用户名: 密码: 验证码:
SAR图像斑点滤波研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SAR全天候、全天时工作和穿透一些地物的特点,使合成孔径雷达遥感在固体地球科学、生态科学、水文科学和海洋科学等领域正发挥着越来越重要的作用,但SAR图像的斑点阻碍了SAR的应用。本论文研究了SAR图像的斑点滤波方法。
     第一章介绍了斑点滤波的研究现状,存在的主要问题。第二章介绍了斑点的生成机理及其统计特性。第二章介绍了SAR图像的基本特性,首先简要介绍了SAR基本原理、分辨率和成像线性模型;其次介绍了雷达图像理解和处理的基础,包括图像的自然信息、斑点、乘性斑点模型和图像数据斑点-场景模型等。第四章研究了一种新型信号处理方法EMD在雷达图像处理中的应用。这一章首先简要介绍了EMD方法,以真实SAR图像数据和模拟数据分析了斑点对EMD各个模态的影响;以此为基础,研究了基于EMD方法的SAR图像多尺度边缘提取和斑点滤波方法。第五章首先介绍了斑点滤波的数学物理描述;经过比较分析基于估计理论的斑点滤波方法,研究了这些方法面临的困难;最后提出了名为自适应多视处理的斑点滤波方法,并利用机载L波段SAR图像、SIR-C图像和ERS-1图像进行了评估和测试。第六章为结论。
     本论文的创新点如下:
     1.在研究中发现边缘的概念比较模糊,而边缘的概念对研究斑点滤波方法边缘保持能力有重要的影响;本文认为在SAR图像处理中边缘对应图像像元值变化较大的区域;边缘保持是保持边缘区域的梯度;根据这个定义发展了边缘保持评价方法:计算去斑点图像和原始图像边缘区域内梯度绝对值和的比值。
     2.提出了边缘方向在某些滤波器滤波后保持不变性的认识。
     3.斑点滤波的主要困难是边缘保持问题,传统的边缘保持滤波方法不能有效保持边缘;研究发现在斑点滤波中为了保持边缘,必须沿着边缘方向在一个像元宽范围内进行平滑处理。
     4.EMD方法是一种新型信号处理方法,研究发现这个方法能够用于SAR图像处理;斑点主要影响EMD第一和第二模态。
     5.利用EMD方法能将信号分解为不同尺度的成分,利用EMD方法的这个特性,研究基于EMD方法SAR图像多尺度边缘提取方法。
     6.提出了基于EMD方法的SAR图像斑点滤波方法;这个方法在边缘区域沿着边缘方向平滑,在同质区域在方形窗口内取平均,因此这个方法在去除斑点同时能够有效保持边缘。
     7.基于估计理论的斑点滤波方法本质上是要寻找同质区域,之后在同质区域估计真实像元值,但传统的斑点滤波方法只探测了有限形状的同质区域,本文提出了一个能够探测到任意形状同质区域的SAR图像斑点滤波方法:自适应多视处理。
With its ability to image the Earth's surface in nearly all weather conditions, together with its high spatial resolution, SAR has shown its potential for classifying and monitoring geophysical parameters both locally and globally. However, speckle in SAR images disturbs its applications. The dissertation is with focus on speckle filtering.
    The study of speckle filters and the problem encountered by speckle filters are introduced in the first chapter. The second chapter is concerned with how speckle originate. In the third chapter we introduce the fundamental properties of SAR images. This chapter is the foundation of SAR image processing including principles of SAR image formation, the nature of information in SAR images, the statistical properties of SAR images and the data models. A new signal processing method named EMD is exploited to process SAR images in the fourth chapter. We first research how speckle in SAR images influences the modes obtained from SAR images by EMD. We found that speckle in SAR images influences the first and the second mode. The speckle filter and multiscale edge detection technique are proposed respectively based on the effects of speckle on the modes. In the fifth chapter, we study the speckle filters in context of estimate theory, we find that the problem of the speckle filters is edge preservation. A method name
    d adaptive multi-look processing is proposed, it reduces speckle while preserving the edges. At last, we evaluate the proposed methods using the simulated SAR images, Chinese L-band airborne SAR images, SIR-C/X-SAR images and ERS-1 images. The sixth chapter is conclusion. The innovations in the dissertation as bellow:
    1. The definition of edge in SAR images is confused, the definition of edge is important for the study of edge preservation speckle filters. In this paper, we define an edge in an image as an area which intensity is sharply variation. The edge preservation is to preserve the gradient of edge areas. Based on edge definition, we develop a method to evaluate speckle filters in tern of edge preservation: compute ratio between the sum of gradient absolute value in the edge area of filtered image and original.
    2. The prime problem of speckle filters is edge preservation, the traditional speckle filters cannot effectively preserve edge, to preserve the edge, a practical and reliable way can accomplish this mission, say, smoothing is running within a width of single pixel chain along edge direction.
    3. EMD is a novel signal processing method, the study prove that this method can be used to processing SAR images, speckle in SAR images influences the first and the second mode.
    4. EMD can decompose signal in different scale components, An effective algorithm of multiscale technique for detecting edges in SAR images is proposed based on the character of EMD.
    5. A speckle filter based on EMD is proposed, it smooth along edge direction in edge area and compute mean of square area in homogenous region, therefore this method can reduce speckle while preserve edge in SAR images.
    6. The speckle filters in context of estimate theory is essentially to look for homogenous region, then estimate the true image, but the traditional speckle filter only detect the limited shape homogenous region, a speckle filter named adaptive multi-look processing which can detect any possible shape homogenous region is proposed.
引文
[1] 郭华东等著,雷达对地观测理论与应用,第一版,北京:科学出版社,2000.
    [2] 高惠璇编著,统计计算,第一版,北京:北京大学出版社,1996.
    [3] J. W. Goodman, Some fundamental properties of speckle, J. Opt.Soc. Am. 66(11) , November. 1976 1145-1149.
    [4] E. N. Leith, Quasi-holographic techniques in the microwave region, Proc. IEEE 59, 1971, 1305-1318.
    [5] N. George, C. R. Christensen, J. S. Bennett, and B. D. Guenther, Speckle noise in displays, J. Opt. Soc. AM. 66(11) , 1976, 1282-1286.
    [6] B. D. Guenther, N. George, C. R. Cchristensen, and J. S. Bennett, Speckle noise and object contrast, Photo Sci. and Eng. 21, 1981, 192-199.
    [7] U. N Korwar and J. R. Pierce, Detection of gratings and small features in speckle imagery, Appl. Opt. 20(2) , 1981,312-317.
    [8] A. Kozma and C. R. Christensen, Effects of speckle on resolution, J. Opt. Soc. Am. 66(11) , 1976, 1257-1263.
    [9] L. J. Porcello, Speckle reduction in synthetic-aperture radars, J. Opt. Soc. Amer., Vol.66, no.1 1,1976 1305-1311.
    [10] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar images. Norwood, MA: Artech House, 1988.
    [11] S. Quegan, Parameter estimation for polarimetric measurements from vegetated areas, Proc. Third International Workshop on Radar Polarimetry, Nantes, 1995, 626-635
    [12] J. W. Goodman, Statistical properties of Laser speckle patterns, Laseer Speckle and Related Phenomena, J. C. Daintry(ed), New York:Wiley, 1972.
    [13] B. D. Guenther et al., Digital processing of speckle images, in Proc. IEEE Conf. Pattern Recognition and Image processing, 1978,Chicago, 85-90.
    [14] K. Kondo, Y. Ichioka, and T. Suzuki, "Image restoration by Wiener filtering in the presence of signal dependent noise," Appl. Opt, Sept. Vol.16 1977, 2554-2558.
    [15] N. E. Nahi and T. Assefi, "Bayesian recursive image estimation," IEEE Trans. Comput., vol. C-12, July 1972, 734-738.
    [16] A. O. Aboutalib, M.S. Murphy, and L. M. Silverman, "Digital restoration of image degraded by general motion blurs," IEEE Trans. Automat. Contr., vol. Ac-22, June 1977, pp.294-302.
    [17] M. S. Murphy and L.M. Silverman, "Image model representation and line-by-line recursive restoration, " IEEE Trans. Automat. Contr., vol. AC-23, Oct. 1978, pp.8. 9-816.
    [18] J. W. Woods and C.H. Radewan, "Kalman filtering in two dimensions," IEEE Trans. Inform. Theory, vol. IT-23, July 1977, pp.473-482.
    [19] J. W. Woods and V. K. Ingle. " Kalman filtering in two dimensions: Further results," IEEE Trans. Acoust, Speech, Signal Processing, vol. ASSP-29, Apr. 1981, pp. 188-196.
    [20] J. S. Lee, "Speckle suppression and analysis for synthetic aperture radar images," Opt. Eng., vol. 25, no.5, May. 1986,pp. 636-643.
    [21] D. S. Lebedev and L. I. Mirkin, Smoothing of two-dimensional images using the 'composite' model of a fragment, in Iconics-Digital Holography-Image Processing. USSR Inst. Infrom. Transmission Problems, Academy of Sciences, 1975, 57-62.
    [22] H. T. Trussell and B. R. Hunt, Sectioned methods fro image restoration, IEEE Trans. Acust,
    
    Speech, Signal processing, vol. ASSP-26, Apr. 1978, 157-164.
    [23] S. A. Rajala and R. J. P. de Figueiredo, Adaptive nonlinear image restoration by a modified Kalman filtering approach, IEEE Trans. Acust, Speech, Signal processing, vol. ASSP-29, Oct, 1981, 1033-1042
    [24] J. S. Lee, "Digital image enhancement and noise filtering by use of local statistics," IEEE Trans Pattern Analysis and Machine Intelligence, PAMI-2, no. 2, pp. 165-168, 1980.
    [25] J. S. Lee, "Refined filtering of image noise using local statistics," Comput. Graph. Image Process.,vol. 15, pp.380-389,1981.
    [26] V. S. Frost, J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, "A model for radar images and its application to adaptive digital filtering of multiplicative noise," IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-4, no.2, pp. 157-166, 1982.
    [27] J. S. Lee, "Digital image smoothing and the sigma filter using local statistics," Computer Vision. Graphics and Image Processing.,vol. 24, pp.225-269,1983.
    [28] Kuan D T, Sawchuk A A, Strand T C, and Chavel P. Adaptive restoration of images with speckle [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, ASSP-35 (3) : 373-383.
    [29] D. T. Kuan, A. A. Sawchuk, T. C. Strand, and P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise," IEEE Trans. Pattern Analysis and Machine Intelligence, PAMI-7, no.2 pp. 165-177, 1985.
    [30] A. Lopes, E. Nezry, R. Touzi, and H. Laur, "Maximum a posteriori filtering and first order texture models in SAR images," in Proc. IGARSS Symp pp. 2409-2412, 1990.
    [31] A.Lopes, R.Touzi, and Nezry, E. "Adaptive speckle filters and scene heterogeneity," IEEE Transactions on Geoscience and Remote Sensing, 1990, 28 (6) : 992-1000.
    [32] Y. F. Wu, "Smoothing speckled synthetic aperture radar images by using maximum homogeneous region filters," Opt. Eng., vol. 31, no.8, pp. 1785-1792, Aug. 1992.
    [33] J. M. Nicolas, F. Tupin, and H. Maitre. "Smoothing speckled SAR images by using maximum homogeneous region filters: an improved approach" in Proc. IGARSS Symp pp. 2129-2133, 2001.
    [34] E. Nezry, A. Lopes, and R. Touzi, "Detection of structural and textural features for SAR images filtering," in Proc. IGARSS Symp pp. 2169-2172, 1991.
    [35] A. Lopes, E. Nezry, R. Touzi, and H Laur, "Structure detection and statistical adaptive speckle filtering in SAR mages,". International Journal of Remote Sensing, vol.14, no.9 pp:1735-1758, 1993.
    [36] W. Hagg and M. Sties. "Efficient speckle filtering of SAR images," in Proc. IGARSS, Pasadena, C A, 1994,pp.2140-2142.
    [37] F. J. Martin and R. W. Turner, "SAR speckle reduction by weighted fitlering,". International Journal of Remote Sensing, vol.14, no.9 pp:1759-1774, 1993.
    [38] A. Baraldi, and F. Parmiggiani, "A refined gamma MAP SAR speckle filter with improved geometrical adaptivity," IEEE Trans. Geosci. Remote Sensing. Vol. 33, no. 5, pp. 1245-1257, Step. 1995.
    [39] R. Touzi, A review of speckle filtering in the context of estimation theory, IEEE Trans. Geosci. Remote Sensing. Vol. 40, no.l 1, pp.2392-2404, Nov. 2002.
    [40] M. Tur, K. C. Chin, and J. W. Goodman, " When is speckle noise multiplicative?"Appl. Opt., vol. 21, no. 7, pp. 1157-1159, Apr. 1982.
    
    
    [41] Y. Dong,, B. C.,Forster, A. K.,Milne, and Morgan. G A. Speckle suppression using recursive wavelet transforms [J]. International Journal of Remote Sensing, 1998,19 (2) : 317-330.
    [42] S. Fukuda, H. Hirosawa, Suppression of speckle in synthetic aperture radar images [J]. InternationalJournal of Remote Sensing, 1998,19 (3) : 507-519.
    [43] Y. Dong, A. K. Milne, and B. C. Forster, "Toward edge sharpening: a SAR speckle filtering algorithm," IEEE Trans. Geosci. Remote Sensing. Vol. 39, no. 4, pp.851-863, Apr. 2001.
    [44] S. Foucher, B. B. Goze and J. M. boucher, "Multiscale MAP filtering of SAR images," IEEE Trans. Image processing. Vol. 10, no. 1, pp.49-60, Jan. 2001.
    [45] H. Xie, L. E. Pierce, and F. T. Ulaby, "SAR speckle reduction using wavelet denoising and Markov random field modeling," IEEE Trans. Geosci. Remote Sensing. Vol. 40, no. 10, pp.2196-2212, Oct. 2002.
    [46] H. Xie, L. E. Pierce, and F. T. Ulaby, "Spatially adaptive Radar speckle reduction using wavelet denoising and Markov Random fields," in Proc. IGARSS, 2001.
    [47] M. Simard, G Degrandi, K. P. B. Thomson, and G B. Benie, "Analysis of speckle noise contribution on wavelet decomposition of SAR images," IEEE Trans. Geosci. Remote Sensing. Vol. 36, no. 6, pp.1953-1962, Nov. 1998.
    [48] F. Argenti, L. Alparone, "Speckle removeal from SAR images in the undecimated wavelet domain," IEEE Trans. Geosci. Remote Sensing. Vol. 40, no. 11, pp.2363-2374, Oct. 2002.
    [49] H. Xie, L. E. Pierce, and F. T. Ulaby, "Despeckling SAR images using a low-complexity wavelet denoising process," in Proc. IGARSS, 2002.
    [50] Y. Hawwar and A. Reza, Spatially adaptive multiplicative noise image denoising technique, IEEE Trans. Image processing. Vol. 11, no. 12, pp. 1397-1404, Dec. 2002.
    [51] H. Chipman, E. Kolaczyk, and R. McCulloch. Adaptive Bayesian wavelet shrinkage, J. Amer. Statist. Assoc., vol, 92, pp. 1413-1421, 1997.
    [52] D. L. Donoho, De-noising by soft thresholding IEEE Trans. Inform. Theory, vol.41, pp.613-627, May, 1995.
    [53] S. G. Chang, B. Yu, and M. Vetterli, Spatially adaptive wavelet thresholding with context modeling for image denoising, IEEE Trans. Image processing , vol. 9, pp. 1522-1523, Sept. 2000.
    [54] T. R. Crimmins, Geometric filter for speckle reduction [J]. Applied Optics, 1985, 24 (10) : 1438-1443.
    [55] F. Safa., and G Flouzat, 1989, "Speckle removal on radar imagery based on mathematical morphology," Signal Processing, 16,319-333.
    [56] Y. G. Yu, and S. T. Acton, "Speckle reduction anisotropic diffusion," IEEE Trans. Image processing. Vol. 11, no. 11, pp. 1260-1270, Nov. 2002.
    [57] P. Perona and J. Malik, Scale-Space and edge detection using Anisotropic diffusion, IEEE, Trans. Pattern Analysis and Machine intelligence. Vol. 12, No 7, Jul,1990.
    [58] Nordon Huang et al The empirical mode decomposition and Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London SERIES A (1998) 454. 903-995
    [59] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave remote sensing, vol. 3, Dedham, MA: Artech House, 1986.
    [60] F. M Henderson and A. J. Lewis(eds) Principles and Applications of imageing radar, Mannual of Remote Sensing, Third Edition, Vol. 2, Johon Wily &Sons, Inc.
    
    
    [61] J. J. Van Zyl, and F. T. Ulaby, Scattering matrix representation for simple targets, Radar Polarimetry for Geoscience applications, F. T. Ulaby and C. Elachi(eds), Norwood, MA: Artech House, 1990,17-52.
    [62] L. Tsang, , J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, New York: Wiley-Interscience, 1985.
    [63] A. K. Fung, Microwave Scattering and Emission Models and Their Applications, Norwood MA: Artech House, 1994.
    [64] J. A. Kong, (ed.), Polarimetric Remote Sensing, New York, Amsterdam, and London; Elsevier, 1990.
    [65] Y. Kuga,, M. W. Whitt, K. C. McDonald, and F. T. Ulaby, "Scattering Models for Distributed Targets," Radar Ploarimetry for Geoscience Applications, F. T. Ulaby and C. Elachi (eds.), MA: Artech House, 1990, pp. 111-190.
    [66] B. Julesz,, E. N. Gilbert, and J. D. Victor, "Visual Discrimination of Textures with Identical Third-Order Statistics," Biol. Cybern., Vol.31. 1978, pp. 137-140.
    [67] B. Julesz,, H. L. Frisch, E. N. Gilbert, and L. A. Shepp, "Inability of Humans to Discriminate Between Visual Textures That Agree in Second-Order Statistics-Revisited," Perception, Vol. 2, 1973, pp.391-405.
    [68] H. H, Abramowitz., and G April, Properties of speckle integrated with a finite aperture and Logarithmically transformed, J. Opt. Soc. Amer, Vol.66, 1976, 1160-1163.
    [69] T. F Bush and F. T. Ulaby, "Fading characteristics of panchromatic radar backscatter from selected agricultural targets," IEEE Trans. Geosci. Electron., GE-13, no. 4, pp. 149-157, 1975.
    [70] J. S. Lee., " A Simple Speckle Smoothing Algorithm for Synthetic Aperture Radar Images," IEE Trans. Systems, Man and Cybernetics, Vol. 13, 1983, pp. 86-89
    [71] J.Canny, A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1986, PAMI-8 (6) , 679-698.
    [72] S. Mallat, and S. Zhong, Characterization of signals from multiscale edges, IEEE Trans Pattern Analysis and Machine Intelligence, vol. 14, No. 7. July 1992, 710-732.
    [73] D. J. Park, K. M. Nam and R. H. Park, Multiresolution edge detection techniques, Pattern Recognition vol. 28, 1995, 211-229.
    [74] D. Marr, and E.Hildreth, Theory of edge detection. Proceedings, Royal Society of London, 1980,B,207, 187-217.
    [75] R. Touzi, A. Lopes, and P. Bousquet, A statistical and geometrical edge detector for SAR images, IEEE Trans. Geosci. Remote Sensing, vol.26,Nov, 1988, 764-773.
    [76] A. C. Bovik, On detecting edges in speckle imagery, IEEE Trans. Acoust. Speech. Signal Processing, vol.36, Oct. 1988, 1618-1627.
    [77] C. J. Oliver, D. Blacknell, and R. G White, Optimum edge detection in SAR, Proc. Inst. Elect. Eng., Radar, Sonar. Navig., vol.143, no.1 Feb. 1996, 31-40.
    [78] R. Fjortoft, P. Marthon, A. Lopes and E. Cubero-Castan, An optimum multiedge detector for SAR image segmentation. IEEE Trans. Geosci. Remote Sensing , vol. 36, May 1998, 793-802.
    [79] L. M. Novak, and M. C. Burl, Optimal speckle reduction in polarimetric SAR imagery, IEEE Trans. Aerosp. Electron. Syst. vol. 26. Feb 1990, 293-305.
    [80] R. Fjortoft, J. C. Cabada, A. Lopes, and P. Marthon, Optimal edge detection and segmentation
    
    of SLC SAR images with spatially correlated speckle, in Proc. SAR Image Analysis, Modeling, and Tecniques III. Barcelona. Spain, Sept,21-24, 1988. vol. SPIE 3497, 99-110.
    [81] R. Fjortoft, A. Lopes, P. Marthon, and E. Cubero-Castan, Different approaches to multiedge detection in SAR images, in Proc. IGARSS'97, Sigapore. Aug. 3-8, 1997, vol. 4, 2060-2062.
    [82] L. Gagnon and A. Jouan, Speckle filtering of SAR images-A comparative study between complex-wavelet-based and standard filters, Proc. SPIE, vol, 3169, 1997, 80-90.
    [83] H. Guo, J. E. Odegard, M. Lang, R. A. Gopinath, I. W. Seleshichk, and C. S. Burrus, Wavelet based speckle reduction with application to SAR based ATD/R, in Proc. ICIP, vol, 1,1994, 75-79.
    [84] J. R. Sveinsson and J. A. Benediktsson, Speckle reduction of SAR images using wavelet-domain hidden Markov models, in Proc. IGARSS, vol. 4, 2000, 1666-1668.
    [85] S. Mallat, A theory for muitiresolution signal decomposition: The wavelet representation, IEEE Trans. Pattern Anal. Machine Intell., vol. 11, July 1989,674-693.
    [85] M. S. Crouse, R. D. Nowak, and R. G Baraniuk, Wavelet-based statistical signal processing using hidden Markov models, IEEE Trans. Signal Processing, vol.46, 1998,886-902.
    [86] M. Malfait and D. Roose, Wavelet-based image denoising using a Markov random field a priori mode, IEEE Trans. Image Processing, vol. 6. Apr. 1997, 549-565.
    [87] M. K. Mihcak, I. Kozintev, K. Ramchandran, and P. Moulin, Low-complexity image denoising based on statistical modeling of wavelet coefficients, IEEE Trans. Signal Processing Lett, vol. 6, Dec 1999, 300-303.
    [88] E. P. Simoneclli, Bayesian denoising of visual images in the wavelet domain, in Bayesian Inference in Wavelet Based Models. New York: Springer-Verlag. 1999, 291-308.
    [89] D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation via wavelet shrigkage, Biometrika, vol.81, 1994,425-455.
    [90] X. Zong, A. F. Laine, and E. A. Geiser, Speckle reduction and contrast enhancement of echocardiograms via multiscale nonlinear processing, IEEE Trans. Med. Image., vol. 17, Aug 1998,532-540.
    [91] M. Beige, M. E. Kilmer, and E. L. Miller, Wavelet domain image restoration with adaptive edge-preserving regularization, IEEE Trans. Image Processing, vol. 9, Apr. 2000, 597-608.
    [92] E. Simoncelli and E. Adelson , Noise removal via Bayesian wavelet coring , in Proc. ICIP., vol. 1,1996,379-382.
    [93] S. Z. Li, Markov Random Field Modeling in Computer Vision. New York:Springer-Verlag, 1995.
    [94] L. M. Novak and M. C. Burl, Optimal speckle reduction in polarimetric SAR imagery, IEEE Trans. Aerosp. Electron. Syst, vol. 26, Feb 1990, 293-305.
    [95] A. Loopes and F. Sery, Optimal speckle reduction for the product model in multilook polarimetric SAR imagery and the Wishart distribution, IEEE Trans. Geosci. Remote Sensing, vol. 35, May 1997,632-647.
    [96] G Liu, S. Huang, A. Torre, and F. Rubertone, The multilook polarimetric whitening filter(MPWF) for intensity speckle reduction in polarimetric SAR images, IEEE Trans. Geosci. Remote Sensing, vol. 36, May 1998, 1016-1020.
    [97] J. S. Lee, M. R. Grunes, and S. A. Mango, Speckle reduction in multipolarization , multifrequency SAR imagery, IEEE Trans. Geosci. Remote Sensing, vol. 29, July 1991, 535-544.
    
    
    [98] J. S. Lee, M. R. Grimes, and G de Grandi, Polarimetric SAR speckle filtering and its implication for classification, IEEE Trans. Geosci. Remote Sensing, vol. 37, Sept 1999, 2363-2372.
    [99] R. G White, A simulated annealing algorithm for radar cross-section estimation and segmentation, Proc. SPIE, vol. 2243, 1994, 231-240.
    [100] R. G White, A simulated annealing algorithm for SAR and MTI image cross-section estimation, Proc. SPIE, vol. 2316,1994, 137-145.
    [101] J. S. Lee, and M. R. Grunes, Classification of multi-look polarimetric SAR data based on complex Wishart distribution, in Nat. Telesystems Conf., Washington, DC, 1992, 21-24.
    [102] S. R. Cloude and E. Pottier, An entropy based classification scheme for land applications of polarimetric SAR,. IEEE Trans. Geosci. Remote Sensing, vol. 35, Jan 1997,68-78.
    [103] J. S. Lee, M. R. Grunes, T. L. Ainsworth, L. J. Du D. L. Schuler and S. R. Cloude, Unsupervised classification using polarimetric decomposition and the complex Wishart classifier, IEEE Trans. Geosci. Remote Sensing, vol. 37, Sept 1999, 2249-2258.
    [104] S. H. Yueh, J. A. Kong, J. K. Jao, R. T. Shin, H. A. Zebker, and T. Le Toan, K-distribution and multi-frequency polarimetric terrain radar clutter, J. Electromagn. Waves Applicat, vol. 5, no. 1, 1991, 1-15.
    [105] E. L. Christensen, N. Skou, J. Dall, K. W. Woelders, J. H. Jrgensen, J. Granholm, and S. N. Madsen, Emisar: An absolutely calibrated polarimetric L-band SAR, IEEE Trans. Geosci. Remote Sensing, vol. 36, Nov 1998, 1852-1865.
    [106] H. Skriver, M. T. Svendsen, and A. G Thomsen, Multitemporal C-and L-band polarimetric signatures of crops, IEEE Trans. Geosci. Remote Sensing, vol. 37, Sept 1999, 2413-2429.
    [107] J. Schou and H. Skriver, Pestorationof polarimetric SAR images using Simulated annealing, IEEE Trans. Geosci. Remote Sensing, vol. 39, Sept 2001, 2005-2016.
    [108] M. Nagao, and T. Matsuyama, "Edge preserving smoothing," Computer Graphics and Image Processing., vol. 9, 1979, pp.394-407.
    [109] A. L. Steven, W. Zucker, and A. Rosenfeld, Iterative enhancement of noisy images, IEEE Trans. Systems, Man and Cybernetics SMC-7, 1977,435-442.
    [110] F. Tomita and S. Tsuji, Extraction of multiple regions by smoothing in selected neighborhoods, IEEE Trans. Systems, Man and Cybernetics SMC-7, 1977, 107-109. .
    [111] E. Nezry, H. Kohl, and H. De Groof, Restoration and enhancement of textural properties in SAR images using second order statistics, in SAR data processing fro remote sensing. Proc. SPIE, vol. 2316, Rome, Italy, Sept, 1994, 115-124.
    [112] A. Lopes, E. Nezry, R. Touzi, and H. Laur, Maximum a posterion speckle filtering and first order texture and fist order texture models in SAR images, in Proc. IGARSS'90, College Park, MD, May 1990, vol. 3, 2409-2412.
    [113] Y. L. Desnos, and V. Matteini, Review on structure detection and speckle filtering on ERS-1 images, EARSeL Adv. Remote Sensing, vol. 2 no. 2, 1993, 52-65.
    [114] F. T. Ulaby, F. Kouyate, B. Brisco, and T. H. Lee Williams, Textural information in SAR images, IEEE Trans. Geosci. Remote Sensing, vol. 24, no.2 Mar. 1986, 235-245.
    [115] C. J. Oddy, and A. J. Rye, Segmentation of SAR Images using a local similarity rule, Pattern Recog. Lett., col. 1, 1983, 443-449.
    [116] S. M. Ali, and R. E. Burge, New automatic techniques for smoothing and segmenting SAR images, Signal Process., vol. 14, 1998, 335-346.
    
    
    [117] Z. G Shi and K. B. Fung, "A comparison of digital speckle filters," in Proc. IGARSS Symp pp. 2129-2133, 1994.
    [118] Lee, J. S., &JURKEVICH, I., 'Speckle Filtering of Synthetic Aperture Radar images: A Review', Remote Sensing Reviews, vol. 8,1994, pp.313-340.
    [119 ]Li, F. K., Croft, C. and Held. D. N. 'Comparison of Several Techniques to obtain multiple-look SAR imagery.' IEEE Trans. Geosci. Remote Sensing. Vol. 39, no. 4, pp.851-863, Apr. 2001.
    [120] A. Ndi Nyoungui, E. Tonye and A. Akono, Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images, Int. J. Remote Sensing,2002, vol.23, no.9, 1895-1925.
    [121] P. Eewaele, P. Wambacq, A. Oosterlinck, K. U. Leuven and J. L. Marchand, "Comparison of some speckle reduction techniques for SAR images," in Proc. IGARSS Symp pp. 2417-2422, 1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700