用户名: 密码: 验证码:
直接甲醇燃料电池膜电极制备及阴极结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件。目前,MEA的性能是阻碍DMFC商业化的瓶颈之一,因此制备高性能MEA对DMFC的研究开发具有重要意义。
     本论文首先建立了一种DMFC电极制备方法-改进的转压法。比较了转压法和刷涂法制备的电极形貌、电催化剂粒径、电化学活性表面积、MEA内阻及电池性能;研究了转压法制备过程中Nafion聚合物向阴极催化层表面迁移的现象,并提出了可能的机理;考察了阴极催化层表面Nafion聚合物含量对电池性能的影响。
     通过双催化层结构和碳粉引入分别优化了阴极的孔结构和憎水性。采用非担载型Pt黑电催化剂和担载型20wt.%(或40wt.%)Pt/C电催化剂制备了双催化层阴极,利用两种电催化剂本体性质的不同,形成了双催化层阴极内憎水性、孔结构和催化剂浓度的梯度分布,有利于氧气扩散和水的排出,在90℃,2atm氧气和空气条件下,最高功率密度分别达到254.8mW/cm~2和176mW/cm~2。研究了阴极催化层中加入碳粉对电池性能的影响,结果表明加入Ketjen BlackEC-300J碳粉的阴极性能最优,在电池温度为60℃,空气自呼吸条件下,Pt黑和Pt黑+10wt.%KB阴极的电池最高功率密度分别为19.0和48.9mW/cm~2。
     定量分析了甲醇渗透和水的扩散对空气自呼吸式DMFC电池性能的影响。研究了影响空气自呼吸式DMFC寿命的主要因素,并探索了有效的解决途径。
     初步探索了Black Pearls 2000碳粉为载体的阴极Pt/C电催化剂在DMFC中的应用。结果表明,在不需要任何憎水剂和后处理的情况下,36wt.%Pt/BP2000电催化剂提高了在高电流密度下的DMFC性能。
Membrane & electrode assembly (MEA) is the core component of direct methanol fuel cell (DMFC). Up to now, the performance of MEA is still one of the factors which inhibit the commercialization of DMFC, so fabrication of high-performance MEAs is very important for the research and development of DMFC.
    In this dissertation, the modified decal method was developed to prepare DMFC electrodes. The electrode morphology, particle size of the electrocatalyst, electrochemical active area, resistance and performance of MEAs prepared by the decal and brush methods were compared. The enrichment of ionomer close to the surface of the cathode catalyst layer was studied and possible mechanisms were also proposed. The effect of ionomer content close to the surface of the cathode catalyst layer was explored.
    The pore structure and hydrophobic property of the cathode were optimized by double-layered structure and carbon black additive, respectively. A novel double-layered cathode catalyst layer for DMFC was prepared, which consisted of Pt black inner catalyst layer and 20wt.% Pt/C (or 40wt.% Pt/C) outer catalyst layer. Due to the intrinsic properties of the two electrocatalysts, hydrophobic property, porosity and catalyst gradient were formed in the cathode. The double-layered structure was beneficial for oxygen diffusion and water removal, the maximum power densities of 254.8 and 176mW/cm~2 were achieved under 2atm oxygen and air at 90°C, respectively. The effect of
引文
[1] Arico A. S., Srinivasan S., Antonucci V.. DMFCs: from fundamental aspects to technology development, Fuel Cells, 2001, 1(2), 133-161.
    [2] Kordesch K., Simader G., Fuel cells and their applications, John Wiley & Sons, New York (1996).
    [3] Hogarth M. P., Ralph T. R.. Catalysis for low temperature fuel cells part Ⅲ: challenges for the direct methanol fuel cell. Platinum Metals Review, 2002, 46, 146-164.
    [4] 衣宝廉.燃料电池:高效、环境友好的发电方式.北京:化学工业出版社,2000.
    [5] Scott K., Taama W. M., Argyropoulos P.. Engineering aspects of the direct methanol fuel cell system. Journal of Power Sources, 1999, 79, 43-59.
    [6] Jung D. H., Lee C. H., Kim C. S., Shin D. R.. Performance of a direct methanol polymer electrolyte fuel cell. Journal of Power Sources, 1998, 71, 169-173.
    [7] Ren X. M., Zelenay P., Thomas S.. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources, 2000, 86, 111-116.
    [8] Kocha S. S.. in Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Vielstich, A. Lamm and H. A. Gasteiger, Editors, Vol. 3, John Wiley & Sons, New York (2003).
    [9] Wilson M. S., Gottesfeld S.. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. Journal of Applied Electrochemistry, 1992, 22 (1) 1-7.
    [10] Arico A. S., Creti P., Giordano N., Antonucci V., Antonucci P. L., Chuvilin A.. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. Journal of Applied Electrochemistry, 1996, 26(9), 959-967.
    [11] Uchida M, Fukuoka Y., Sugawara Y., Ohara H., Ohta A.. Improved
    preparation process of very-low-platinum-loading electrodes for polymer
    electrolyte fuel cells. Journal of the Electrochemical Society, 1998, 145(11),
    3708-3713. [12] Uchida M., Aoyama Y., Eda N., Ohta A., New preparation method for
    plymer-electrolyte fuel-cells. Journal of the Electrochemical Society, 1995,
    142(2), 463-468. [13] Wilson M.S., Valerio J.A., Gottesfeld S., Low platinum loading electrodes
    for polymer electrolyte fuel-cells fabricated using thermoplastic ionomers.
    Electrochimica Acta, 1995, 40, 355-363. [14] Shin S.J., Lee J.K., Ha H.Y, Hong S.A., Chun H.S., Oh I.H.. Effect of the
    catalytic ink preparation method on the performance of polymer electrolyte
    membrane fuel cells. Journal of power sources, 2002,106 (1-2),146-152. [15] Denton J., Gascoyne J. M., Thompsett D.. Materials for use in catalytic
    electrode manufacture. EP0731520B1. [16] Taylor E.J., Anderson E.B.. Preparation of high-platinum-utilization gas
    diffusion electrodes for proton-exchange-membrane fuel cells. Journal of
    the Electrochemical Society, 1992,139, L45-L46. [17] Loffler M.S., Gross B., Natter H., Hempelmann R., Krajewski T., Divisek J..
    Synthesis and characterization of catalyst layers for direct methanol fuel
    cell applications. Physical Chemistry Chemical Physics. 2001,3(3),
    333-336. [18] Liu R., Her Wei-Hwa, Fedkiw P.S. In situ electrode formation on a Nafion
    membrane by chemical platinum. Journal of the Electrochemical Society,
    1992,139,15-23. [19] Fujiwara N., Yasuda K., Ioroi T., Siroma Z., Miyazaki Y. Preparation of
    platinum-ruthenium onto solid polymer electrolyte membrane and the
    application to a DMFC anode. Electrochimica Acta, 2002,47,4079-4084. [20] Qiao H., Kasajima T., Kunimatsu M., Fujiwara N., Okada T.. Evaluation of a passive microtubular direct methanol fuel cell with PtRu anode catalyst layers made by wet chemical processes. Journal of the Electrochemical Society, 2006, 153(1), A42-A47.
    
    [21] Witham C. K., Chun W., Valdez T. I., Narayanan S.R.. Performance of direct methanol fuel cells with sputter- deposited anode catalyst layers. Electrochemical and Solid-State Letters, 2000, 3(11), 497-500.
    [22] Gulzow E., Kaz T., Reissner R., Sander H., Schilling L., von Bradke M.. Study of membrane electrode assemblies for direct methanol fuel cells. Journal of Power Sources, 2002, 105(2), 261-266.
    
    [23] Reddington E., Sapienza A., Gurau B., Viswanathan R., Sarangapani S., Smotkin E.S., Mallouk T.E.. Combinatorial electrochemistry: A highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998,280,1735-1737.
    
    [24] Takasu Y., Iwazaki T., Sugimoto W., Murakami Y.. Size effects of platinum particles on the electro-oxidation of methanol in an aqueous solution of HC1O4. Electrochemistry Communications, 2000,2, 611-61 A.
    [25] Poirier J. A., Stoner G. E.. Oxygen reduction behavior of thin-film platinium and platinium-rhodium electrocatalyst in sulfuric-acid. Journal of Electrochemical Society, 1995, 142,1127-1132.
    
    [26] Uribe F. A., Zawodzinski Jr T. A.. A study of polymer electrolyte fuel cell performance at high voltages. Dependence on cathode catalyst layer composition and on voltage conditioning. Electrochimical Acta, 2002, 47(22-23), 3799-3806.
    
    [27] Toda T., Igarashi H., Uchida H., Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co , Journal of Electrochemical. Society, 1999,146(10), 3750-3756.
    
    [28] Drillet J. F., Ee A., Friedemann J. Kotz R., Schnyder B., Schmidt V.M.. Oxygen reduction at Pt and Pt70Ni30 in H_2SO_4/CH_3OH solution. Electrochimica Acta, 2002,47(12),1983-1988.
    [29] Neergat M., Shukla A. K., Gandhi K. S.. Platinum-based alloys as oxygen-reduction catalysts for solid- polymer-electrolyte direct methanol fuel cells. Journal of Applied Electrochemistry, 2001, 31, 373-378.
    [30] Shukla A. K., Neergat M., Bern P., Jayaram V., Hegde M. S.. An XPS study on binary and ternary alloys of transition metals with platinized carbon and its bearing upon oxygen electroreduction in direct methanol fuel cells. Journal of Electroanalytical Chemistry, 2001, 504, 111-119.
    [31] Min M., Cho J., Cho K., Kim H.. Particle size and alloying effects of Pt-based alloy catalysts for fuel cell applications. Electrochim. Acta, 2000, 45(25-26), 4211-4217.
    [32] Toda T., Igarashi H., Watanabe M.. Enhancement of the electrocatalytic O_2 reduction on Pt-Fe alloys Journal of Electroanalytical Chemistry, 1999, 460(1-2), 258-262.
    [33] Freund A., Lang J., Lehmann T., Starz K. A.. Improved Pt alloy catalysts for fuel cells. Catalysis Today, 1996, 29(1-2), 279-283.
    [34] Wei Z. D., Yin F., Li L. L., Wei X. W., Liu X. A.. Study of Pt/C and Pt-Fe/C catalysts for oxygen reduction in the light of quantum chemistry. Journal of Electroanalytical Chemistry, 2003, 541, 185-191.
    [35] Antolini E., Passos R. R., Ticianelli E. A.. Electrocatalysis of oxygen reduction on a carbon supported platinum-vanadium alloy in polymer electrolyte fuel cells Electrochimiea Acta, 2002, 48(3), 263-270.
    [36] Xiong L., Kannan A. M., Manthiram A.. Pt-M (M=Fe, Co, Ni and Cu) electrocatalysts synthesized by an aqueous route for proton exchange membrane fuel cells. Electrochemistry Communications, 2002, 4, 898-903.
    [37] Kokkinidis G., Jannakoudakis D.. Oxygen reduction on Pt and Cu surfaces modified by underpotential adsorbates. Joumal of Electroanalytical Chemistry, 1984, 162(1-2), 163-173.
    [38] Paulus U. A., Wokaun A., Scherer G. G., Schmidt T. J., Stamenkovic V., Markovic N. M., Ross P. N.. Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochimica Acta, 2002,47(22-23), 3787-3798.
    [39] Tamizhmani G., Capuano G. A.. Improved electrocatalytic oxygen reduction performance of platinum ternary alloy-oxide in solid-polymer-electrolyte fuel-cells. Journal of the Electrochemical Society, 1994, 141(4), 968-975.
    [40] Tamizhmani G, Dodelet J. P., Guay G., Lalande G. Electrocatalytic activity of nafion-impregnated pyrolyzed cablt phthalocyanine - a correlative study between rotating-disk and solid polymer electrolyte fuel-cell electrodes. Journal of the Electrochemical Society, 141(1), 41-45.
    [41] Faubert G, Lalande G, Cote R., Guay D., Dodelet J.P., Weng L.T., Bertrand P., Denes G. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells. Electrochimica Acta, 1996,41(10), 1689-1701.
    [42] Franke R., Ohms, D., Wiesener K.. Investigation of the influence of thermal treatment on the properties of carbon materials modified by N_4chelates for the reduction of oxygen in acidic media. Journal of Electroanalytical Chemistry, 1989,260(1), 63-73.
    [43] Bittins-Cattaneo B., Wasmus S., Lopezmishima B., Vielstich W.. Reduction of oxygen in an acidic methanol oxygen (air) fuel-cell - an online MS study. Journal of Applied Electrochemistry, 1993, 23(6), 625-630.
    [44] Manoharan R., Goodenough J. B.. Oxygen reduction on CrO_2 bonded to a proton-exchange membrane. Electrochimica Acta, 1995,40(3), 303-307.
    [45] Bagotzky V. S., Shumilova N. A., Khrushcheva E.I.. Electrochemical oxygen reduction on oxide catalysts. Electrochimica Acta, 1976, 21(11), 919-924.
    [46] Alonso-Vante N., Malakhov I. V., Nikitenko S. G, Savinova E.R., Kochubey D.I.. The structure analysis of the active centers of Ru-containing electrocatalysts for the oxygen reduction. An in situ EXAFS study. Electrochimica Acta, 2002,47(22-23), 3807-3814.
    [47] Fischer C, Alonso Vante N., Fiechter S., Tributsch H.. Electrocatalytic properties of mixed transition-metal Tellurides (chevrel-phases) for oxygen reduction. Journal of Applied Electrochemistry, 1995, 25(11), 1004-1008.
    [48] Duron S, Rivera-Noriega R, Poillerat G, Solorza-Feria O.. Kinetic study of oxygen electro-reduction on RuxSy(CO)(n) based catalyst in 0.5 M H_2SO_4. Journal of New Material for Electrochemical Systems, 2001, 4 (1): 17-23.
    [49] Alonso-Vante N., Tributsch H., Solorza-Feria O.. Kinetics studies of oxygen reduction in acid-medium on novel semiconducting transition-metal Chalcogenides. Electrochimica Acta, 1995,40(5), 567-576.
    [50] Trapp V., Christensen P., Hamnett A.. New catalysts for oxygen reduction based on transition-metal sulfides. Journal of the Chemical Society-Faraday Transactions 1996, 92,4311-4319.
    [51] Petrow H.G., Allen R.J.. Catalytic platinium metal particles on a substrate and methods of preparing the catalysts. US 3,992,331.
    [52] Petrow H.G., Allen R.J.. Finely particulated colloidal platinum compound and sol for producing the same, and methods of preparation. US 3,992,512.
    [53] Petrow H.G, Allen R.J.. Finely particulated colloidal platinum compound and sol for producing the same, and methods for preparing fuel cell electrodes and the like employing the same. US 4,044,193.
    [54] Van Dam H. E., Van Bekkum H.. Preparation of platinum on activated carbon. Journal of Catalysis, 1991,131 (2), 335-349.
    [55] Wehrli J. T., Baiker A., Monti D. M, Blaser H. U.. Enantioselective hydrogenation of a-ketoesters: Preparation and catalytic behavior of different alumina-supported platinum catalysts modified with cinchonidine. Journal of Molecular Catalysis, 1990,61(2), 207-226.
    [56] Keck L., Buchanan J., Hards G.A.. Catalyst material. US 5,068,161
    [57] Ralph T. R., Hogarth M. P.. Catalysis for Low Temperature Fuel Cells-Part I: the cathode challenges. Platinum Metals Review, 2002,46 (1):3-14.
    
    [58] Bonnemann H., Brijoux W., Brinkmann R., Dinjus E., Jouβen T., Korall B.. Formation of colloidal transition-metals in organic phases and their application in catalysis. Angewandte chemie-international edition in English, 1991, 30(10), 1312-1314.
    
    [59] Bonnemann H., Brijoux W., Brinkmann R. Richter J.. Process for producting tensidestabilized colloids of mono- and bimetals of the group Ⅷ and IBof the periodic system in the form of precursors for catalysts which are isolable and water soluble at high concentration. US 6,090,746
    
    [60] Bonnemann H., Brijoux W., Brinkmann R., Fretzen ., Joussen T., Koppler R., Korall B., Neiteler P., Richter J.. Preparation, characterization, and application of fine metal particles and metal colloids using hydrotriorganoborates. Journal of Molecular Catalysis, 1994, 86(1-3), 129-177.
    
    [61] Bonnemann,H., Brinkmann,R., Britz,P., Endruschat,U., Mortel,R.,Paulus,U.A., Feldmeyer,G.J., Schmidt,T.J., Gasteiger,H.A., Behm,R.J.. Nanoscopic Pt-bimetal colloids as precursors for PEM fuel cell catalysts. Journal of New Materials for Electrochemical Systems, 2000, 3(3), 199-206.
    
    [62] Lasch K., Jorissen L., Garche J.. The effect of metal oxides as co-catalysts for the electro-oxidation of methanol on platinum-ruthenium, Journal of Power Sources, 1999, 84(2), 225-230.
    
    [63] Machida K., Fukuoka A., Ichikawa M., Enyo M.. Preparation of platinum cluster-derived electrodes from metal-carbonyl-complexes and their electrocatalytic properties for anodic-oxidation of methanol, Journal of Electrochemical Society, 1991, 138(7), 1958-1965.
    
    [64] Dickinson A.J., Carrette L.P.L., Collins J.A., Friedrich K.A., Stimming U.. Preparation of a Pt-Ru/C catalyst from carbonyl complexes for fuel cell applications. Electrochimica Acta, 2002,47(22-23), 3733-3739.
    [65] Denis M.C., Lalande G., Guay D., Dodelet J.P., Schulz R.. High energyball-milled Pt and Pt-Ru catalysts for polymer electrolyte fuel cells and their tolerance to CO. Journal of Applied Electrochemistry, 1999, 29(8), 951-960.
    [66] Denis M.C., Gouerec P., Guay D., Dodelet J.P., Lalande G., Schulz R.. Improvement of the high energy ball-milling preparation procedure of CO tolerant Pt and Ru containing catalysts for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2000,30(11), 1243-1253.
    [67] Gouerec P., Denis M.C., Guay D., Dodelet J.P., Schulz R.. High energy ballmilled Pt-Mo catalysts for polymer electrolyte fuel cells and their tolerance to CO. Journal of Electrochemical Society, 2000,147(11), 3989-3996.
    [68] Zhou Z.H., Wang S.L., Zhou W.J., Wang G.X., Jiang L.H., Li W.Z., Song S.Q., Liu J.G., Sun G.Q., Xin Q.. Novel synthesis of highly active Pt/C cathode electrocatalyst for direct methanol fuel cell. Chemical Communications, 2003,3, 394-395.
    [69] Verbrugge M. W., Hill R. F., chneider E. W. Composite membranmes for fuel-cell applications. AICHE Journal, 38 (1), 93-100.
    [70] Banerjee S., Cropley C. C, Laconti A. B., KOSEK J. A., et al. Membrane and electrode assembly employing a cation exchange membrane for direct methanol fuel cell. WO 9714189.
    [71] Deluga, Gregg A., et al. In: Annu. Battery Conf. Appl. Adv., 15~(th), New York: Institute of Electrical and Electronics Engineers, 2000:51
    [72] Kim Y.M., Park K.W., Choi J.H., Park I.S., Sung Y.E. A.. Pd-impregnated nanocomposite Nafion membrane for use in high-concentration methanol fuel in DMFC. Electrochemical Communications, 2003, 5(7), 571-574.
    [73] Sun H., Sun G.Q., Wang S.L., Liu J.G., Zhao Z.S., Wang G.X., Xu H.Y., Hou SF, Xin Q .. Pd electroless plated Nafion((R)) membrane for high concentration DMFCs. Journal of membrane science, 2005, 259 (1-2): 27-33.
    [74] Antonucci P. L., Arico A. S., Creti P., Ramunni E., Antonucci V.. Investigation of a direct methanol fuel cell based on a composite Nafion (R)-silica electrolyte for high temperature operation. Solid State Ionics, 1999, 125(1-4), 431-437.
    [75] Jung D. H., Cho S. Y., Peck D. H., Shin D. R., Kim J. S.. Performance evaluation of a Nation/silicon oxide hybrid membrane for direct methanol fuel cell. Journal of Power Sources, 2002, 106(1-2), 173-177.
    [76] Wang J. T., Wainright J. S., Savinell R. F., Litt M.. A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte. Journal of Applied Electrochemistry, 1996, 26(7), 751-756.
    [77] 于景荣,质子交换膜与MEMS微型燃料电池的研究,博士论文,中国科学院大连化学物理研究所,2003,15.
    [78] Uchida M., Aoyama Y., Eda N., Ohta A.. Investigation of the microstructure in the catalyst layer and effects of both perfluorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1995, 142, 4143-4149.
    [79] Thomas S. C., Ren X. M., Gottesfeld S.. Influence of ionomer content in catalyst layers on direct methanol fuel cell performance. Journal of the Electrochemical Society, 1999, 146, 4354-4359.
    [80] Rolison D. R., Hagans P. L., Swider K. E., Long J. W.. Role of hydrous ruthenium oxide in Pt-Ru direct methanol fuel cell anode electrocatalysts: The importance of mixed electron/proton conductivity. Langmuir, 1999, 15, 774-779.
    [81] Piela P., Eickes C., Brosha E., Garzon F., Zelenay P.. Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. Journal of the Electrochemical Society, 2004, 151 (12), A2053-A2059.
    [82] Nordlund J., Roessler A., Lindbergh G.. The influence of electrode morphology on the performance of a DMFC anode. Journal of Applied Elelctrochemistry, 2002, 2, 259-265.
    [83] Liu L., Pu G., Viswanathan R., Fan Q. B., Liu R. X., Smotkin E. S.. Carbon supported and unsupported Pt-Ru anodes for liquid feed direct methanol fuel cells. Electrochimica Acta, 1998, 43, 3657-3663.
    [84] 樊小颖,赵新生,孙海,汪国雄,王素力,孙公权,衣宝廉,辛勤.直接甲醇燃料电池高性能双催化层阳极的研究,电源技术,2005,29(4),231-235.
    [85] Arico A. S., Creti P, Modica E., Monforte G., Baglio V., Antonucci V.. Investigation of direct methanol fuel cells based on unsupported Pt-Ru anode catalysts with different chemical properties. Electrochimica Acta, 2000, 45, 4319-4328.
    [86] Arico A. S., Monforte G., Modica E., Antonucci P. L. Antonucci V.. Investigation of unsupported Pt-Ru catalysts for high temperature methanol electro-oxidation. Electrochemical Communications, 2000, 2, 466-470.
    [87] He C. Z., Qi Z. Q., Hollett M. Kaufman A.. An electrochemical method to improve the performance of air cathodes and methanol anodes. Electrochemical and Solid-state Letters. 2002, 5, A181-A183.
    [88] Liu F. Q., Wang C. Y., Variations in interfacial properties during cell conditioning and influence of heat-treatment of ionomer on the characteristics of direct methanol fuel cells. Electrochimica Acta, 2005, 50, 1413-1422.
    [89] Afico A. S. Creti P., Baglio V., Modica E., Antonucci V.. Influence of flow field design on the performance of a direct methanol fuel cell. Journal of Power Sources, 2000, 91 (2), 202-209.
    [90] Zelenay P., Ren X. M., Thomas S. C., Davey J., Gottesfeld S.. Catalyst inks and method of application for direct methanol fuel cells, WO0245188 A2.
    [91] Fischer A., Jindra J., Wendt H.. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells. Journal of Applied Electrochemistry, 1998, 28,277-282.
    [92] Uchida M., Fukuoka Y., Sujawara Y, Eda N., Ohta A.. Effects of microstructure of carbon support in the catalyst layer on the performance of poly-electrolyte furl cells. Journal of the Electrochemical Society, 1996, 143(7), 2245-2252.
    [93] Tada T.. in Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Vielstich, A. Lamm and H. A. Gasteiger, Editors, Vol. 3, John Wiley & Sons, New York (2003).
    [94] Paganin, V. A., Ticianelli, E. A., Gonzalez, E. R. Development and electrochemical studies of gas diffusion electrodes for polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 1996,26(3), 297-304.
    [95] Lufrano F., Passalacqua E., Squadrito G, Patti A., Giorgi L.. Improvement in the diffusion characteristics of low Pt-loaded electrodes for PEFCs. Journal of Applied Electrochemistry, 1999, 29(4), 445-448.
    [96] Mueller B., Zawodzinski T., Bauman J., Uribe F.,Gottesfeld S., Castro E., Marinis M.. Carbon cloth gas diffusion backings for high performance PEFC cathodes. Gottesfeld S. and Fuller T.F.,Proton conducting membrane fuel cells II[C].,1-10.
    [97] Ren X.M., Becerra J.J., Gottesfield S., Kovacs F. W., Shufon K.J.. Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management, US 20040209136 A1.
    [98] Beckmann G, Ren X.M., Mutolo P.F., Kovacs F.W., Gottesfield S.. Modified diffusion layer for use in a fiuel cell system, US 20030157396 A.
    [99] Ren X.M., Kovacs F.W., Shufon K.J., Gottesfield S.. Passive water management techniques in direct methanol fuel cells, US 20040209154 A1.
    [100]Ren X.M., Becerra J.J., Beckmann G, Brown E.J., DeFilippis M.S., Neutzler J.K., Gottesfield S.. Simplified direct oxidation fuel cell system, US 20040265680 A1.
    [101] Passalacqua, E., Squadrito, G., Lufrano, F., Patti A., Giorgi L.. Effects of the diffusion layer characteristics on the performance of polymer electrolyte fuel cell electrodes. Journal of Applied Electrochemistry, 2001, 31(4), 449-454.
    [102] Antolini E., Passos R. R., Ticianelli E. A.. Effects of the carbon powder characteristics in the cathode gas diffusion layer on the performance of polymer electrolyte fuel cells. Journal of Power Sources, 2002, 109(1-2), 477-482.
    [103] Neergat M., Shukla A. K.. Effect of diffusion-layer morphology on the performance of solid-polymer-electrolyte direct methanol fuel cells. Journal of Power Sources, 2002, 104(2), 289-294.
    [104] Yu J. R., Islam M. N., Matsuura T., Tamano M., Hayashi Y., Hod M.. Improving the performance of a PEMFC with Ketjenblack EC-600JD carbon black as the material of the microporous layer. Electrochemical and Solid-State Letters, 2005, 8(6) A320-A323.
    [105] Yu J. R., Yoshikawa Y., Matsuura T., Islam M. N., Hod M.. Preparing gas-diffusion layers of PEMFCs with a dry deposition technique. Electrochemical and Solid-State Letters, 2005, 8(3) A152-A155.
    [106] Kyung-Won Park, Bu-Kil Kwon, Jong-Ho Choi, In-Su Park, Young-Min Kim Yung-Eun Sung. New RuO_2 and carbon-RuO_2 composite diffusion layer for use in direct methanol fuel cells. Journal of Power Sources, 2002, 109(1-2), 439-445.
    [107] Chang Sun Kong, Do-Young Kim, Han-Kyu Lee, Yong-Gun Shul and Tae-Hee Lee. Infuence of pore-size distribution of diffusion layer on mass-transport problems of proton exchange membrane fuel cells. Journal of Power Sources, 2002, 108(1-2), 185-191.
    [108] Pozio, A., De Francesco M., Cemmi A.; Cardellini F., Giorgi L., Comparison of high surface Pt/C catalysts by cyclic voltammetry. Journal of Power Sources, 105,(1), 13-19.
    [109]Thomas S.C., Ren X.M., Gottesfeld S., Influence of ionomer content in catalyst layers on direct methanol fuel cell performance. Journal of the Electrochemical Society, 1999, 146, (12), 4354-4359.
    [110]Ralph T.R., Hards G.A., Keating J.E., Campbell S.A., Wilkinson D.P., Davis M, Stpierre J., Johnson M.C., Low cost electrodes for proton exchange membrane fuel cells. Journal of the Electrochemical Society, 1997, 144, (11), 3845-3857.
    [111]Zhao X.S., Sun G.Q., Jiang L.H., Chen W.M., Tang S.H., Zhou B., Xin Q., Effect of chloride anion as potential fuel impurity on DMFC performance, Electrochemical and solid-State Letters, 2005,8, (3), A149-A151.
    [112]Eickes C, Piela P., Davey J., Zelenay P., Recoverable cathode performance loss in direct methanol fuel cells, Journal of the Electrochemical Society, 2006, 153,(1), A171-A178.
    [113]Dinh H.N., Ren X.M., Garzon F.H., Zelenay P., Gottesfeld S., Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. Journal of Electroanalytical chemistry, 2000, 491, 222-233.
    [114]Ramya K., Dhathathreyan K.S., Direct methanol fuel cells: determination of fuel crossover in a polymer electrolyte membrane. Journal of Electroanalytical Chemistry, 2003, 542,109-115.
    
    [115]宋洪峰,方军,芦国劲,甲醇阻隔膜的改性和表征.25-26.
    
    [116]Ren X.; Springer T. E., Gottesfeld S., Water and methanol uptakes in Nafion membranes and membrane effects on direct methanol cell performance. Journal of the Electrochemistry Society, 2000,147, (1), 92-98.
    [117]Ren X.; Springer T. E., Zawodzinski T.A., Gottesfeld S., Methanol transport through Nafion membranes: electro-osmotic drag effects on potential step measurements. Journal of the Electrochemistry Society, 2000, 147, (2), 466-474.
    [118] Mueller J.T, Urban P.M., Characterization of direct methanol fuel cells by ac impedance spectroscopy. Journal of Power Sources, 1998, 75, (1), 139-143.
    [119] Mueller J.T, Urban P.M., Impedance studies on direct methanol fuel cell anodes. Journal of Power Sources,, 1999, 84, (2), 157-160.
    [120]Nakagawa N., Xiu Y., Performance of a direct methanol fuel cell operated at atmospheric pressure. Journal of Power Sources, 2003,118, (1-2), 248-255.
    [121]Furukawa K., Okajima K., Sudoh M., Structural control and impedance analysis of cathode for direct methanol fuel cell. Journal of Power Sources, 2004,139, (1-2), 9-14.
    [122]Wilson M.S., Garzon F.H., Sickafus K.E. Gottesfeld S.. Surface-area loss of supported platinum in polymer electrolyte fuel-cells, Journal of the Electrochemical Society, 1993,140,2872-2877.
    [123]Diaz-Morales R.R., Liu R.X., Fachini E., Chen G.Y., Segre C.U., Martinez A., Cabrera C, Smotkin E.S., XRD and XPS analysis of as-prepared and conditioned DMFC array membrane electrode assemblies. Journal of the Electrochemical Society, 2004,151, (9), A1314-A1318.
    [124]Blom D.A., Dunlap J.R., Nolan T.A., Allard L.F., Preparation of cross-Sectional samples of proton exchange membrane fuel cells by ultramicrotomy for TEM. Journal of the Electrochemical Society, 2003,150, (4),A414-A418.
    [125]Xie J., Wood D.L., More K.L., Atanassov P., Borup R.L., Microstructural changes of membrane electrode assemblies during PEFC durability testing at high humidity conditions. Journal of the Electrochemical Society, 2005, 152,(5),A1011-A1020.
    [126]Tucker M.C., Odgaard M., Lund P.B., Yde-Andersen S., Thomas J.O., The pore structure of direct methanol fuel cell electrodes, Journal of the Electrochemical Society, 2005, 152, (9), A1844-A1850.
    [127]Xie J., More K.L., Zawodzinski T.A., Smith W.H., Porosimetry of MEAs made by "thin film decal" method and its effect on performance of PEFCs. Journal of the Electrochemical Society, 2004, 151, (11), A1841-A 1846.
    [128]Lim C, Wang C.Y., Effects of hydrophobic polymer content in GDL on power performance of a PEM fuel cell. Electrochimica Acta 2004, (49), 4149-4156.
    [129]Wang C.Y., Fundamental models for fuel cell engineering. Chemical Reviews, 2004, 104,4727-4766.
    [1] Kocha S. S.. Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Vielstich, A. Lamm and H. A. Gasteiger, Editors, John Wiley & Sons, New York, 2003, Vol. 3, 538-565.
    [2] Wilson M. S., Gottesfeld S.. Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, Journal of Applied Electrochemistry, 1992, 22(1): 1-7.
    [3] Wilson M. S., Gottesfeld S.. High-performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel-cells, Journal of the Electrochemical Society, 1992, 139(2): L28-L30.
    [4] Wilson M. S., VALERIO J. A., Gottesfeld S.. Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers Electrochimica Acta, 1995, 40(3): 355-363.
    [5] Gamburzev S., Appleby A. J., Recent progress in performance improvement of the proton exchange membrane fuel cell (PEMFC), Journal of Power Sources, 2002, 107, 5-12.
    [6] Uchida M., Aoyama Y., Eda N., Ohta A.. New preparation method for polymer electrolyte fuel cells, Journal of the Electrochemical Society, 1995, 142, 463-468.
    [7] Uchida M., Fukuoka Y., Sugawara Y., Ohara H., Ohta A.. Improved preparation process of very-low-platinum-loading electrodes for polymer electrolyte fuel cells, Journal of the Electrochemical Society, 1998, 145, 3708-3713.
    [8] Taylor E. J., Anderson E. B.. Preparation of high-platinum-utilization gas diffusion electrodes for proton-exchange-membrane fuel cells. Journal of the Electrochemical Society, 1992, 139, L45-L46.
    [9] Liu R., Her Wei-Hwa, Fedkiw P. S. In situ electrode formation on a Nafion membrane by chemical platinum. Journal of the Electrochemical Society, 1992, 139, 15-23.
    [10] 衣宝廉,刘建国,魏昭彬,陈利康,辛勤,李文震,一种用于直接甲醇燃料电池的膜电极的制备方法,中国专利,01133417.7
    [11] Wei Z. B., Wang S. L., Yi B. L., Liu J. G., Chen L. K., Zhou W. J., Li W. Z., Xin Q.. Influence of electrode structure on the performance of a direct methanol fuel cell, Journal of Power Sources, 2002, 106(1-2), 364-369.
    [12] Ren X. M., Wilson M. S., Gottesfeld S.. High performance direct methanol polymer electrolyte fuel cells, Journal of the Electrochemical Society, 1996, 143, L12-L15.
    [13] 孙公权、汪国雄、樊小颖、王素力、赵新生、孙海、辛勤.用于质子交换膜燃料电池的膜电极结构及其制备方法,中国专利,200310102638.8
    [14] Wilson M. S., Garzon F. H., Sickafus K. E. Gottesfeld S.. Surface-area loss of supported platinum in polymer electrolyte fuel-cells, Journal of the Electrochemical Society, 1993, 140, 2872-2877.
    [15] Antolini E.. Formation, Microsturctural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells, Journal of Material Sciences, 2003, 38, 2995-3005.
    [16] Liu J. G., Zhou Z. H., Zhao X. S., Xin Q., Sun G. Q. and Yi B. L.. Studies on performance degradation of direct methanol fuel cell (DMFC) in life test, Physical Chemistry Chemical Physics, 2004, 6, 134-137.
    [17] Xie J., Garzon F., Zawodzinski T., and Smith W.. Ionomer segregation in composite MEAs and its effect on polymer electrolyte fuel cell performance, Journal of the Electrochemical Society, 2004, 151 (7) A1084-A1093.
    [18] Xie J., More K. L., Zawodzinski T. and Smith W.. Porosimetry of MEAs made by "thin film decal" methode and its effect on performance of PEFCs, Journal of the Electrochemical Society, 2004, 151 (11) A1841-A1846.
    [1] Ren X. M., Gottesfeld S.. Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes, Joural of the Electrochemical Society, 2001, 148(1): A87-A93.
    [2] Arico A. S., Srinivasan S., Antoncucci V.. DMFCs: from fundamental aspects to technology development, Fuel Cells, 2001, 1(2): 133-161.
    [3] Uchida M., Aoyama Y., Eda N., Ohta A.. Investigation of the microstructure in the catalyst layer and effects of both perfiuorosulfonate ionomer and PTFE-loaded carbon on the catalyst layer of polymer electrolyte fuel cells. Journal of the Electrochemical Society, 1995, 142, 4143-4149.
    [4] Arico A. S., Creti P., Giordano N., et al. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode, Journal of Applied Electrochemistry, 1996, 26(9): 959-967.
    [5] Zelenay P., Ren X. M., Thomas S. C., Davey J., Gottesfeld S.. Catalyst inks and method of application for direct methanol fuel cells, WO0245188 A2.
    [6] Fisher A., Jindra J., Wendt H.. Porosity and catalyst utilization of thin layer cathodes in air operated PEM-fuel cells, Journal of Applied Electrochemistry, 1998, 28(3): 277-282.
    [7] Kanno K., Fernandez J. J., Fortin F., Korai Y., Mochida I.. Modifications to carbonization of mesophase pitch by addition of carbon blacks. Carbon, 1997, 35(10-11), 1627-1637.
    [8] Xie J., Garzon F., Zawodzinski T., and Smith W.. Ionomer segregation in composite MEAs and its effecton polymer electrolyte fuel cell performance, Journal of The Electrochemical Society, 2004, 151 (7) A1084-A1093.
    [9] Arico A. S., Creti P., Antonucci P. L., et al. Optimization of operating parameters of a direct methanol fuel cell and physico-chemical investigation of catalyst-electrolyte interface, Electrochimica Acta, 1998, 43(24): 3719-3729.
    [10] Kocha S. S.. Handbook of Fuel Cells: Fundamentals, Technology and Applications, New York: John Wiley & Sons, 2003, Vol. 3, 538-565.
    [11] Ralph T. R., Hogarth M. P.. Catalysis for low temperature fuel cells, part Ⅰ: the cathode challenges, Platinum Metals Review, 2002, 46(1): 3-14.
    [12] Hogarth M. P., Ralph T. R.. Catalysis for low temperature fuel cells, part Ⅲ: challenges for the direct methanol fuel cell, Platinum Metals Review, 2002, 46(4): 146-164.
    [13] James L., Andrew D.. Fuel cell systems explained, John Wiley & Sons LTD. UK, 2000, 33.
    [14] 刘建国,博士论文,直接甲醇燃料电池结构与性能的研究,中国科学院大连化学物理研究所,2004.
    [15] Tada T.. in Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Vielstich, A. Lamm and H. A. Gasteiger, Editors, Vol. 3, John Wiley & Sons, New York (2003).
    [16] Guoxiong Wang, Gongquan Sun, Zhenhua Zhou, Jianguo Liu, Qi Wang, Suli Wang, Junsong Guo, Shaohua Yang, Qin Xin, Baolian Yi, Performance Improvement in Direct Methanol Fuel Cell Cathode Using High Mesoporous Area Catalyst Support, Electrochemical and Solid-State Letters, 8(1) (2005), A12-A16.
    [1] Gottesfield S.. DMFCs power up for portable devices. The Fuel Cell Review, 2004, 1(2), 25-29.
    [2] Kho B.K., Bae B., Scibioh M.A., Lee J., Ha H.Y.. On the consequences of methanol crossover in passive air-breathing direct methanol fuel cells. Journal of Power Sources, 2005,142 (1-2) 50-55.
    [3] Liu J.G., Zhao T.S., Chen R., Wong C.W.. The effect of methanol concentration on the performance of a passive DMFC. Electrochemical Communication, 2005, 7(3), 288-294.
    [4] Liu J.G., Zhao T.S.., Liang Z.X., Chen R.. Effect of membrane thickness on the performance and efficiency of passive direct methanol fuel cells. Journal of Power Sources, 2005,153(1), 65-67.
    [5] Kho B.K., Oh I.H., Hong S.A., Ha H. Y.. The effect of pretreatment methods on the performance of passive DMFCs. Electrchimica Acta, 2004, 50(2-3), 781-785.
    [6] Liu J.G., Sun GQ., Zhao F.L., Wang G.X., Zhao G, Chen L.K., xin Q., Yi B.L.. Study of sintered stainless steel fiber felt as gas diffusion backing in air-breathing DMFC. Journal of Power Sources, 2004,133,175-180.
    [7] Yu J.R., Cheng P., Ma Z.Q., Yi B.L., Fabrication of a miniature twin-fuel-cell on silicon wafer Electrochimica Acta 48 (11): 1537-1541.
    [8] Yu J.R., Cheng P., Ma Z.Q., Yi B.L., Fabrication of miniature silicon wafer fuel cells with improved performance , Journal of Power Sources 124 (1): 40-46.
    [9] Ren X.M., Becerra J.J., Gottesfield S., Kovacs F. W., Shufon K.J.. Direct oxidation fuel cell operating with direct feed of concentrated fuel under passive water management, US 20040209136 A1.
    [10] Beckmann G, Ren X.M., Mutolo P.F., Kovacs F.W., Gottesfield S.. Modified diffusion layer for use in a fiuel cell system, US 20030157396 Al.
    [11] Ren X.M., Kovacs F.W., Shufon K.J., Gottesfield S.. Passive water management techniques in direct methanol fuel cells, US 20040209154 A1.
    [12] Ren X.M., Becerra J.J., Beckmann G, Brown E.J., DeFilippis M.S., Neutzler J.K., Gottesfield S.. Simplified direct oxidation fuel cell system, US 20040265680 A1.
    [13] Guo Z., Cao Y.. A passive fuel delivery system for portable direct methanol fuel cells Journal of Power Sources, 2004,132(1-2), 86-91.
    [14] Ye Q., Zhao T.S.. A natural-circulation fuel delivery system for direct methanol fuel cells, Journal of Power Sources 147 (1-2): 196-202.
    [15] Ren X.M., Springer T. E., Gottesfeld S., Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance. J. Electrocheistry. Society, 2000,147,92-98.
    [16] Ren X.M., Gottesfeld S.. Electro-osmotic drag of water in poly(perfluorosulfonic acid) membranes. Journal of the Electrochemical Society, 2001,148 (1) A87-A93.
    [17] Ren X.M., Springer T. E., Zawodzinski T.A., Gottesfeld S., Methanol transport through Nafion membranes: Electro-osmotic drag effects on potential step measurements, Journal of the Electrochemical Society, 2000, 147(2)466-474.
    [18] Arico A.S., Srinivasan S., Antoncucci V.. DMFCs: from fundamental aspects to technology development, Fuel Cells, 2001,1(2):133-161.
    [19] Narayanan S.R., Valdez T.I., Rohatgi N.. in: W. Vielstich, A. Lamm and H. A. Gasteiger, (Eds.), Handbook of Fuel Cells: Fundamentals, Technology and Applications, Vol. 4, John Wiley & Sons, New York, 2003, pp. 894-904.
    [20] Chen C.Y., Yang P.. Performance of an air-breathing direct methanol fuel cell. J. Power Sources, 2003,123 (2003), 37-42.
    
    [21] Shukla A.K., Jackson C.L., Scott K., Raman R.K.. A improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions. Electrochimica Acta, 2002,47, 3401-3407.
    [22] 衣宝廉,燃料电池—原理技术应用,北京,化学工业出版社,2003,131-139.
    [23] Wilson M. S., Garzon F. H., Sickafus K. E. Gottesfeld S.. Surface-area loss of supported platinum in polymer electrolyte fuel-cells, Journal of the Electrochemical Society, 1993, 140, 2872-2877.
    [24] Liu J. G., Zhou Z. H., Zhao X. S., Xin Q., Sun G. Q. and Yi B. L.. Studies on performance degradation of direct methanol fuel cell (DMFC) in life test, Physical Chemistry Chemical Physics, 2004, 6, 134-137.
    [25] Piela P., Eickes C., Brosha E., Garzon F., Zelenay P.. Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. Journal of Electrochemical Society, 2004, 151 (12), A2053-A2059.
    [1] Ralph T.R., Hogarth M.P.. Catalysis for low temperature fuel cells, part I: the cathode challenges, Platinum Metals Review, 2002,46(1):3-14.
    [2] Uchida M., Fukuoka Y., Sujawara Y., Eda N., Ohta A.. Effects of microstructure of carbon support in the catalyst layer on the performance of poly-electrolyte furl cells. Journal of the Electrochemical Society, 1996, 143(7), 2245-2252.
    [3] Tada T.. in Handbook of Fuel Cells: Fundamentals, Technology and Applications, W. Vielstich, A. Lamm and H. A. Gasteiger, Editors, Vol. 3, John Wiley & Sons, New York (2003).
    [4] Li W. Z., Liang C. H., Qiu J. S., Zhou W. J., Han H. M., Wei Z. B., Sun G. Q., Xin Q.. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon, 2002,40(5), 791-794.
    [5] Hou Z. J., Yi B. L., Zhang H. M.. Preparing high loading Pt/C by modifying the carbon support. Electrochem. and Solid-State Letters, 2003, 6(11), A232-A235.
    [6] Arico A.S., Srinivasan S., Antoncucci V.. DMFCs: from fundamental aspects to technology development, Fuel Cells, 2001,1(2): 133-161.
    [7] X. Ren, T. E. Springer and S. Gottesfeld, Water and Methanol Uptakes in Nafion Membranes and Membrane Effects on Direct Methanol Cell Performance. J. Electrocheistry. Society, 2000, 147, 92-98.
    [8] Wilson M. S., Gottesfeld S.. Thin-film catalyst layers for polymer electrolyte fuel-cell electrodes. Journal of Applied Electrochemistry, 1992, 22 (1), 1-7.
    [9] Arico A.S., Creti P., Giordano N., Antonucci V., Antonucci P.L., Chuvilin A.. Chemical and morphological characterization of a direct methanol fuel cell based on a quaternary Pt-Ru-Sn-W/C anode. Journal of Applied Electrochemistry, 1996,26(9), 959-967.
    [10]Jia N.Y., Martin R. B., Qi Z., Lefebvre M. C, Pickup P. G. Modification of carbon supported catalysts to improve performance in gas diffusion electrodes. Electrochimica Acta, 2001, 46(18), 2863-2869.
    [11] Easton E. B., Qi Z. G., Kaufman A., Pickup P. G.. Chemical modification of proton exchange membrane fuel cell catalysts with a sulfonated silane. Electrochemical and Solid-State Letters, 2001, 4(5), A59-A61.
    [12] Xu Z. Q., Qi Z. G. and A. Kaufman, High performance carbon-supported catalysts for fuel cells via phosphonation. Chemical Communications, 2003, 7, 878-879.
    [13] Gojkovic S. L., Vidakovic T. R.. Methanol oxidation on an ink type electrode using Pt supported on high area carbons. Electrochimica. Acta, 2001, 47(4), 633-642.
    [14] Yasuda K., Nishimura Y.. The deposition of ultrafine platinum particles on carbon black by surface ion exchange—increase in loading amount. Materials Chemistry and Physics, 2003, 82(3), 921-928.
    [15] Zhou Z. H., Wang S. L, Zhou W. J., Wang G. X., Jiang L. H., Li W. Z., Song S. Q., Liu J. G., Sun G. Q., Xin Q., Cheical. Communications, 2003, 3, 394-395.
    [16] Jiang Z. X., Liu Y., Sun X. P., Tian F. P., Sun F. X., C Liang. H., You W. S., Han C. R., Li C.. Activated carbons chemically modified by concentrated H2SO4 for the adsorption of the pollutants from wastewater and the dibenzothiophene from fuel oils. Langmuir, 19(3), 731-736.
    [17] Jia Y. F., Thomas K. M.. Adsorption of Cadmium Ions on Oxygen Surface Sites in Activated Carbon. Langmuir, 2002, 16(3), 1114-1122.
    [18] Moremo-Castilla C., Lopez-Ramon M. V., Carrasco-Mamin F.. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 2000, 38(14), 1995-2001.
    [19] Biniak S., Szymafiski G., Siedlewski J., Swiatkowski A.. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997, 35(12), 1799-1810.
    [20] Van Dam H. E., Van Bekkum H.. Preparation of platinum on activated carbon. Journal of Catalysis, 1991, 131(2), 335-349.
    [21] Roy S. C., Christensen P. A., Hamnett A., Thomas K. M., Trapp V.. Direct methanol fuel cell cathodes with sulfur and nitrogen-based carbon functionality, J. Electrochemical Society, 1996, 143(10), 3073-3079.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700