate hydrates MMoO4 center dot nH2O (M=Co, Ni, Mn, n=0,3/4,1) nano/microcrystals by a hydrothermal approach:Magnetic, photocatalytic, and electrochemical properties. Inorganic Chemistry,2008,47(17), 7813-7823.
    45. Ding, Y, Yu, S. H., Liu, C., and Zang, Z. A.3D architectures of iron molybdate: Phase selective synthesis, growth mechanism, and magnetic properties. Chemistry-A European Journal,2007,13(3),746-753.
    46. Ding, Y H., Li, C. Y, and Guo, R. Facile fabrication of pomponlike microarchitectures of lanthanum molybdate via an ultrasound route. Ultrasonics Sonochemistry,2010,17(1),46-54.
    47. Echavia, G. R. M., Matzusawa, F., and Negishi, N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel. Chemosphere,2009,76(5),595-600.
    48. Einaga, H., Futamura, S., and Ibusuki, T. Photocatalytic decomposition of benzene over TiO2 in a humidified airstream. Physical Chemistry Chemical Physics,1999,1(20),4903-4908.
    49. Einaga, H., Futamura, S., and Ibusuki, T. Heterogeneous photocatalytic oxidation of benzene, toluene, cyclohexene and cyclohexane in humidified air:comparison of decomposition behavior on photoirradiated TiO2 catalyst. Applied Catalysis B-Environmental,2002,38(3),215-225.
    50. Elmolla, E. S., and Chaudhuri, M. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. Journal of Hazardous Materials,2009,172(2-3),1476-1481.
    51. Elmolla, E. S., and Chaudhuri, M. Degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution by the UV/ZnO photocatalytic process. Journal of Hazardous Materials,2010a,173(1-3),445-449.
    52. Elmolla, E. S., and Chaudhuri, M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination,2010b,252(1-3),46-52.
    53. Fleming, A. The discovery of penicillin. British Medical Bulletin,1944, British Council.
    54. Frank, S. N., and Allen, J. Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solutions at Titanium Dioxide Powder. Journal of the American Chemical Society,1977,99,303-304.
    55. Fujishima, A., and Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature,1972,238(5358),37-38.
    56. Hager, S., and Bauer, R. Heterogeneous photocatalytic oxidation of organics for air purification by near UV irradiated titanium dioxide. Chemosphere,1999, 38(7),1549-1559.
    57. Han, X. G, Kuang, Q., Jin, M. S., Xie, Z. X., and Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society,2009, 131(9),3152-3153.
    58. Haque, M. M., and Muneer, M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials,2007,145(1-2), 51-57.
    59. Hilal, H. S., Al-Nour, G. Y. M., Zyoud, A., Helal, M. H., and Saadeddin, I. Pristine and supported ZnO-based catalysts for phenazopyridine degradation with direct solar light. Solid State Sciences,2010,12(4),578-586.
    60. Huo, P. W., Yan, Y. S., Li, S. T., Li, H. M., and Huang, W. H. Preparation of poly-o-phenylenediamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics. Applied Surface Science,2010,256(11),3380-3385.
    61. Ichiura, H., Kitaoka, T., and Tanaka, H. Photocatalytic oxidation of NOx using composite sheets containing TiO2 and a metal compound. Chemosphere,2003, 51(9),855-860.
    62. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with do-and dio-related electronic configurations. Energy & Environmental Science,2009,2(4),364-386.
    63. Jiang, X. H., Ma, J. F., Lin, B. T., Ren, Y, Liu, J., Zhu, X. Y., Tao, J. T., Wang, Y G, and Xie, L. J. Hydrothermal synthesis of CdMoO4 nano-particles. Journal of the American Ceramic Society,2007,90(3),977-979.
    64. Jing, L. Q., Xin, B. F., Yuan, F. L., Wang, B. Q., Shi, K. Y, Cai, W. M., and Fu, H. G. Deactivation and regeneration of ZnO and TiO2 nanoparticles in the gas phase photocatalytic oxidation of n-C7H16 or SO2. Applied Catalysis A-General,2004, 275(1-2),49-54.
    65. Jung, J. C., Heesoo, K. A., Choi, A. S., Chung, Y M, Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Preparation, characterization, and catalytic activity of bismuth molybdate catalysts for the oxidative dehydrogenation of n-butene into 1,3-butadiene. Journal of Molecular Catalysis A-Chemical,2006,259(1-2), 166-170.
    66. Jung, J. C., Kim, H., Kim, Y. S., Chung, Y M., Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene. Applied Catalysis A-General,2007a,317(2),244-249.
    67. Jung, J. C., Kini, H., Choi, A. S., Chung, Y M., Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Effect of pH in the preparation of gamma-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene:Correlation between catalytic performance and oxygen mobility of gamma-Bi2MoO6. Catalysis Communications,2007b,8(3),625-628.
    68. Jung, J. C., Lee, H., Kim, H., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., Kim, Y S., and Song, I. K. A synergistic effect of alpha-Bi2Mo3O12 and gamma-Bi2MoO6 catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene. Journal of Molecular Catalysis A-Chemical,2007c,271(1-2), 261-265.
    69. Jung, J. C., Lee, H., Kim, H., Chung, Y M., Kim, T. J., Lee, S. J., Oh, S. H., Kim, Y. S., and Song, I. K. Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catalysis Letters,2008a,124(3-4),262-267.
    70. Jung, J. C., Lee, H., Kim, H, Chung, Y M., Kim, T. J., Lee, S. J., Oh, S. H., Kim, Y. S., and Song, I. K. Preparation, characterization and catalytic activity of Bi-Mo-based catalysts for the oxidative dehydrogenation of n-butene to 1,3-butadiene. Research on Chemical Intermediates,2008b,34(8-9),827-833.
    71. Jung, J. C., Lee, H, and Song, I. K. Production of 1,3-butadiene from C-4 raffinate-3 through oxidative dehydrogenation of n-butene over bismuth molybdate catalysts. Catalysis Surveys from Asia,2009,13(2),78-93.
    72. Kaneco, S., Li, N., Itoh, K. K., Katsumata, H., Suzuki, K., and Ohta, K. Titanium dioxide mediated solar photocatalytic degradation of thiram in aqueous solution: Kinetics and mineralization. Chemical Engineering Journal,2009,148(1),50-56.
    73. Katsumata, H., Sada, M., Nakaoka, Y., Kaneco, S., Suzuki, T., and Ohta, K. Photocatalytie degradation of diuron in aqueous solution by platinized TiO2. Journal of Hazardous Materials,2009,171(1-3),1081-1087.
    74. Ke, D. N., Peng, T. Y., Ma, L., Cai, P., and Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry,2009a,48(11),4685-4691.
    75. Ke, T. Y., Peng, C. W., Lee, C. Y, Chiu, H. T., and Sheu, H. S.{110}-exposed rutile titanium dioxide nanorods in photocatalytic performance. Crystengcomm, 2009b,11(8),1691-1695.
    76. Khan, S. U. M., Al-Shahry, M., and Ingler, W. B. Efficient photochemical water splitting by a chemically modified n-TiO2 Science,2002,297(5590),2243-2245.
    77. Kim, B., Kim, D., Cho, D., and Cho, S. Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere,2003,52(1),277-281.
    78. Kim, S. B., and Hong, S. C. Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst. Applied Catalysis B-Environmental,2002,35(4),305-315.
    79. Kitsiou, V., Filippidis, N., Mantzavinos, D., and Pouios, I. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions. Applied Catalysis B-Environmental,2009,86(1-2),27-35.
    80. Klauson, D., Babkina, J., Stepanova, K., Krichevskaya, M., and Preis, S. Aqueous photocatalytic oxidation of amoxicillin. Catalysis Today,2010a,151(1-2),39-45.
    81. Klauson, D., Krichevskaya, M., Borissova, M., and Preis, S. Aqueous photocatalytic oxidation of sulfamethizole. Environmental Technology,2010b, 31(14),1547-1555.
    82. Klavarioti, M., Mantzavinos, D., and Kassinos, D. Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International,2009,35(2),402-417.
    83. Kudo, A., and Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews,2009,38(1),253-278.
    84. Lagunas-Allue, L., Martinez-Soria, M. T., Sanz-Asensio, J., Salvador, A., Ferronato, C., and Chovelon, J. M. Photocatalytic degradation of boscalid in aqueous titanium dioxide suspension:Identification of intermediates and degradation pathways. Applied Catalysis B-Environmental,2010,98(3-4), 122-131.
    85. Lei, S. J., Tang, K. B., Liu, Q. C., Zhen, F., Qing, Y., and Zheng, H. G. Preparation of manganese molybdate rods and hollow olive-like spheres. Journal of Materials Science,2006,41(15),4737-4743.
    86. Leyzerovich, N. N., Bramnik, K. G, Buhrmester, T., Ehrenberg, H., and Fuess, H. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). Journal of Power Sources,2004,127(1-2),76-84.
    87. Li, H. H., Li, K. W., and Wang, H. Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials. Materials Chemistry and Physics, 2009,116(1),134-142.
    88. Li, K. F., Wang, L. H., Liu, W. D., and Ying, T. K. Ionic liquid-assisted sacrificial templating route to hollow CdMoO4 micro tubes. Journal of the Ceramic Society of Japan,2010,118(1375),253-255.
    89. Li, Y., Tan, S., Jiang, J., Huang, Z., and Tan, X. Room-temperature synthesis, growth mechanism and properties of uniform CdMoO4 nano-octahedra. Crystengcomm,2011, DOI:10.1039/c0ce00769b.
    90. Liu, H. W., and Tan, L. Synthesis, structure, and electrochemical properties of CdMoO4 nanorods. Ionics,2010,16(1),57-60.
    91. Liu, M., Piao, L. Y., Zhao, L., Ju, S. T., Yan, Z. J., He, T., Zhou, C. L., and Wang, W. J. Anatase TiO2 single crystals with exposed {001} and {110} facets:facile synthesis and enhanced photocatalysis. Chemical Communications,2010a,46(10), 1664-1666.
    92. Liu, S. W, Yu, J. G., and Jaroniec, M. Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed {001} facets. Journal of the American Chemical Society,2010b,132(34),11914-11916.
    93. Liu, W, Chen, S. F., Zhao, W., and Zhang, S. J. Study on the photocatalytic degradation of trichlorfon in suspension of titanium dioxide. Desalination,2009a, 249(3),1288-1293.
    94. Liu, Y. B., Gan, X. J., Zhou, B. X., Xiong, B. T., Li, J. H., Dong, C. P., Bai, J., and Cai, W. M. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials,2009b,171(1-3), 678-683.
    95. Luo, Y. S., Dai, X. J., Zhang, W. D., Yang, Y, Sun, C. Q., and Fu, S. Y. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Transactions,2010,39(9),2226-2231.
    96. Luo, Y S., Zhang, W. D., Dai, X. J., Yang, Y, and Fu, S. Y. Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route. Journal of Physical Chemistry C,2009,113(12),4856-4861.
    97. Makowski, A., Sobczak, A., Wcislo, D., Adamek, E., Baran, W., and Kostecki, M. Photocatalytic degradation of doxycycline in water solutions. Proceedings of Ecopole,2009a,3(1),87-94.
    98. Makowski, A., Sobczak, A., Wcislo, D., Adamek, E., Baran, W., and Nocon, W. Photocatalytic degradation of ampicillin in water solutions. Proceedings of Ecopole,2009b,3(1),81-86.
    99. Maness, P. C., Smolinski, S., Blake, D. M., Huang, Z., Wolfrum, E. J., and Jacoby, W. A. Bactericidal activity of photocatalytic TiO2 reaction:Toward an understanding of its killing mechanism. Applied and Environmental Microbiology, 1999,65(9),4094-4098.
    100.Martyanov, I. N., and Klabunde, K. J. Photocatalytic oxidation of gaseous 2-chloroethyl ethyl sulfide over TiO2. Environmental Science & Technology,2003, 37(15),3448-3453.
    1O1.Matsuda, S., Hatano, H., and Tsutsumi, A. Ultrafine particle fluidization and its application to photocatalytic NOx treatment. Chemical Engineering Journal, 2001,82(1-3),183-188.
    102.Matsunagaa, T., Tomodaa, R., Nakajimaa, T., and Wakea, H. Photoelectrochemical sterilization of microbial cells by semiconductor powders FEMS Microbiology Letters,1985,29(1-2),211-214
    103.Mazille, F., Schoettl, T., Klamerth, N., Malato, S., and Pulgarin, C. Field solar degradation of pesticides and emerging water contaminants mediated by polymer films containing titanium and iron oxide with synergistic heterogeneous photocatalytic activity at neutral pH. Water Research,2010,44(10),3029-3038.
    104.Mi, Y., Huang, Z. Y., Hu, F. L., Jiang, J. Y., and Li, Y. F. Controlled synthesis and growth mechanism of alpha nickel molybate microhombohedron. Materials Letters,2010,64(6),695-697.
    105.Mikkelsen, M., Jorgensen, M., and Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy & Environmental Science,2009,3(1),43-81.
    106.Nieto, J., Freer, J., Contreras, D., Candal, R. J., Sileo, E. E., and Mansilla, H. D. Photocatalyzed degradation of flumequine by doped TiO2 and simulated solar light. Journal of Hazardous Materials,2008,155(1-2),45-50.
    107.Ollis, D. F. Contaminant degradation in water. Environmental Science & Technology,1985,19(6),480-484.
    108.Oncescu, T., Stefan, M. I., and Oancea, P. Photocatalytic degradation of dichlorvos in aqueous TiO2 suspensions. Environmental Science and Pollution Research,2010,17(5),1158-1166.
    109.Palominos, R., Freer, J., Mondaca, M. A., and Mansilla, H. D. Evidence for hole participation during the photocatalytic oxidation of the antibiotic flumequine. Journal of Photochemistry and Photobiology A-Chemistry,2008,193(2-3), 139-145.
    110.Paul, T., Miller, P. L., and Strathmann, T. J. Visible-light-mediated TiO2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science & Technology,2007,41(13),4720-4727.
    111.Peng, C., Gao, L., Yang, S. W., and Sun, J. A general precipitation strategy for large-scale synthesis of molybdate nanostructures. Chemical Communications, 2008, (43),5601-5603.
    112.Phuruangrat, A., Thongtem, T., and Thongtem, S. Preparation, characterization and photoluminescence of nanocrystalline calcium molybdate. Journal of Alloys and Compounds,2009a,481(1-2),568-572.
    113.Phuruangrat, A., Thongtem, T., and Thongtem, S. Synthesis of lead molybdate and lead tungstate via microwave irradiation method. Journal of Crystal Growth, 2009b,311(16),4076-4081.
    114.Portela, R., Suarez, S., Rasmussen, S. B., Arconada, N., Castro, Y., Duran, A. Avila, P., Coronado, J. M., and Sanchez, B. Photocatalytic-based strategies for H2S elimination. Catalysis Today,2010,151(1-2),64-70.
    115.Pourata, R., Khataee, A. R., Aber, S., and Daneshvar, N. Removal of the herbicide Bentazon from contaminated water in the presence of synthesized nanocrystalline TiO2 powders under irradiation of UV-C light. Desalination,2009,249(1), 301-307.
    116.Radjenovic, J., Sirtori, C., Petrovic, M., Barcelo, D., and Malato, S. Solar photocatalytic degradation of persistent pharmaceuticals at pilot-scale:Kinetics and characterization of major intermediate products. Applied Catalysis B-Environmental,2009,89(1-2),255-264.
    117.Reilly, L. M., Sankar, G, and Catlow, C. R. A. Following the formation of gamma-phase Bi2MoO6 catalyst by in situ XRD/XAS and thermogravimetric techniques. Journal of Solid State Chemistry,1999,148(1),178-185.
    118.Ren, Y, Ma, J. F., Wang, Y. G, Zhu, X. Y, Lin, B. T., Liu, J., Jiang, X. H., and Tao, J. T. Shape-tailored hydrothermal synthesis of CdMoO4 crystallites on varying pH conditions. Journal of the American Ceramic Society,2007,90(4), 1251-1254.
    119.Roy, S. C., Varghese, O. K., Paulose, M., and Grimes, C. A. Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons. Acs Nano,2010, 4(3),1259-1278.
    12O.Ryu, S. Y, Choi, J., Balcerski, W., Lee, T. K., and Hoffmann, M. R. Photocatalytic production of H2 on nanocomposite catalysts. Industrial & Engineering Chemistry Research,2007,46,7476-7488.
    121.Sabharwal, S. C., Sangeeta, and Desai, D. G. Investigations of single crystal growth of PbMoO4. Crystal Growth & Design,2006,6(1),58-62.
    122.Sahoo, P. P., Sumithra, S., Madras, G, and Row, T. N. G Synthesis, Characterization, and Photocatalytic Properties of ZrMo2O8. Journal of Physical Chemistry C,2009,113(24),10661-10666.
    123.Sakkas, V. A., Calza, P., Medana, C., Villioti, A. E., Baiocchi, C., Pelizzetti, E., and Albanis, T. Heterogeneous photocatalytic degradation of the pharmaceutical agent salbutamol in aqueous titanium dioxide suspensions. Applied Catalysis B-Environmental,2007,77(1-2),135-144.
    124.Sczancoski, J. C., Bomio, M. D. R., Cavalcante, L. S., Joya, M. R., Pizani, P. S., Varela, J. A., Longo, E., Li, M. S., and Andres, J. A. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. Journal of Physical Chemistry C,2009,113(14),5812-5822.
    125.Sczancoski, J. C., Cavalcante, L. S., Joya, M. R., Varela, J. A., Pizani, P. S., and Longo, E. SrMoO4 powders processed in microwave-hydro thermal:Synthesis, characterization and optical properties. Chemical Engineering Journal,2008, 140(1-3),632-637.
    126.Selloni, A. Crystal growth-Anatase shows its reactive side. Nature Materials, 2008,7(8),613-615.
    127.Senthilnathan, J., and Philip, L. Photocatalytic degradation of lindane under UV and visible light using N-doped TiO2. Chemical Engineering Journal,2010, 161(1-2),83-92.
    128.Sharma, M. V. P., Sadanandam, G., Ratnamala, A., Kumari, V. D., and Subrahmanyam, M. An efficient and novel porous nanosilica supported TiO2 photocatalyst for pesticide degradation using solar light. Journal of Hazardous Materials,2009,171(1-3),626-633.
    129.Shi, Y, Feng, S., and Cao, C. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Materials Letters,2000,44,215-218.
    130.Shimodaira, Y, Kato, H., Kobayashi, H., and Kudo, A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. Journal of Physical Chemistry B,2006,110(36),17790-17797.
    131.Shimodaira, Y, Kato, H., Kobayashi, H., and Kudo, A. Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium(VI). Bulletin of the Chemical Society of Japan,2007,80(5),885-893.
    132.Singh, R. N., Awasthi, M. R., and Sinha, A. S. K. Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution. Journal of Solid State Electrochemistry,2009,13(10),1613-1619.
    133.Singh, R. N., Singh, J. P., and Singh, A. Electrocatalytic properties of new spinel-type MMoO4 (M=Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions. International Journal of Hydrogen Energy,2008,33(16), 4260-4264.
    134.Sirtori, C., Aguera, A., Gernjak, W., and Malato, S. Effect of water-matrix composition on Trimethoprim solar photodegradation kinetics and pathways. Water Research,2010,44(9),2735-2744.
    135.Sojic, D. V., Despotovic, V. N., Abazovic, N. D., Comor, M. I., and Abramovic, B. F. Photocatalytic degradation of selected herbicides in aqueous suspensions of doped titania under visible light irradiation. Journal of Hazardous Materials, 2010,179(1-3),49-56.
    136.Spassky, D., Vasil' ev, A., Kamenskikh, I., Kolobanov, V., Mikhailin, V., Savon, A., Ivleva, L., Voronina, I., and Berezovskaya, L. Luminescence investigation of zinc molybdate single crystals. Physica Status Solidi A-Applications and Materials Science,2009,206(7),1579-1583.
    137.Sunada, K., Watanabe, T., and Hashimoto, K. Studies on photokilling of bacteria on TiO2 thin film. Journal of Photochemistry and Photobiology A-Chemistry, 2003,156(1-3),227-233.
    138.Takeda, H., Koike, K., Inoue, H., and Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(1) complexes based on mechanistic studies. Journal of the American Chemical Society,2008,130(6), 2023-2031.
    139.Tang, J. W., Zou, Z. G, and Ye, J. H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angewandte Chemie-International Edition,2004,43(34),4463-4466.
    140.Tian, G. H., Chen, Y. J., Zhou, W., Pan, K., Dong, Y. Z., Tian, C. G, and Fu, H. G Facile solvothermal synthesis of hierarchical flower-like B12MoO6 hollow spheres as high performance visible-light driven photocatalysts. Journal of Materials Chemistry,2011,21(3),887-892.
    141.Tomasevic, A., Kiss, E., Petrovic, S., and Mijin, D. Study on the photocatalytic degradation of insecticide methomyl in water. Desalination,2010,262(1-3), 228-234.
    142.Trabelsi, I., Dammak, M., Maalej, R., and Kamoun, M. Theoretical and comparative investigations of Yb3+ ion in MW04 and M'MoO4 scheelites crystals (M=Sr, Pb, Ca, Ba) and (M'=Sr, Pb, Ca, Cd). Physica B-Condensed Matter,2011.406(3),315-318.
    143.Tributsch, H. Photovoltaic hydrogen generation. International Journal of Hydrogen Energy,2008,33(21),5911-5930.
    144.Vorontsov, A. V., Lion, C., Savinov, E. N., and Smirniotis, P. G. Pathways of photocatalytic gas phase destruction of HD simulant 2-chloroethyl ethyl sulfide. Journal of Catalysis,2003,220(2),414-423.
    145.Vorontsov, A. V., Stoyanova, I. V., Kozlov, D. V., Simagina, V. I., and Savinov, E. N. Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. Journal of Catalysis,2000,189(2),360-369.
    146.Walters, E., McClellan, K., and Halden, R. U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids-soil mixtures in outdoor mesocosms. Water Research,2010,44(20),6011-6020.
    147.Warmer, W. G., Yin, J. J., and Wei, R. R. Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biology and Medicine,1997, 23(6),851-858.
    148.Wang, W. S., Zhen, L., Xu, C. Y, and Shao, W. Z. Room temperature synthesis, growth mechanism, photocatalytic and photoluminescence properties of cadmium molybdate core-shell microspheres. Crystal Growth & Design,2009,9(3), 1558-1568.
    149.Wang, W. S., Zhen, L., Xu, C. Y, Zhang, B. Y, and Shao, W. Z. Room temperature synthesis of hollow CdMoO4 microspheres by a surfactant-free aqueous solution route. Journal of Physical Chemistry B,2006,110(46), 23154-23158.
    15O.Wang, Y, Liang, J. B., Liao, X., Wang, L. S., Loh, T. C., Dai,J., and Ho, Y W. Photodegradation of sulfadiazine by goethite-oxalate suspension under UV light irradiation. Industrial & Engineering Chemistry Research,2010,49(8), 3527-3532.
    151.Wei, L., Shifu, C., Wei, Z., and Sujuan, Z. Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. Journal of Hazardous Materials,2009,164(1),154-160.
    152.Wu, R. J., Chen, C. C., Chen, M. H., and Lu, C. S. Titanium dioxide-mediated heterogeneous photocatalytic degradation of terbufos:Parameter study and reaction pathways. Journal of Hazardous Materials,2009,162(2-3),945-953.
    153.Wu, R. J., Chen, C. C., Lu, C. S., Hsu, P. Y, and Chen, M. H. Phorate degradation by TiO2 photocatalysis:Parameter and reaction pathway investigations. Desalination,2010,250(3),869-875.
    154.Xekoukoulotakis, N. P., Drosou, C., Brebou, C., Chatzisymeon, E., Hapeshi, E., Fatta-Kassinos, D., and Mantzavinos, D. Kinetics of UV-A/TiO2 photocatalytic degradation and mineralization of the antibiotic sulfamethoxazole in aqueous matrices Catalysis Today 2010, DOI:10.1016/j.cattod.2010.09.027
    155.Xi, G. C., and Ye, J. H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chemical Communications,2010,46(11),1893-1895.
    156.Xiao, W, Chen, J. S., Li, C. M., Xu, R., and Lou, X. W. Synthesis, characterization, and lithium storage capabitity of AmoO4 (A=Ni, Co) nanorods. Chemistry of Materials,2010,22(3),746-754.
    157.Xie, T., Gong, M., Niu, Z. Q., Li, S. A., Yan, X. Y., and Li, Y D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Research,2010,3(3), 174-179.
    158.Xu, C., Zou, D. B., Guo, H., Jie, F., and Ying, T. K. Luminescence properties of hierarchical CaMoO4 microspheres derived by ionic liquid-assisted process. Journal of Luminescence,2009,129(5),474-477.
    159.Xu, L., Lu, C. L., Zhang, Z. H., Yang, X. Y, and Hou, W. H. Various self-assembled three-dimensional hierarchical architectures of La2(MoO4)3: controlled synthesis, growth mechanisms, luminescence properties and adsorption activities. Nanoscale,2010,2(6),995-1005.
    16O.Yan, S. C., Ouyang, S. X., Gao, J., Yang, M., Feng, J. Y., Fan, X. X., Wan, L. J., Li, Z. S., Ye, J. H., Zhou, Y, and Zou, Z. G. A Room-temperature reactive-template route to mesoporous ZnGa2O4 with improved photocatalytic activity in reduction of CO2. Angewandte Chemie-International Edition,2010, 49(36),6400-6404.
    161.Yang, C. C., Yu, Y H., van der Linden, B., Wu, J. C. S., and Mul, G. Artificial photosynthesis over crystalline TiO2-based catalysts:Fact or Fiction? Journal of the American Chemical Society,2010a,132(24),8398-8406.
    162.Yang, H., An, T. C., Li, G. Y., Song, W. H., Cooper, W. J., Luo, H. Y, and Guo, X. D. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2:A case of beta-blockers. Journal of Hazardous Materials,2010b,179(1-3),834-839.
    163.Yang, H., Li, G. Y., An, T. C., Gao, Y P., and Fu, J. M. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2:A case of sulfa drugs. Catalysis Today,2010c,153(3-4),200-207.
    164.Yang, H. G, Liu, G, Qiao, S. Z., Sun, C. H., Jin, Y. G, Smith, S. C., Zou, J., Cheng, H. M., and Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. Journal of the American Chemical Society,2009,131(11),4078-4083.
    165.Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G, Smith, S. C., Cheng, H. M., and Lu, G Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature,2008,453(7195),638-U634.
    166.Yang, W. G, Li, J. M., Wang, Y. L., Zhu, F., Shi, W. M., Wan, F. R., and Xu, D. S. A facile synthesis of anatase TiO2 nanosheets-based hierarchical spheres with over 90% {001} facets for dye-sensitized solar cells. Chemical Communications, 2011,47(6),1809-1811.
    167.Yang, X. H., Li, Z., Liu, G, Xing, J., Sun, C., Yang, H. G, and Li, C. Ultra-thin anatase TiO2 nanosheets dominated with {001} facets:thickness-controlled synthesis, growth mechanism and water-splitting properties. Crystengcomm, 2010d,13(5),1378-1383.
    168.Yerga, R. M. N., Galvan, M. C. A., del Valle, F., de la Mano, J. A. V., and Fierro, J. L. G. Water splitting on semiconductor catalysts under visible-light irradiation. Chemsuschem,2009,2(6),471-485.
    169.Yin, W. Z., Wang, W. Z., and Sun, S. M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation. Catalysis Communications,2010a,11(7),647-650.
    170.Yin, Y. K., Gao, Y, Sun, Y Z., Zhou, B. B., Ma, L., Wu, X., and Zhang, X. Synthesis and photoluminescent properties of CaMoO4 nanostructures at room temperature. Materials Letters,2010b,64(5),602-604.
    171.Yu, H. B., Wang, X. H., Sun, H. W., and Huo, M. X. Photocatalytic degradation of malathion in aqueous solution using an Au-Pd-TiO2 nanotube film. Journal of Hazardous Materials,2010a,184(1-3),753-758.
    172.Yu, J., and Kudo, A. Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates. Chemistry Letters,2005,34, 1528-1629.
    173.Yu, J. G., Xiang, Q. J., Ran, J. R., and Mann, S. One-step hydrothermal fabrication and photocatalytic activity of surface-fluorinated TiO2 hollow microspheres and tabular anatase single micro-crystals with high-energy facets. Crystengcomm,2010b,12(3),872-879.
    174.Zhang, D. Q., Li, G. S., Yang, X. F., and Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chemical Communications,2009a, (29),4381-4383.
    175.Zhang, G. K., Yu, S. J., Yang, Y. Q., Jiang, W, Zhang, S. M., and Huang, B. B. Synthesis, morphology and phase transition of the zinc molybdates ZnMooO4 center dot 0.8H2O/alpha-ZnMoO4/ZnMoO4 by hydrothermal method. Journal of Crystal Growth,2010a,312(11),1866-1874.
    176.Zhang, H. M., Han, Y. H., Liu, X. L., Liu, P. R., Yu, H., Zhang, S. Q., Yao, X. D., and Zhao, H. J. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dye-sensitized solar cells (DSSCs). Chemical Communications,2010b,46(44),8395-8397.
    177.Zhang, J. W, Fu, D. F., Xu, Y. D., and Liu, C. Y. Optimization of parameters on photocatalytic degradation of chloramphenicol using TiO2 as photocatalyist by response surface methodology. Journal of Environmental Sciences-China,2010c, 22(8),1281-1289.
    178.Zhang, L., Cao, X. F., Ma, Y. L., Chen, X. T., and Xue, Z. L. Microwave-assisted solution-phase preparation and growth mechanism of FeMoO4 hierarchical hollow spheres. Crystengcomm,2010d,12(1),207-210.
    179.Zhang, L., Cao, X. F., Ma, Y. L., Chen, X. T., and Xue, Z. L. Pancake-like Fe2(MoO4)3 microstructures:microwave-assisted hydrothermal synthesis, magnetic and photocatalytic properties. New Journal of Chemistry,2010e,34(9), 2027-2033.
    18O.Zhang, L., Yan, F., Su, M. M., Han, G. X., and Kang, P. L. A study on the degradation of methamidophos in the presence of nano-TiO2 catalyst doped with Re. Russian Journal of Inorganic Chemistry,2009b,54(8),1210-1216.
    181.Zhang, N., Bu, W. B., Xu, Y. P., Jiang, D. Y, and Shi, J. L. Surfactant-assisted growth of novel La2(MoO4)3 dendritic nanostructures via facile hydrotherma processes. Journal of Nanoscience and Nanotechnology,2008,8(3),1468-1472.
    182.Zhao, C., Deng, H. P., Li, Y., and Liu, Z. Z. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. Journal of Hazardous Materials,2010,176(1-3),884-892.
    183.Zhao, D. S., Wang, J. L., Zhao, X. H., and Zhang, J. TiO2/NaY composite as photocatalyst for degradation of omethoate. Chemical Research in Chinese Universities,2009a,25(4),543-549.
    184.Zhao, J., and Yang, X. D. Photocatalytic oxidation for indoor air purification:a literature review. Building and Environment,2003,38(5),645-654.
    185.Zhao, X., Qu, J. H., Liu, H. J., and Hu, C. Photoelectrocatalytic degradation of triazine-containing azo dyes at gamma-Bi2MoO6 film electrode under visible light irradiation lambda > 420 nm. Environmental Science & Technology,2007,41, 6802-6807.
    186.Zhao, X., Xu, T. G., Yao, W. Q., and Zhu, Y. F. Photodegradation of dye pollutants catalyzed by gamma-Bi2MoO6 nanoplate under visible light irradiation. Applied Surface Science,2009b,255(18),8036-8040.
    187.Zhao, X., Xu, T. G, Yao, W. Q., and Zhu, Y. F. Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases. Thin Solid Films,2009c,517(20),5813-5818.
    188.Zhen, L., Wang, W. S., Xu, C. Y., Shao, W. Z., Ye, M. M., and Chen, Z. L. High photocatalytic activity and photoluminescence property of hollow CdMoO4 microspheres. Scripta Materialia,2008,58(6),461-464.
    189.Zheng, F. L., Li, G. R., Yu, X. L., and Tong, Y. X. Synthesis of bismuth molybdate nanowires via electrodeposition-heat-treatment method. Electrochemical and Solid State Letters,2009a,12(8), K56-K58.
    19O.Zheng, Y, Duan, F., Wan, J., Liu, L., Chen, M. Q., and Xie, Y. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation. Journal of Molecular Catalysis A-Chemical,2009b,303(1-2),9-14.
    191.Zhou, L., Wang, W. Z., Xu, H. L., and Sun, S. M. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property. Crystal Growth & Design,2008,8(10),3595-3601.
    192.Zhu, J. A., Wang, S. H., Bian, Z. F., Xie, S. H., Cai, C. L., Wang, J. G, Yang, H. G., and Li, H. X. Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. Crystengcomm,2010,12(7),2219-2224.
    193.Zou, Z. G., and Arakawa, H. Direct water splitting into H2 and O2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. Journal of Photochemistry and Photobiology A-Chemistry,2003,158(2-3), 145-162.
    194.Zou, Z. G, Ye, J. H., and Arakawa, H. Photocatalytic water splitting into H2 and/or O2 under UV and visible light irradiation with a semiconductor photocatalyst. International Journal of Hydrogen Energy,2003,28(6),663-669.
    195.Zou, Z. G, Ye, J. H., Sayama, K., and Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature,2001, 414(6864),625-627.
    1. AbdelDayem, H. M., and Al-Omair, M. A. Phase composition and catalytic activity of alpha-NiMoO4 reduced with hydride anion. Industrial & Engineering Chemistry Research,2008,47(4),1011-1016.
    2. Agafonov, Y. A., Nekrasov, N. V., Gaidai, N. A., Botavina, M. A., Davydov, P. E., and Lapidus, A. L. Physicochemical study of catalysts for the oxidative dehydrogenation of isobutane:Cobalt, nickel, and manganese molybdates. Kinetics and Catalysis,2009,50(4),577-582.
    3. Agafonov, Y. A., Nekrasov, N. V., Gaidai, N. A., and Lapidus, A. L. Kinetics and mechanism of the oxidative dehydrogenation of isobutane on cobalt, nickel, and manganese molybdates. Kinetics and Catalysis,2007,48(2),255-264.
    4. Bao, N. Z., Shen, L. M., Takata, T., and Domen, K. Self-templated synthesis of nanoporous CdS nanostrucrures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials,2008,20(1),110-117.
    5. Ding, Y, Wan, Y, Min, Y. L., Zhang, W., and Yu, S. H. General synthesis and phase control of metal molybdate hydrates MMoO4 center dot nH2O (M=Co, Ni, Mn, n=0,3/4,1) nano/microcrystals by a hydrothermal approach:Magnetic, photocatalytic, and electrochemical properties. Inorganic Chemistry,2008,47(17), 7813-7823.
    6. Eda, K., Kato, Y., Ohshiro, Y., Sugitani, T., and Whittingham, M. S. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO4.nH2O. Journal of Solid State Chemistry,2010.
    7. Ke, D. N., Peng, T. Y., Ma, L., Cai, P., and Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry,2009,48(11),4685-4691.
    8. Leyzerovich, N. N., Bramnik, K. G., Buhrmester, T., Ehrenberg, H., and Fuess, H. Electrochemical intercalation of lithium in ternary metal molybdates MMoO4 (M: Cu, Zn, Ni and Fe). Journal of Power Sources,2004,127(1-2),76-84.
    9. Madeira, L. M., Portela, M. F., and Mazzocchia, C. Nickel molybdate catalysts and their use in the selective oxidation of hydrocarbons. Catalysis Reviews-Science and Engineering,2004,46(1),53-110.
    10. Mazzocchia, C., Aboumrad, C., Diagne, C., Tempesti, E., Herrmann, J. M., and Thomas, G. On the NiMoO4 oxidative dehydrogenation of propane to propene: some physical correlations with the catalytic activity. Catalysis Letters,1991,10, 181-192.
    11. Mi, Y., Huang, Z. Y., Hu, F. L., Jiang, J. Y., and Li, Y. F. Controlled synthesis and growth mechanism of alpha nickel molybate microhombohedron. Materials Letters,2010,64(6),695-697.
    12. Moreno, B., Chinarro, E., Colomer, M. T., and Jurado, J. R. Combustion Synthesis and Electrical Behavior of Nanometric beta-NiMoO4. Journal of Physical Chemistry C,2010,114(10),4251-4257.
    13. Ozkan, U., and Schrader, G. L. NiMoO4 selective oxidation catalysts containing excess MoO3 for the conversion of C4 hydrocarbons to maleic anhydridel. Preparation and characterization. Journal of Catalysis,1985,95,120-136.
    14. Pillay, B., Mathebula, M. R., and Friedrich, H. B. The oxidative dehydrogenation of n-hexane over Ni-Mo-O catalysts. Applied Catalysis A-General,2009, 361(1-2),57-64.
    15. Ren, J., Wang, W. Z., Sun, S. M., Zhang, L., and Chang, J. Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Applied Catalysis B-Environmental,2009,92(1-2),50-55.
    16. Rodriguez, J. A., Chaturvedi, S., Hanson, J. C., and Brito, J. L. Reaction of H-2 and H2S with CoMoO4 and NiMoO4:TPR, XANES, time-resolved XRD, and molecular-orbital studies. Journal of Physical Chemistry B,1999,103(5), 770-781.
    17. Shakir, I., Shahid, M., and Kang, D. J. MoO3 and CU0.33MoO3 nanorods for unprecedented UV/Visible light photocatalysis. Chemical Communications,2011. 46(24),4324-4326.
    18. Shi, R., Wang, Y. J., Li, D., Xu, J., and Zhu, Y. F. Synthesis of ZnWO4 nanorods with [100] orientation and enhanced photocatalytic properties. Applied Catalysis B-Environmental,2010.100(1-2),173-178.
    19. Singh, R. N., Awasthi, M. R., and Sinha, A. S. K. Preparation and electrochemical characterization of a new NiMoO4 catalyst for electrochemical O2 evolution. Journal of Solid State Electrochemistry,2009,13(10),1613-1619.
    20. Singh, R. N., Singh, J. P., and Singh, A. Electrocatalytic properties of new spinel-type MMoO4 (M=Fe, Co and Ni) electrodes for oxygen evolution in alkaline solutions. International Journal of Hydrogen Energy,2008,33(16), 4260-4264.
    21. Smith, W., Mao, S., Lu, G. H., Catlett, A., Chen, J. H., and Zhao, Y. P. The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chemical Physics Letters,2010,485(1-3),171-175.
    22. Xiao, W., Chen, J. S., Li, C. M., Xu, R., and Lou, X. W. Synthesis, characterization, and lithium storage capabitity of AmoO4 (A=Ni, Co) nanorods. Chemistry of Materials,2010,22(3),746-754.
    23. Xu, Y. B., Lu, J. Y, and Wang, F. D. Catalysts for n-butane dehydrogenation to 1-butene. Progress in Chemistry,2007,19,1481-1487.
    24. Yan, Y., Sun, H. P., Yao, P. P., Kang, S. Z., and Mu, J. Effect of multi-walled carbon nanotubes loaded with Ag nanoparticles on the photocatalytic degradation of rhodamine B under visible light irradiation. Applied Surface Science,2011, 257(8),3620-3626.
    25. Zavoianu, R., Dias, A., Pavel, O. D., Angelescu, E., and Portela, M. F.1-Octene metathesis on silica supported Zr-doped NiMoO4 catalysts. Catalysis Communications,2005,6(5),321-327.
    26. Zavoianu, R., Dias, C. R., Soares, A. P. V., and Portela, M. F. Oxidative dehydrogenation of i-butane over nanostructured silica-supported NiMoO4 catalysts with low content of active phase. Applied Catalysis A-General,2006, 298,40-49.
    27. Zhang, C. and Zhu, Y. F. Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts. Chemistry of Materials,2005,17(13), 3537-3545.
    28. Zhou, L., Wang, W. Z., Xu, H. L., and Sun, S. M. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property. Crystal Growth & Design,2008,8(10),3595-3601.
    1.周樨.金属氧化物微纳米晶体晶面可控生长与其特性研究以及纳米晶体在生物分子检测中的应用.博士学位论文,2009,厦门:厦门大学.
    2. Anandakumar, V. M., and Khadar, M. A. Synthesis, characterization and optical properties of nanocrystalline lead molybdate. Physica Status Solidi A-Applications and Materials Science,2008,205(11),2666-2672.
    3. Bao, N. Z., Shen, L. M., Takata, T., and Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials,2008,20(1),110-117.
    4. Bi, J. H., Wu, L., Zhang, Y. F., Li, Z. H., Li, J. Q., and Fu, X. Z. Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4. Applied Catalysis B-Environmental,2009,91(1-2),135-143.
    5. Bochkova, T. M., Volnyanskii, M. D., Volnyanskii, D. M., and Shchetinkin, V. S. Color centers in lead molybdate crystals. Physics of the Solid State,2003,45(2), 244-247.
    6. Cavalcante, L. S., Sczancoski, J. C., Tranquilin, R. L., Varela, J. A., Longo, E., and Orlandi, M. O. Growth mechanism of octahedron-like BaMoO4 microcrystals processed in micro wave-hydro thermal:Experimental observations and computational modeling. Particuology,2009,7(5),353-362.
    7. Chen, J. Y., Liu, T. Y, Cao, D. H., and Zhao, G. J. First-principles study of the electronic structures and absorption spectra for the PbMoO4 crystal with lead vacancy. Physica Status Solidi B-Basic Solid State Physics,2008,245(6), 1152-1155.
    8. Dong, F. Q., and Wu, Q. S. Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature. Applied Physics A-Materials Science & Processing,2008,91(1),161-165.
    9. Han, X. G, Kuang, Q., Jin, M. S., Xie, Z. X., and Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. Journal of the American Chemical Society,2009, 131(9),3152-3153.
    10. Jiang, Z. Y, Xu, T., Xie, Z. X., Lin, Z. W., Zhou, X., Xu, X., Huang, R. B., and Zheng, L. S. Molten salt route toward the growth of ZnO nanowires in unusual growth directions. The Journal of Physical Chemistry B,2005,109(49), 23269-23273.
    11. Ke, D. N., Peng, T. Y, Ma, L., Cai, P., and Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry,2009,48(11),4685-4691.
    12. Lei, F., Yan, B., Chen, H. H., Zhang, Q., and Zhao, J. T. Surfactant-assisted hydrothermal synthesis, physical characterization, and photoluminescence of PbWO4. Crystal Growth & Design,2009,9(8),3730-3736.
    13. Liu, M., Piao, L. Y, Zhao, L., Ju, S. T., Yan, Z. J., He, T., Zhou, C. L., and Wang, W. J. Anatase TiCh single crystals with exposed {001} and {110} facets:facile synthesis and enhanced photocatalysis. Chemical Communications,2010,46(10), 1664-1666.
    14. Luo, Y S., Zhang, W. D., Dai, X. J., Yang, Y., and Fu, S. Y Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route. Journal of Physical Chemistry C,2009,113(12),4856-4861.
    15. Phuruangrat, A., Thongtem, T., and Thongtem, S. Synthesis of lead molybdate and lead tungstate via microwave irradiation method. Journal of Crystal Growth, 2009,311(16),4076-4081.
    16. Sabharwal, S. C., Sangeeta, and Desai, D. G. Investigations of single crystal growth of PbMoO4. Crystal Growth & Design,2006,6(1),58-62.
    17. Sczancoski, J. C., Bomio, M. D. R., Cavalcante, L. S., Joya, M. R., Pizani, P. S., Varela, J. A., Longo, E., Li, M. S., and Andres, J. A. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. Journal of Physical Chemistry C,2009,113(14),5812-5822.
    18. Selloni, A. Crystal growth-Anatase shows its reactive side. Nature Materials, 2008,7(8),613-615.
    19. Shimodaira, Y, Kato, H., Kobayashi, H., and Kudo, A. Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium(VI). Bulletin of the Chemical Society of Japan,2007,80(5),885-893.
    20. Tyagi, W., Desai, S. D. G., and Sabharwal, S. C. New observations on the luminescence of lead molybdate crystals. Journal of Luminescence,2008,128, 22-26.
    21. Volnyanskii, M. D., Kudzin, A. Y, Plyaka, S. N., and Balasme, Z. Photoinduced permittivity in lead molybdate. Physics of the Solid State,2005,47(10), 1854-1858.
    22. Xi, G. C., and Ye, J. H. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties. Chemical Communications,2010,46(11),1893-1895.
    23. Xie, T., Gong, M., Niu, Z. Q., Li, S. A., Yan, X. Y, and Li, Y. D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Research,2010,3(3), 174-179.
    24. Yang, H. G., Liu, G., Qiao, S. Z., Sun, C. H., Jin, Y. G., Smith, S. C., Zou, J., Cheng, H. M., and Lu, G Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. Journal of the American Chemical Society,2009,131(11),4078-4083.
    25. Yang, X. Y., Gao, X., Gan, Y. L., Gao, C. Y., Zhang, X. L., Ting, K., Wu, B. M., and Gou, Z. R. Facile synthesis of octacalcium phosphate nanobelts:Growth mechanism and surface adsorption properties. Journal of Physical Chemistry C., 2010,114(14),6265-6271.
    26. Zhang, D. Q., Li, G S., Yang, X. F., and Yu, J. C. A micrometer-size TiO2 single-crystal photocatalyst with remarkable 80% level of reactive facets. Chemical Communications,2009, (29),4381-4383.
    27. Zhang, J., Xu, Q., Feng, Z., Li, M., and Li, C. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2. Angewandte Chemie International Edition,2008,47(9),1766-1769.
    28. Zhang, L. S., Wang, W. Z., Zhou, L., and Xu, H. L. Bi2WO6 nano- and microstructures:Shape control and associated visible-light-driven photocatalytic activities. Small,2007,3,1618-1625.
    29. Zhang, Y. G., Zhou, G. T., Liu, Y., Gao, N., and Qian, Y. T. Growth of CdWO4 nanorods and nanowires by a surfactant directed adsorption mechanism. Bulletin of the Chemical Society of Japan,2006,79(9),1447-1450.
    30. Zheng, Y., Duan, F., Wan, J., Liu, L., Chen, M. Q., and Xie, Y. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation. Journal of Molecular Catalysis A-Chemical,2009,303(1-2),9-14.
    31. Zhu, J. A., Wang, S. H., Bian, Z. E., Xie, S. H., Cai, C. L., Wang, J. G., Yang, H. G., and Li, H. X. Solvothermally controllable synthesis of anatase TiO2 nanocrystals with dominant {001} facets and enhanced photocatalytic activity. Crystengcomm,2010,12(7),2219-2224.
    1. Anandakumar, V. M., and Khadar, M. A. Synthesis, characterization and optical properties of nanocrystalline lead molybdate. Physica Status Solidi a-Applications and Materials Science,2008,205(11),2666-2672.
    2. Bao, N. Z., Shen, L. M., Takata, T., and Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials,2008,20(1),110-117.
    3. Bi, J. H., Wu, L., Zhang, Y. F., Li, Z. H., Li, J. Q., and Fu, X. Z. Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO4 and SrMoO4. Applied Catalysis B-Environmental,2009,91(1-2),135-143.
    4. Bochkova, T. M., Volnyanskii, M. D., Volnyanskii, D. M., and Shchetinkin, V. S. Color centers in lead molybdate crystals. Physics of the Solid State,2003,45(2), 244-247.
    5. Dong, F. Q., and Wu, Q. S. Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature. Applied Physics a-Materials Science & Processing,2008,91(1),161-165.
    6. Jia, R. P., and Zhang, Y. Q. Synthesis and optical properties of PbMoO4 nanoplates. Chinese Optics Letters,2011,8(12),1152-1155.
    7. Ke, D. N., Peng, T. Y., Ma, L., Cai, P., and Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry,2009,48(11),4685-4691.
    8. Kumar, S., and Nann, T. Shape control of Ⅱ-Ⅵ semiconductor nanomateriats. Small,2006,2(3),316-329.
    9. Li, C. X., Yang, J., Quan, Z. W., Yang, P. P., Kong, D. Y., and Lin, J. Different microstructures of ss-NaYF4 fabricated by hydrothermal process:Effects of pH values and fluoride sources. Chemistry of Materials,2007,19,4933-4942.
    10. Li, Y., Sasaki, T., Shimizu, Y., and Koshizaki, N. Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays:Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. Journal of the American Chemical Society,2008,130(44),14755-14762.
    11. Luo, Y. S., Dai, X. J., Zhang, W. D., Yang, Y., Sun, C. Q., and Fu, S. Y. Controllable synthesis and luminescent properties of novel erythrocyte-like CaMoO4 hierarchical nanostructures via a simple surfactant-free hydrothermal route. Dalton Transactions,2010,39(9),2226-2231.
    12. Luo, Y. S., Zhang, W. D., Dai, X. J., Yang, Y., and Fu, S. Y. Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route. Journal of Physical Chemistry C,2009,113(12),4856-4861.
    13. Ma, D. K., Huang, S. M., Chen, W. X., Hu, S. W., Shi, F. F., and Fan, K. L. Self-assembled three-dimensional hierarchical umbilicate Bi2WO6 microspheres from nanoplates:Controlled synthesis, photocatalytic activities, and wettability. Journal of Physical Chemistry C,2009,113(11),4369-4374.
    14. Phuruangrat, A., Thongtem, T., and Thongtem, S. Synthesis of lead molybdate and lead tungstate via microwave irradiation method. Journal of Crystal Growth, 2009,311(16),4076-4081.
    15. Phuruangrat, A., Thongtem, T., and Thongtem, S. Analysis of lead molybdate and lead tungstate synthesized by a sonochemical method. Current Applied Physics, 2010,10(1),342-345.
    16. Sczancoski, J. C., Bomio, M. D. R., Cavalcante, L. S., Joya, M. R., Pizani, P. S., Varela, J. A., Longo, E., Li, M. S., and Andres, J. A. Morphology and blue photoluminescence emission of PbMoO4 processed in conventional hydrothermal. Journal of Physical Chemistry C,2009,113(14),5812-5822.
    17. Shang, M., Wang, W. Z., Ren, J., Sun, S. M., and Zhang, L. A novel BiVO4 hierarchical nanostructure:controllable synthesis, growth mechanism, and application in photocatalysis. Crystengcomm,2010,12(6),1754-1758.
    18. Shen, M., Zhang, Q., Chen, H., and Peng, T. Hydrothermal fabrication of PbMoO4 microcrystals with exposed (001) facets and its enhanced photocatalytic properties. Crystengcomm,2011,13,2785-2791.
    19. Shimodaira, Y., Kato, H., Kobayashi, H., and Kudo, A. Investigations of electronic structures and photocatalytic activities under visible light irradiation of lead molybdate replaced with chromium(Ⅵ). Bulletin of the Chemical Society of Japan,2007,80(5),885-893.
    20. Stoyanova, A., Iordanova, R., Mancheva, M., and Dimitriev, Y. Synthesis and structural characterization of MoO3 phases obtained from molybdic acid by addition of HNO3 and H2O2. Journal of Optoelectronics and Advanced Materials, 2009,11(8),1127-1131.
    21. Tyagi, W., Desai, S. D. G., and Sabharwal, S. C. New observations on the luminescence of lead molybdate crystals. Journal of Luminescence,2008,128, 22-26.
    22. Volnyanskii, M. D., Kudzin, A. Y., Plyaka, S. N., and Balasme, Z. Photoinduced permittivity in lead molybdate. Physics of the Solid State,2005,47(10), 1854-1858.
    23. Yu, J. Q., and Kudo, A. Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials,2006,16(16),2163-2169.
    24. Zhang, Q., Liu, S. J., and Yu, S. H. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future. Journal of Materials Chemistry,2009,19(2),191-207.
    25. Zhou, L., Wang, W. Z., Xu, H. L., and Sun, S. M. Template-free fabrication of CdMoO4 hollow spheres and their morphology-dependent photocatalytic property. Crystal Growth & Design,2008,8(10),3595-3601.
    26. Zhou, Y. X., Yao, H. B., Zhang, Q., Gong, J. Y., Liu, S. J., and Yu, S. H. Hierarchical FeWO4 microcrystals:Solvothermal synthesis and their photocatalytic and magnetic properties. Inorganic Chemistry,2009,48(3), 1082-1090.
    1. Ayame, A., Uchida, K., Iwataya, M., and Miyamoto, M. X-ray photoelectron spectroscopic study on alpha-and gamma-bismuth molybdate surfaces exposed to hydrogen, propene and oxygen. Applied Catalysis A-General,2002,227(1-2), 7-17.
    2. Belver, C., Adan, C., and Fernandez-Garcia, M. Photocatalytic behaviour of Bi2MO6 polymetalates for rhodamine B degradation. Catalysis Today,2009,143, 274-281.
    3. Bi, J. H., Wu, L., Li, H., Li, Z. H., Wang, X. X., and Fu, X. Z. Simple solvothermal routes to synthesize nanocrystalline Bi2MoO6 photocatalysts with different morphologies. Acta Materialia,2007,55(14),4699-4705.
    4. Fu, H., Pan, C., Yao, W., and Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005, 109(47),22432-22439.
    5. Jung, J. C., Heesoo, K. A., Choi, A. S., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Preparation, characterization, and catalytic activity of bismuth molybdate catalysts for the oxidative dehydrogenation of n-butene into 1,3-butadiene. Journal of Molecular Catalysis A-Chemical,2006,259(1-2), 166-170.
    6. Jung, J. C., Kim, H., Kim, Y. S., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Catalytic performance of bismuth molybdate catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene. Applied Catalysis A-General,2007a,317(2),244-249.
    7. Jung, J. C., Kini, H., Choi, A. S., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., and Song, I. K. Effect of pH in the preparation of gamma-Bi2MoO6 for oxidative dehydrogenation of n-butene to 1,3-butadiene:Correlation between catalytic performance and oxygen mobility of gamma-Bi2MoO6. Catalysis Communications,2007b,8(3),625-628.
    8. Jung, J. C., Lee, H., Kim, H., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. F., Kim, Y. S., and Song, I. K. A synergistic effect of alpha-Bi2Mo3O12 and gamma-Bi2MoO6 catalysts in the oxidative dehydrogenation of C-4 raffinate-3 to 1,3-butadiene. Journal of Molecular Catalysis a-Chemical,2007c,271(1-2), 261-265.
    9. Jung, J. C., Lee, H., Kim, H., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., Kim, Y. S., and Song, I. K. Effect of oxygen capacity and oxygen mobility of pure bismuth molybdate and multicomponent bismuth molybdate on their catalytic performance in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catalysis Letters,2008a,124(3-4),262-267.
    10. Jung, J. C., Lee, H., Kim, H., Chung, Y. M., Kim, T. J., Lee, S. J., Oh, S. H., Kim, Y. S., and Song, I. K. Preparation, characterization and catalytic activity of Bi-Mo-based catalysts for the oxidative dehydrogenation of n-butene to 1,3-butadiene. Research on Chemical Intermediates,2008b,34(8-9),827-833.
    11. Jung, J. C., Lee, H., and Song, I. K. Production of 1,3-butadiene from C-4 raffinate-3 through oxidative dehydrogenation of n-butene over bismuth molybdate catalysts. Catalysis Surveys from Asia,2009,13(2),78-93.
    12. Li, H. H., Li, K. W., and Wang, H. Hydrothermal synthesis and photocatalytic properties of bismuth molybdate materials. Materials Chemistry and Physics, 2009,116(1),134-142.
    13. Li, H. H., Liu, C. Y., Li, K. W., and Wang, H. Preparation, characterization and photocatalytic properties of nanoplate Bi2MoO6 catalysts. Journal of Materials Science,2008,43(22),7026-7034.
    14. Martinez-de la Cruz, A., Alfaro, S. O., Cuellar, E. L., and Mendez, U. O. Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor. Catalysis Today,2007.129,194-199.
    15. Murugan, R. Investigation on ionic conductivity and Raman spectra of gamma-Bi2MoO6. Physica B-Condensed Matter,2004,352(1-4),227-232.
    16. Murugan, R., Gangadharan, R., Kalaiselvi, J., Sukumar, S., Palanivel, B., and Mohan, S. Investigation of structural changes in the phase transformations of gamma-Bi2MoO6. Journal of Physics-Condensed Matter,2002,14(15), 4001-4010.
    17. Oshikiri, M., Boero, M., Ye, J. H., Zou, Z. G., and Kido, G Electronic structures of promising photocatalysts InM04 (M=V, Nb, Ta) and BiVO4 for water decomposition in the visible wavelength region. Journal of Chemical Physics, 2002,117(15),7313-7318.
    18. Reilly, L. M., Sankar, G., and Catlow, C. R. A. Following the formation of gamma-phase Bi2MoO6 catalyst by in situ XRD/XAS and thermogravimetric techniques. Journal of Solid State Chemistry,1999,148(1),178-185.
    19. Shi, Y., Feng, S., and Cao, C. Hydrothermal synthesis and characterization of Bi2MoO6 and Bi2WO6. Materials Letters,2000,44,215-218.
    20. Shimodaira, Y., Kato, H., Kobayashi, H., and Kudo, A. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation. Journal of Physical Chemistry B,2006,110(36),17790-17797.
    21. Tang, J. W., Zou, Z. G., and Ye, J. H. Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. Angewandte Chemie-International Edition,2004a,43(34),4463-4466.
    22. Tang, J. W., Zou, Z. G, and Ye, J. H. Photocatalytic decomposition of organic contaminants by Bi2WO6 under visible light irradiation. Catalysis Letters,2004b, 92(1-2),53-56.
    23. Tang, J. W., Zou, Z. G., Yin, J., and Ye, J. Photocatalytic degradation of methylene blue on Caln2O4 under visible light irradiation. Chemical Physics Letters,2003, 382(1-2),175-179.
    24. Tian, G. H., Chen, Y. J., Zhou, W., Pan, K., Dong, Y. Z., Tian, C. G., and Fu, H. G. Facile solvothermal synthesis of hierarchical flower-like Bi2MoO6 hollow spheres as high performance visible-light driven photocatalysts. Journal of Materials Chemistry,2011,21(3),887-892.
    25. Xie, L. J., Ma, J. F., and Xu, G. J. Preparation of a novel Bi2MoO6 flake-like nanophotocatalyst by molten salt method and evaluation for photocatalytic decomposition of rhodamine B. Materials Chemistry and Physics,2008,110(2-3), 197-200.
    26. Ye, J. H., Zou, Z. G., and Matsushita, A. A novel series of water splitting photocatalysts NiM2O6 (M=Nb, Ta) active under visible light. International Journal of Hydrogen Energy,2003,28(6),651-655.
    27. Ye, J. H., Zou, Z. G., Oshikiri, M., Matsushita, A., Shimoda, M., Imai, M., and Shishido, T. A novel hydrogen-evolving photocatalyst InVO4 active under visible light irradiation. Chemical Physics Letters,2002,356(3-4),221-226.
    28. Yin, J., Zou, Z. G., and Ye, J. H. Photophysical and photocatalytic properties of MIn0.5Nb0.5O3 (M=Ca, Sr, and Ba). Journal of Physical Chemistry B,2003, 107(1),61-65.
    29. Yin, W. Z., Wang, W. Z., and Sun, S. M. Photocatalytic degradation of phenol over cage-like Bi2MoO6 hollow spheres under visible-light irradiation. Catalysis Communications,2010.11(7),647-650.
    30. Yu, J., and Kudo, A. Hydrothermal synthesis and photocatalytic property of 2-dimensional bismuth molybdate nanoplates. Chemistry Letters,2005,34, 1528-1629.
    31. Zhang, X., Ai, Z. H., Jia, F. L., Zhang, L. Z., Fan, X. X., and Zou, Z. G. Selective synthesis and visible-light photocatalytic activities of BiVO4 with different crystalline phases. Materials Chemistry and Physics,2007,103(1),162-167.
    32. Zhao, X., Qu, J. H., Liu, H. J., and Hu, C. Photoelectrocatalytic degradation of triazine-containing azo dyes at gamma-Bi2MoO6 film electrode under visible light irradiation lambda> 420 nm. Environmental Science & Technology,2007,41, 6802-6807.
    33. Zhao, X., Qu, J. H., Liu, H. J., Qiang, Z. M., Liu, R. P., and Hu, C. Z. Photoelectrochemical degradation of anti-inflammatory pharmaceuticals at Bi2Mo06-boron-doped diamond hybrid electrode under visible light irradiation. Applied Catalysis B-Environmental,2009a,91(1-2),539-545.
    34. Zhao, X., Xu, T. G, Yao, W. Q., and Zhu, Y. F. Photodegradation of dye pollutants catalyzed by gamma-Bi2MoO6 nanoplate under visible light irradiation. Applied Surface Science,2009b,255(18),8036-8040.
    35. Zhao, X., Xu, T. G, Yao, W. Q., and Zhu, Y F. Synthesis and photoelectrochemical properties of thin bismuth molybdates film with various crystal phases. Thin Solid Films,2009c,517(20),5813-5818.
    36. Zheng, Y., Duan, F., Wan, J., Liu, L., Chen, M. Q., and Xie, Y. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation. Journal of Molecular Catalysis A-Chemical,2009,303(1-2),9-14.
    37. Zou, Z. G., Ye, J. H., and Arakawa, H. Structural properties of InNbO4 and InTaO4: correlation with photocatalytic and photophysical properties. Chemical Physics Letters,2000,332(3-4),271-277.
    38. Zou, Z. G., Ye, J. H., and Arakawa, H. Photocatalytic and photophysical properties of a novel series of solid photocatalysts, Bi2MNb07 (M=Al3+, Ga3+ and In3+). Chemical Physics Letters,2001,333(1-2),57-62.
    1.赵纯,邓慧萍.疏水沸石负载纳米Ti02光催化去除水中土霉素.同济大学学报,2009,37(10),1360-1365.
    2. Abellan, M. N., Bayarri, B., Gimenez, J., and Costa, J. Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Applied Catalysis B-Environmental,2007,74(3-4),233-241.
    3. Ayad, M. M., Abdellatef, H. E., El-Henawee, M. M., and El-Sayed, H. M. Spectrophotometric and spectrofluorimetric methods for analysis of acyclovir and acebutolol hydrochloride. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy,2007,66(1),106-110.
    4. Bai, J., Liu, Y. B., Li, J. H., Zhou, B. X., Zheng, Q., and Cal, W. M. A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Applied Catalysis B-Environmental,2010,98(3-4),154-160.
    5. Bao, N. Z., Shen, L. M., Takata, T., and Domen, K. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible. Chemistry of Materials,2008,20(1),110-117.
    6. Batt, A. L., Kim, S., and Aga, D. S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations. Chemosphere,2007,68,428-435.
    7. Chen, Y., Hu, C., Qu, J. H., and Yang, M. Photodegradation of tetracycline and formation of reactive oxygen species in aqueous tetracycline solution under simulated sunlight irradiation. Journal of Photochemistry and Photobiology A-Chemistry,2008,197(1),81-87.
    8. Cho, M., Chung, H. M., Choi, W. Y., and Yoon, J. Y. Different inactivation Behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Applied and Environmental Microbiology,2005,71(1),270-275.
    9. Choina, J., Duwensee, H., Flechsig, G. U., Kosslick, H., Morawski, A. W., Tuan, V. A., and Schulz, A. Removal of hazardous pharmaceutical from water by photocatalytic treatment. Central European Journal of Chemistry,2010,8(6), 1288-1297.
    10. Dalmio, I., Almeida, M. O., Augusti, R., and Alves, T. M. A. Monitoring the degradation of tetracycline by ozone in aqueous medium via atmospheric pressure ionization mass spectrometry. Journal of the American Society. Mass Spectrum, 2007,18,679-687.
    11. Delepee, R., Maume, D., Le Bizec, B., and Pouliquen, H. Preliminary assays to elucidate the structure of oxytetracycline's degradation products in sediments-Determination of natural tetracyclines by high-performance liquid chromatography-fast atom bombardment mass spectrometry. Journal of Chromatography B,2000,748(2),369-381.
    12. Fu, H., Pan, C., Yao, W., and Zhu, Y. Visible-light-induced degradation of rhodamine B by nanosized Bi2WO6. The Journal of Physical Chemistry B,2005, 109(47),22432-22439.
    13. Halling-Sorensen, B., Sengelov, G., and Tjornelund, J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Archives of Environmental Contamination and Toxicology,2002,42(3),263-271.
    14. Haque, M. M., and Muneer, M. Photodegradation of norfloxacin in aqueous suspensions of titanium dioxide. Journal of Hazardous Materials,2007,145(1-2), 51-57.
    15. Jeong, J., Song, W. H., Cooper, W. J., Jung, J., and Greaves, J. Degradation of tetracycline antibiotics:Mechanisms and kinetic studies for advanced oxidation/reduction processes. Chemosphere,2010,78(5),533-540.
    16. Ke, D. N., Peng, T. Y, Ma, L., Cai, P., and Dai, K. Effects of hydrothermal temperature on the microstructures of BiVO4 and its photocatalytic O2 evolution activity under visible light. Inorganic Chemistry,2009,48(11),4685-4691.
    17. Khan, M. H., Bae, H., and Jung, J. Y. Tetracycline degradation by ozonation in the aqueous phase:Proposed degradation intermediates and pathway. Journal of Hazardous Materials,2010,181(1-3),659-665.
    18. Li, K. X., Yediler, A., Yang, M., Schulte-Hostede, S., and Wong, M. H. Ozonation of oxytetracycline and toxicological assessment of its oxidation by-products. Chemosphere,2008,72(3),473-478.
    19. Li, L. L., Huang, L. D., Chung, R. S., Fok, K. H., and Zhang, Y. S. Sorption and dissipation of tetracyclines in soils and compost. Pedosphere,2010,20(6), 807-816.
    20. Linnik, O., Manuilov, E., Snegir, S., Smirnova, N., and Eremenko, A. Photocatalytic degradation of tetracycline hydrochloride in aqueous solution at ambient conditions stimulated by gold containing zinc-titanium oxide films. Journal of Advanced Oxidation Technologies,2009,12(2),265-270.
    21. Liu, Y. B., Gan, X. J., Zhou, B. X., Xiong, B. T., Li, J. H., Dong, C. P., Bai, J., and Cai, W. M. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. Journal of Hazardous Materials,2009,171(1-3), 678-683.
    22. Lopez-Penalver, J. J., Sanchez-Polo, M., Gomez-Pacheco, C. V., and Rivera-Utrilla, J. Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. Journal of Chemical Technology and Biotechnology,2010,85(10),1325-1333.
    23. Martin, S. T., Lee, A. T., and Hoffmann, M. R. Chemical mechanism of inorganic oxidants in the TiO2/UV process:increased rates of degradation of chlorinated hydrocarbons. Environmental Science & Technology,1995,29(10),2567-2573.
    24. Miyata, M., Ihara, I., Yoshid, G, Toyod, K., and Umetsu, K. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Science and Technology,2011,63(3), 456-461.
    25. Palominos, R. A., Mondaca, M. A., Giraldo, A., Penuela, G., Perez-Moya, M., and Mansilla, H. D. Photocatalytic oxidation of the antibiotic tetracycline on TiO2 and ZnO suspensions. Catalysis Today,2009,144(1-2),100-105.
    26. Ternes, T. A., Meisenheimer, M., Mcdowell, D., Sacher, F., Brauch, H., Haist-Gulde, B., Preuss, G, Wilme, U., and Zulei-Seibert, N. Removal of pharmaceuticals during drinking water treatment. Environmental Science & Technology,2002,36,3855-3863.
    27. Vedenyapina, M. D., Eremicheva, Y. N., Pavlov, V. A., and Vedenyapin, A. A. Electrochemical degradation of tetracycline. Russian Journal of Applied Chemistry,2008,81(5),800-802.
    28. Wu, J. G., Jiang, Y. X., Zha, L. Y., Ye, Z. M., Zhou, Z. F., Ye, J. F., and Zhou, H. W. Tetracycline degradation by ozonation, and evaluation of biodegradability and toxicity of ozonation byproducts. Canadian Journal of Civil Engineering,2010, 37(11),1485-1491.
    29. Yang, H., An, T. C., Li, G. Y., Song, W. H., Cooper, W. J., Luo, H. Y., and Guo, X. D. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2:A case of beta-blockers. Journal of Hazardous Materials,2010a,179(1-3),834-839.
    30. Yang, H., Li, G. Y., An, T. C., Gao, Y. P., and Fu, J. M. Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2:A case of sulfa drugs. Catalysis Today,2010b,153(3-4),200-207.
    31. Yang, L. M., Yu, L. E., and Ray, M. B. Photocatalytic oxidation of paracetamol: Dominant reactants, intermediates, and reaction mechanisms. Environmental Science & Technology,2009,43(2),460-465.
    32. Yuan, F., Hu, C., Hu, X. X., Wei, D. B., Chen, Y., and Qu, J. H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials,2011,185(2-3),1256-1263.
    33. Zhang, H., Liu, F., Wu, X. G., Zhang, J. H., and Zhang, D. B. Degradation of tetracycline in aqueous medium by electrochemical method. Asia-Pacific Journal of Chemical Engineering,2009,4(5),568-573.
    34. Zhang, X. W., Sun, D. D., Li, G. T., and Wang, Y. Z. Investigation of the roles of active oxygen species in photodegradation of azo dye AO7 in TiO2 photocatalysis illuminated by microwave electrodeless lamp. Journal of Photochemistry and Photobiology A-Chemistry,2008,199(2-3),311-315.
    35. Zhao, C., Deng, H. P., Li, Y., and Liu, Z. Z. Photodegradation of oxytetracycline in aqueous by 5A and 13X loaded with TiO2 under UV irradiation. Journal of Hazardous Materials,2010,176(1-3),884-892.
    36. Zheng, Y., Duan, F., Wan, J., Liu, L., Chen, M. Q., and Xie, Y. Enhanced photocatalytic activity of bismuth molybdates with the preferentially exposed {010} surface under visible light irradiation. Journal of Molecular Catalysis A-Chemical,2009,303(1-2),9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700