用户名: 密码: 验证码:
空气重介质流化床干燥与分选过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合运用矿物加工学、流体力学、颗粒学、干燥动力学、传热传质学等理论对空气重介质流化床干燥与分选过程进行研究。研究了潮湿煤炭在热态流化床中的分选过程,考察了煤炭表面水分、干燥温度、干燥时间、风量等因素对分选效果的影响,建立了分选精度和分选密度与各影响因素间的数学关联式;研究了热态流化床干燥动力学,得到了剩余表面水分、加重质粘附量数学模型;分析了潮湿煤炭在热态流化床中的传热传质过程,并建立了热态流化床传热传质数学模型;研究了煤炭在热态流化床中的干燥破碎行为,建立了破碎百分比、破碎煤粉含量、跌落强度、跌落煤粉含量与各影响因素间数学关联式;对空气重介质振动流化床分选机进行了小型试验,系统研究了不同粒度、可选性煤炭分选效果随风量和抛掷指数的变化规律,并考察了煤炭粒度及可选性对小试分选机分选特性的影响;在小型试验基础上进行了空气重介质振动流化床半工业性试验,考察了风量、煤炭粒度、处理量、煤炭外在水分、煤炭可选性等因素对中试分选机分选特性的影响,并对半工业性试验工艺系统可靠性及分选机结构优化进行了研究,为设备的工业化应用奠定基础。
Drying and separating process of air dense medium fluidized bed was studied by manytheories including mineral processing engineering, hydromechanics, particuology, drying kinetics,heat and mass transfer. The influence of surface water of coal, drying temperature, drying time andair volume on separation effect was investigated and mathematic correlation of separationaccuracy and separation density with each influence factor were also built up through the study ofseparation process of moist coal in thermal state fluidized bed; Mathematical models of theremaining surface water content and the adhesive medium were obtained based on the study ofdrying dynamics in thermal state fluidized bed; Heat and mass transfer process of moist coal inthermal state fluidized bed was studied, heat and mass transfer mathematical model was aquired aswell; Furthermore, mathematic correlation of fragmentation quality percentage, crushedpulverized coal content, drop strength and dropped pulverized coal content with each influencefactor were built up by the research of drying fragmentation behavior of moist coal in thermalstate fluidized bed; Small-scale test of air dense-medium vibrated fluidized bed was conducted,the change law of separation effect of different particle size of coal and coal washability with airvolume and throw index was systematically researched, and the influence of particle size of coaland coal washability on separation characteristic was studied; On the basis of small-scale test,semi-industrial test of air dense-medium vibrated fluidized bed was conducted, the influence of airvolume,particle size of coal, unit handling capacity,surface water of coal and coal washability onseparation characteristic was studied; Meanwhile, a further research on the reliability of air-densemedium semi-industrial test system and the structural optimization of separator was researched,which laid a good foundation on industrial application of the equipment.
引文
1.陈清如.发展洁净煤技术推动节能减排[J].中国高校科技与产业化,2008,(3):65-67.
    2.陈清如.中国洁净煤战略思考[J].黑龙江科技学院学报,2004,5(9):261-264.
    3.彭苏萍.中国煤炭资源开发与环境保护[J].Review science and technology,2009(27):1-2.
    4.刘炯天.关于我国煤炭能源低碳发展的思考[J].中国矿业大学学报,2011,13(1):4-11.
    5.王显政.中国煤炭工业发展面临的机遇与挑战[J].中国煤炭,2010,36(07):5-10.
    6.陈清如,杨玉芬,等.21世纪高效干法选煤技术的发展[J].中国矿业大学学报,2001,30(6):527-530.
    7.陈清如,骆振福,等.干法选煤评述[J].选煤技术,2003,(6):34-40.
    8. LUO Z F,ZHAO Y M, CHEN Q R, TAO X X, FAN M M. Separation lower limit in amagnetically gas–solid two-phase fluidized bed [J]. Fuel Processing Technology,2004,85(2-3):173-178.
    9. LUO Z F, ZHAO Y M, CHEN Q R, FAN M M, TAO X X. Separation Characteristicsfor Fine Coal of the Magnetically Fluidized Bed [J]. Fuel Processing Technology,2002,79(1):63-69.
    10. FAN M M,CHEN Q R,ZHAO Y M.Fundamentals of a Magnetically Stabilized FluidizedBed for Coal Separation [J].Coal Preparation,2003,23(1/2):47-55.
    11. FAN M M, CHEN Q R, ZHAO Y M, LUO Z F. Fine coal (6-1mm) separation inmagnetically stabilized fluidized beds [J].International Journal of Mineral Processing,2001,63(4):225-232.
    12.陈清如,杨玉芬.21世纪高效干法选煤技术的发展[J].中国矿业大学学报,2001,30(6):527-529.
    13.骆振福.我国西部煤炭分选洁净的途径——流化床高效干法选煤技术[J].中国矿业,2001,10(5):12-14.
    14.骆振福.中国西部煤炭能源的优化利用[J].中国矿业,2001,10(1):36-39.
    15.国井大藏,列文斯比尔O.流态化工程[M].北京:石油化学工业出版社,1977.
    16.李洪钟,郭慕孙.气固流态化的散式化[M].北京.化学工业出版社,2002.
    17. EVESON G F. Dry cleaning of large or small coal or other particulate materials containingcomponents of diff erent specific gravities.US,3367501[P].1968.
    18. LOCKHART N C.Dry beneficiation of coal [J].Powder Technology,1984,40(1/3):17-42.
    19. BEECKMANS J M,MINH T. Separation of mixed granular solids using the fluidizedcounter current cascade principle [J].The Canada Journal of Chemical Engineering,1977,55(5):493-496.
    20. TANAKA Z,SATO H,KAWAI M,OKADA K,TAKAHASHI T.Dry Coal Cleaning Processfor High-quality Coal [J].Journal of chemical engineering of Japan,1996,29(2):257-263.
    21. OSHITANI J, TANI K, TAKASE K, TANAKA Z. Dry coal cleaning by utilizingfluidized bed medium separation (FBMS)[C]//Proceedings of the SCEJ Symposium onFluidization.Japan,2003:425-430.
    22. CHAN E W, BEECKMANS J M. Pneumatic beneficiation of coal fines using thecounter-current fluidized cascade [J].International Journal of Mineral Processing,1982,9(2):157-165.
    23. FRASER T,YANCEY H F.The air-sand process of cleaning coal:US,1534846[P].1925.
    24. SOONG Y,SCHOFFSTALL M R,GRAY M L,et al.Dry beneficiation of highloss-on-ignition fly ash [J].Separation and Purification Technology,2002,26(2/3):177-184.
    25. CHAPMAN W R, MOTT,R.A.The Cleaning of Coal [M].London: Chapman&Hall Ltd,1928.
    26. KUBO Y,ZUSHI T.Designing points of the fluidized bed type dry coal cleaning system [C]//CHEN Q R,TANAKA Z.Dry separation science and technology.Xuzhou:China Universityof Mining and Technology Press,2002:79-89.
    27. BONNIOL F, SIERRA C, OCCELLI R, TADRIST L. Similarity in dense gas–solidfluidized bed,influence of the distributor and the air-plenum [J].Powder Technology,2009,189(1):14-24.
    28. OTERO A R,MUNOZ R C.Fluidized bed gas distributors of bubble cap type [J].PowderTechnology,1974,9(5/6):279-286.
    29. GELDART D, BAEYENS J.The design of distributors for gas-fluidized beds [J]. PowderTechnology,1985,42(1):67-78.
    30. AMOORTHY D S, RAO CH S.Multi-orifice plate distributors in gas fluidised beds-a modelfor design of distributors [J]. Powder Technology,1979,24(2):215-223.
    31. KSKSAL M,VURAL H.Bubble size control in a two-dimensional fluidized bed using amoving double plate distributor [J].Powder Technology,1998,95(3):205-213.
    32. ROWE P N, EVANS T J. Dispersion of tracer gas supplied at the distributor of freelybubbling fluidised beds [J]. Chemical Engineering Science,1974,29(11:2235-2246.
    33. JU S P, LU W M, KUO H P,CHU F S,LU Y C.The formation of a suspension bed ondual flow distributors [J].Powder Technology,2003,131(2/3):139-155.
    34. LOMBARDI G, PAGLIUSO J D, JR L G.Performance of a tuyere gas distributor[J].Powder Technology,1997,94(1):5-14.
    35. CHRISTENSEN D,NIJENHUIS J,VANOMMEN J R,COPPENS M O.Residence timesin fluidized beds with secondary gas injection [J]. Powder Technology,2007,180(3):321-331.
    36. Qingru Chen, Lubin Wei.Development of coal dry separation with air-dense mediumfluidized bed in China [J].China Particuology,2005,3(1-2):42.
    37.韦鲁滨,陈清如,梁春城.空气重介流化床粗粒物料分选机理的研究[J].中国矿业大学学报,1996,25(1):12-18.
    38韦鲁滨,陈清如,赵跃民.双密度层空气重介流化床的研究[J].应用基础与工程科学学报,1996,4(3):275-279.
    39.韦鲁滨.双密度层流化床的形成特性[J].中南工业大学学报,1998,29(2):123-126.
    40.韦鲁滨.双密度层流化床形成机理[J].中南工业大学学报,1998,29(4):330-333.
    41.韦鲁滨,陈清如,赵跃民.空气重介质流化床三产品的分选特性[J].化工冶金,1999,20(2):140-143.
    42.韦鲁滨,陈清如,邢洪波.气固流化床中粗粒的沉降行为[J].中国矿业大学学报,2000,29(2):136-139.
    43.韦鲁滨,陈清如,赵跃民.用落球法测量悬浮体表观粘度[J].化工冶金,2000,21(2):187-190.
    44.韦鲁滨,边炳鑫,陈清如.运动物体在浓相流化床中的受力[J].中国矿业大学学报,2000,29(5):480-483.
    45.韦鲁滨,边炳鑫,陈清如,等.物体在流化床中的终端末速[J].中国矿业大学学报,2001,30(1):5-8.
    46.Wei Lubin,Wang Gengyu,Hao Liang,Zhao Yuemin.Moving behavior of an object in gas-solid fluidized beds [J]. Journal of China University of Mining&Technology,2005,25(1):7-11.
    47.Wei Lubin,Chen Qingru.Calculation of drag force on an object Settling in gas-solid fluidizedbeds [J]. Particulate Science and Technology,2001,19,229-238.
    48.Wei Lubin,Chen Qingru,Zhao Yuenin.Formation of double-density fluidized bed andapplication in dry coal beneficiation [J].Coal Preparation,2003,23:21-32.
    49.陈增强,赵跃民,陶秀祥,等.空气重介流化床干法选煤加重质的研究[J].中国矿业大学学报,2001,30(6):585-589.
    50.陈增强,陶秀祥,杨玉芬,等.空气重介干法选煤工艺系统与计算方法[J].选煤技术,2011,(6):18-22.
    51.唐利刚,赵跃民,骆振福,等.宽粒级加重质的流化特性[J].中国矿业大学学报,2009,38(4):509-514.
    52.熊建军,梁春成,邢洪波,等.空气重介流化床选煤机排料系统结构受力分析[J].煤矿机电,2004,(4):11-12.
    53.周同心,肖佳华,韦鲁滨,等.流化介质物性对流化床流化特性影响的研究[J].煤炭加工综合利用,2005,(6):28-31.
    54.丁淑芳.流化床内介质主要流化特性参数的研究[J].洗选加工,2008:19-21.
    55.丁淑芳,康文泽,韦鲁滨.加重质流化特性及其流化床分选效果[J].黑龙江科技学院学报,2010,20(4):288-291.
    56.丁淑芳,李子文,韦鲁滨.加重质性质对流化床流化行为影响的研究[J].选煤技术,2011,(3):11-15.
    57.骆振福,赵跃民,陈清如,等.浓相高密度分选流化床气体分布参数的研究[J].中国矿业大学学报,2004,33(3):237-240.
    58.骆振福,陈清如.空气重介流化床选煤过程中介质动态平衡的研究[J].煤炭学报,1995,20(3):260-265.
    59.骆振福,陈清如.空气重介流化床密度稳定性的研究[J].中国矿业大学学报,1992,21(3):77-85.
    60.骆振福,陈清如,陶秀祥,等.煤炭分选的气固两相流特性分析[J].选煤技术,1992,5:3-6.
    61.骆振福,陈清如,陶秀祥,等.空气重介流化床低密度选煤的理论与实践[J].中国矿业大学学报,1996,25(3):48-53.
    62.骆振福,陈尚龙,赵跃民,等.基于马尔可夫理论的气固分选流化床密度的预测[J].煤炭学报,2011,36(1):105-109.
    63.陶秀祥,陈清如,骆振福,等.煤炭外水分布规律及其对流化床分选的影响[J].中国矿业大学学报,1999,28(4):326-330.
    64.陶秀祥,陈增强,杨毅,等.深床型流化床块煤选矸的试验研究[J].中国矿业大学学报,2001,30(6):573-577.
    65.陶秀祥,严德崑,骆振福,等.气固流化床密度的在线测控研究[J].煤炭学报,2002,27(3):315-319.
    66.陶秀祥,严德崑,骆振福,等.气固流化床密度和床高的测控[J].北京科技大学学报,2002,24(5):488-491.
    67.陶秀祥,丁玉,骆振福,等.高密度浓相流化床内气泡行为的研究[J].中国矿业大学学报,2003,32(6):601-607.
    68.骆振福,陈清如.振动流化床研究新进展[J].化学工程,1997,25(2):10-12.
    69.王亭杰,汪展文,金涌,等.振动波在流化床中的传播行为[J].化工学报,1996,47(6):718-725.
    70.王亭杰,陈清如,等.振动流化床中颗粒介质的混合[J].中国矿业大学学报,1993,22(3):12-20.
    71.靳海波,张济宇,张碧江,等.振动流化床中双组分颗粒流化特性的研究[J].煤化工,1998,3(84):25-29.
    72.靳海波,张济宇,张碧江,等.振动流化床中双组份颗粒分离特性[J].过程工程学报,2001,1(4):347-350.
    73. LUO Z F,FAN M M,ZHAO Y M,TAO X X,CHEN Q R,CHEN Z Q.Density-dependentSeparation of Dry Fine Coal in a Vibrated Fluidized Bed [J].Powder Technology,2008,187(2):119-123.
    74.骆振福,陈清如,杨玉芬.振动流化床加重质流动模型的研究[J].煤炭学报,1997,22(6):647-652.
    75.骆振福,Maoming FAN,陈清如,等.振动参数对流化床分选性能的影响[J].中国矿业大学学报,2006,35(2):209-213.
    76.骆振福,陈清如.细粒煤干法分选技术的研究[J].煤炭科学技术,1998,26(3):24-26.
    77.骆振福,陈清如.振动流化床的分选特性[J].中国矿业大学学报,2000,29(6):566-570.
    78.骆振福,Maoming FAN,赵跃民,等.物料在振动力场流化床中的分离[J].中国矿业大学学报,2007,36(1):27-32.
    79.骆振福,陈清如,陶秀祥.振动流化床的形成机理[J].中国矿业大学学报,2000,29(3):230-234.
    80.王轶,王亭杰,金涌,等.振动流化床中流动结构的混沌分析[J].化工学报,2003,54(12):1696-1701.
    81.肖帅刚,王亭杰,汪展文,等.振动流化床中浅床层时床层与分布板之间的弹性作用[J].过程工程学报,2001,1(2):133-137.
    82.杨国华,陈清如,梁春城,等.宽分布大颗粒振动流化床流体力学研究[J].中国矿业大学学报,1996,25(4):109-114.
    83.杨国华,陈清如,樊茂明,等.振动穿流床物料流动及停留时间分布[J].煤炭学报,1999,24(3):325-328.
    84.韦鲁滨,梁世红,魏汝晖,等.新型空气重介质流化床分选特性研究[J].中国矿业大学学报,2011,40(5):733-736.
    85.曾鸣,魏汝晖,梁世红,等.新型干法分选机分选过程影响因素分析[J].煤炭学报,2011,36(5):845-847.
    86. Daud W.R.b.W. and Armstrong W.D. Pilot plant study of the drum dryer [J]. InA.S.Mujumdar(Ed.),Drying87',1987,101-108.
    87. Nelson R M Jr.Test of an equation for nonisothermal moisture transport in wood [J].WoodSeienee&Technology,1991,25(5):321-325.
    88. Nelson R M Jr.Heats of transfer and a activation energy for bound waterdiffusion in wood[J].Wood Seienee&Teehnology,1991,25(3):193-202.
    89. Rosenthal A. and Sgarbieri V.C. Nutritional evaluation of a fresh sweet corn drum dryingprocess [J].In A.S.Mujumdar(Ed.) Drying92',1992,1419-1425.
    90. Liu J Y.Diffusion coeff icient of porous solid obtained from isothermal sorption tests[J]. USDA Forest Serviee,1994,No.FPL-RP-533,10pp.
    91. Winkler D T.Diffusion of water and the proeess of drying of wood [J].Forestry and WoodTechnology,1995,(46):81-83.
    92. Stanish M A,Schajer G S,Kayihan F.A mathematical model of drying for Hygroseopesporous media [J].AIChEJ,1986,32(8):1301-1311.
    93. Kang Ho-Yang.Temperature effect on diffusion coefficient in drying wood [J]. WoodFiber&Seienee,1997,27(4):325-332.
    94. N.A.Vallous,M.A.Gavrielidou,T.D.Karapantsios etal.Performance of a double drumdryer for Produeing pregelatinized maize starches [J].Journal of Food Engineering,2002,51,171-183.
    95. Thodoris D.Karapantsios.Conductive drying kinetics of pregelatinized starch thin films[J].Joumal of Food Engineering.2006,76,477-489.
    96.杨俊红,焦士龙,郭锦棠,等.菜豆种子薄层干操物料内部水分扩散系数的确定[J].工程热物理学报,2001,22(2):211-214.
    97.戴天红,曹崇文.种子热风干燥发芽率的预测[J].农业机械学报,1996,27(1):63-66.
    98.夏吉庆,郑先哲,王成芝,等.水稻动态及静态谷层气流阻力的试验研究[J].农业工程学报,1998,(1):200-203.
    99.李业波,曹崇文.圆筒形循环式谷物干燥机的模拟研究[J].农业机械学报,1994,25(4):31-37.
    100.刘强,曹崇文.混流谷物干燥机的模型与模拟[J].农业机械学报,1994,25(2):39-44.
    101.潘永康,王喜忠,刘相东.现代干燥技术[M].北京:化学工业出版社,2006.
    102. Kudra T,Mujumdar A S.先进干燥技术[M].化学工业出版社,2005.
    103. Nellist ME.Modelling the performance of a cross-flow grain drier [J].Journal ofAgricultural Engineering Research,1987,37(1):43-57.
    104.杨国华,陈清如.振动穿流床煤炭干燥动力学研究[J].煤炭学报,1998,23(6):644-648.
    105. Hoehne O,Lechner S,Schreiber M,etal.Drying of Lignite in a Pressurized Steam FluidizedBed-Theory and Experiments [J].Drying Technology:An lnternational journal,2010,28(1):5-19.
    106.童景山等.流态化干燥技术[M].北京:中国建筑工业出版社,1985.
    107. Vorres K S.Effeet of Temperature,SamPle-Size and Gas-Flow Rate on Drying onBeulah-Zap Lignite and Wyodak Subbituminous Coal [J].Energy&Fuels,1994,8(2):320-323.
    108. Li X,Song H,Wang Q,etal.Experimental study on drying and moisture re-adsorptionkinetics of an Indonesian low rank coal [J].Journal of Environmental Seiences,2009,21(S1):127-130.
    109.潘永康,王忠喜,刘相东.现代干燥技术(第二版)[M].北京:化学工业出版社,2006.
    110.刘义明.过热蒸汽流化床内反应干燥制备MAP的实验研究[D].成都:四川大学,2007.
    111.刘玉容.杨木真空过热蒸汽干燥规律的研究[D].北京:北京林业大学,2008.
    112. I. Sotomea,M. Takenaka, S. Koseki, et al. Blanching of potato with superheatedsteam and hot water spray [J]. LWT—Food Science and Technology,2009,42(6):1035-1040.
    113. C. Pronyk,S. Cenkowski, W. E. Muir. Drying foodstuffs with superheated steam[J].Drying Technology,2004,22(5):899-916.
    114. S. Heinrich,G.Kruger,L.Morl. Modelling of the batch treatment of wet granular solidswith superheated steam in fluidized beds [J].Chemical Engineering and Processing,1999,38(2):131-142.
    115. S.Kittiworrawatt,S.Devahastin. Improvement of a mathematical model for low-pressuresuperheated steam drying of a biomaterial [J]. Chemical Engineering Science,2009,64(11):2644-2650.
    116. D.Yang,Z.Wang,X.Huang,et al.Numerical simulation on superheated steam fluidizedbed drying: I.model construction [J].Drying Technology,2011,29(11):1325-1331.
    117. Diamond N C,Magee T RA,Mckay G.The effete of Temperature and Partiele-Size on theFluid Bed Drying of Northern-Ireland Lignite [J].Fuel,1990,69(2):189-193.
    118. Ryzhkov A. F., Kipnis I. E. Engineering Calculations of Vibrofluidized Bed Devices[J]. Inzhenerno Fizicheskii Zhurnal,1991,60(6):907-913.
    119.杨大成.振动流化床干燥机的设计应用探讨[J],干燥技术,1985,(2):40-59.
    120. Gutman R.G.Vibrated Beds of Powders-1, A Theoretical Model for the VibratedBed[J].Trans Inst Chem Eng,1976,54(3):174~183.
    121. Akiyama T,Tetsuo,Naito,et al.Vibrated Beds of Powders:A New MathematicalFormulation [J].Chemical Engineering Science,1987,42(6):1305~1311.
    122. Ryzhkov A. F.,Putrik B.A.Propagation of Vibrations in a Suspended Granular Bed[J].Journal of Engineering Physics (English Translation of Inzhenerno Fizicheskii Zhurnal),1988,54(2):125~134.
    123.韦鲁滨,朱学帅,马力强等.褐煤空气重介质流化床干法分选与干燥一体化研究[J].煤炭科学技术,2013,41(6):125-128.
    124.韦鲁滨,朱学帅,刘道春等.褐煤流态化温和干燥研究[J].中国矿业大学学报,2014,43(2):300-304.
    125.骆振福,郭进,赵跃民,等.表面改性加重质的流态化及其分选性能[J].中国矿业大学学报,2011,40(1):111-115.
    126.骆振福,朱建风,李振,等.磁铁矿粉加重质的表面疏水改性[J].中国矿业大学学报,2011,40(1):75-79.
    127.陶秀祥,杨玉芬,骆振福,等.水分对空气重介流化床选煤过程影响的综合分析与研究[J].选煤技术,1995,(2):10-13.
    128. BABALIS S J,PAPANICOLAOU E,KYRIAKIS N,etal.Evaluation of thin-layer dryingmodels for describing drying kinetics of figs (Ficus carica)[J]. Journal of FoodEngineering,2006,75:205-214.
    129. ABUD-ARCHILA M,COURTOISF,BONAZZI C,BIMBENET J J.A compartmentalmodel of thin-layer drying kinetics of rough rice [J].Drying Technology2007,25(7-8):1389-1414.
    130. SOYSAL Y,OZTEKIN S,EREN O. Microwave drying of parsley:modeling,kineticsand energy aspects [J].Biosystems Engineering,2006,93(4):403-413.
    131. Lewis W.K.The rate of drying of solid materials [J].Journal of Industrial EngineeringChemistry,1921,13:427-432.
    132. Diamente L.M,Munro P.A.Mathematical modeling of thin layer solar drying of sweetpotato slices [J].Solar Energy,1993,51:271-276.
    133. Yaldiz O,Ertekin C.Thin layer solar drying some different vegetables [J].DryingTechnology,2001,19(3):583-596.
    134. Midilli A,Kucuk H,Yapar Z.A new model for single layer drying [J].DryingTechnology,2002,20(7):1503-1513.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700