用户名: 密码: 验证码:
地震灾场模拟及救援虚拟仿真训练系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实践证明,开展地震紧急救援工作是防震减灾的关键举措之一,是震后最大程度减少人员伤亡的必要政府行为。“科学救援”是现代救援的重要理念,如何确保“双安全”,即幸存者和救援人员本身的安全是救援行动中最为重要的问题。救援技能和水平的提高依靠科学的培训,现实的情况往往无法不断提供大震巨灾的模拟训练环境,而虚拟仿真技术可以构建出逼真的虚拟震灾场景和救援废墟环境。不同规模的虚拟地震灾场,能让救援队员了解严酷的真实救援环境,并可根据具体虚拟废墟开展救援策略和方法的研讨。由此可见,开展灾场模拟和虚拟仿真训练系统对救援训练来说,具有极其重要的现实意义。本文对地震灾害场景仿真模拟技术与方法、地震救援虚拟仿真训练系统等开展初步的探索性研究。主要研究内容摘要如下:
     一、系统仿真的理论阐述
     从系统科学、建模理论及相似方法等角度出发,论述了系统仿真的理论基础,阐述了系统仿真的涵义、分类方法、研究过程、技术特性及适用范围等。为本文的研究奠定基本的理论基础。
     二、基于震害仿真模型的建立方法
     总结了多层砖房、钢筋砼框架结构及砖(土)木结构的典型震害特征,从大量震害图片中提取典型震害特征并进行Photoshop图形处理,建立典型震害特征图形库;应用外部建模软件3DSMax建立多层砖房、框架结构、砖(土)木结构的5个破坏等级的三维震害仿真模型,为本文地震灾场仿真模型提供了驱动的主体。
     三、建筑废墟的分类方法
     提出基于救援的建筑废墟分类方法,依据废墟的用途与功能将其分为现场救援废墟、救援训练废墟、救援演练废墟、救援仿真废墟、救援沙盘废墟等五类,并初步给出定义和基本内涵。为今后针对废墟的救援研究工作奠定了基础。
     四、地震灾害场景仿真模型
     确定了地震灾害场景仿真模型的研究目标,并依此给出了模型的功能组成和研究思路;阐明了地震灾害场景中的影响场是不限于特定地震地质背景的具有普遍意义的地震影响场估计,介绍了几种可用于本模型的震中烈度与震级关系模型、地震烈度圆形衰减模型,并按照等面积原则计算了96个已发生地震的烈度等效圆半径,建立数据库进行管理;提出以破坏等级为桥梁,基于震害预测方法的虚拟地震灾害场景内房屋震害状态与分布控制模型,通过数学方法推演完成了153个历史地震的几类结构的震害矩阵,并建立数据库进行管理。
     五、地震灾害场景仿真生成系统
     利用计算机仿真技术,编程实现了地震灾害场景仿真模型,开发了虚拟地震灾害场景仿真生成系统;通过系统的想定参数设置,系统生成了设定地震的虚拟灾场,模拟了随影响场的空间分布、不同房屋结构不同震害的空间分布特征;系统生成的灾场环境逼真,验证了地震灾害场景仿真模型的可靠性,体现了震害三维仿真模型的逼真效果;系统支持在虚拟灾害场景中添加房屋震害模型,并实现了基于碰撞检测的废墟再修改和生成系统,扩展了系统的功能。
     六、地震救援虚拟仿真训练系统
     总结了地震救援行动的原则和方法,着重阐述了营救行动的多个业务模型;主要介绍了地震救援虚拟仿真训练系统的功能设计、整体设计、结构组成及训练想定、系统结构、仿真资源的管理、虚拟人的控制,操作子系统的基本功能等。
Practice has proved that Earthquake Emergency Rescue is one of the keymeasures of Earthquake prevention and Disaster Reduction;it is a necessarygovernment behavior to reduce the casualties after earthquake in the maximaldegree.‘Scientific Rescue’is an important conception of modern rescue,andthat how to ensure‘Double Safety’,safety of both survivals and rescuers,isthe most important concern in the rescue action.The improving of Rescueskills and levels needs scientific training,and yet the simulative trainingenvironments usually cannot be provided in the practice,while the livingsimulative earthquake disaster scenes and ruins environments can bepresented by Virtual Simulation Technology.Simulative earthquake disasterspots of different scales can make rescuers understand the rigorousness ofthe actual rescue environments efficiently,and based on the concretesimulative ruins,the rescue strategies and methods can be developed.So,there is an extremely important practical significance to develop the system ofearthquake disaster scene simulation and virtual simulation training for rescuetraining.The preliminary exploratory study of simulative skills and method ofearthquake disaster scenes and Virtual Simulation Training System ofEarthquake Rescue is presented in this paper.And the main research contentsare as follows:
     (1).Theoretical Explanation to System Simulation
     From the point of view of System Science,Modeling Theory andSimilarity Method etc,this paper has discussed the theoretical basis of SystemSimulation,and described the meaning,classification method,researchprocess,technical characteristic and application scope etc,which laid abasic theoretical foundation of the research in this paper.
     (2).Establishing Method of Simulation Model Based on Seismic Damage
     Typical seismic damage characteristics to multistory masonry building,reinforced concrete frame structure and brick-wood (brick-and-clay) structurehave been summarized.Using software,Photoshop image processing,typicalseismic damage characteristics have been extracted from lots of seismicdamage pictures.And Graphic Library of typical seismic damagecharacteristic is established with Photoshop.3-d simulation model ofearthquake damage with five damage grades of multi-storey brick building,frame structure and brick-wood (brick-and-clay) structure is established,using external modeling software 3DSMax,which provides the driven subject ofsimulation model of earthquake disaster scene.
     (3).Classification Method of Building Ruins
     Classification method based on rescue building ruins is proposed.According to the use and function of ruins,they are classified into five kindsas follows:site rescue ruin,rescue training ruin,rescue practicing ruin,rescuesimulation ruin and rescue sand table ruin,definitions and basic intensions aregiven at the same time,which establishes the foundation for rescue research inruins in the future.
     (4).Simulation Model of Earthquake Disaster Scene
     The research objective of simulation model of earthquake disaster sceneis determined and the functional composition,the research thought of themodel are given based on the objective.In the paper it clarifies that theinfluence field in earthquake disaster scene is a general earthquake influencefield estimation that without the limit of specific seismogeologicalbackground,and introduces several relationship models of the epicentralintensity and the magnitude and circular attenuation models of earthquakeintensity which can be used to this model.The radius of equivalent circle of96 historic earthquake intensities are calculated according to the equal areaprinciple and the database is established in this paper.As the damage grade abridge,the model of the earthquake damage states of buildings in virtualearthquake disaster scene and the model of Distributed Control are presentedbased on seismic damage prediction method.The seismic damage matrix ofseveral structures in 153 historical earthquakes is deduced by mathematicmethod and the database is established.
     (5).Simulation Generation System of Earthquake Disaster Scene
     Using computer simulation technology,the simulation model ofearthquake disaster scene has been programmed and the simulation generationsystem of virtual earthquake disaster scene exploited.Given a parametersetting,the system has generated virtual disaster scene of scenario earthquakeand simulated spatial distribution characteristic of different earthquakedamages with spatial distribution of influence fields and different buildingstructures.The verisimilitude of disaster scenes generated by the system hasverified the reliability of the simulation model of earthquake disaster scene,which reflects true-to-life effect of 3-d simulation model of earthquakedisaster.The system supports to add building damage models to virtualearthquake disaster scene,and the system of ruin remodification and regeneration is realized based on collision detection has been implemented andfunctions of the system extended.
     (6).Virtual Simulation Training System of Earthquake Rescue
     The principles and methods of earthquake rescue are summarized andsome rescue models are emphatically described.This paper mainly introducesthe function design,whole design,structure composition of the virtualsimulation training system of earthquake rescue,and training scenario,systemstructure,management of simulation resources,the control of virtual human,basic functions of operation subsystems,ect.
引文
[1]中国地震局地震现场应急工作队,2008年5月12日四川省汶川8.0级地震灾害损失评估报告[R].
    [2]中国地震局救援办公室.地震紧急救援工作体系建设专题报告[R].2002年8月14日.
    [3]徐德诗,王恩福主编.地震灾害紧急救援技术[M].地震出版社.
    [4]中国国际救援队.国家地震灾害紧急救援队工作手册(内部).2005年8月.
    [5]《国家突发公共事件总体应急预案》2006年1月.
    [6]黄金印,巩玉斌.消防部队化学事故应急救援预案的制定与演习[J].武警学院学报,2001,17(5):15-17
    [7]刘茂,朱坦,赵国敏.城市公共安全应急救援系统的研究[J].中国发展,2003,(4):13-16
    [8]王东明,张华,徐永志.地震应急处置推演训练系统研究[J].自然灾害学报.2008,17(4):137-142
    [9]张茂军 虚拟现实系统[M].北京:科学出版社,2001.
    [10]汪成为,高文,王行仁,灵境(虚拟现实)技术的理论、实现及应用[M].清华大学出版社,广西科学技术出版社,1996
    [11]胡晓峰,司光亚,吴琳,张国春,战争模拟引论[M].国防大学出版社,2004
    [12]沈毅力,曹阳,李天石,地震环境虚拟现实系统研制[M].系统仿真学报.2002.14(11):1509-1512.
    [13]肖田元,张燕云,陈加栋,系统仿真导论[M].清华大学出版社,2000
    [14]Ledin Jim,仿真工程[M].机械工业出版社,2003
    [15]黄柯棣等,系统仿真技术[M].国防科技大学出版社,1998
    [16]胡晓峰,李国辉,多媒体系统[M].人民邮电出版社,1998
    [17]郭齐胜,董志明,李亮等编著.系统建模与仿真[M].国防工业出版社.2007.7.
    [18]吕德峰,陈东林.浅谈装备保障性工程中的建模仿真技术[J].装备指挥技术学院学报.2005年.
    [19]盖建民.“模型化”思维论析.科学技术与辩证法[J].2001年.
    [20]沈朝勇,金建敏.底部框架砖房试验研究及理论分析.国外建材科技.2005年.
    [21]丰彪.基于PC机的视景仿真技术与房屋震害演示系统[D].中国地震局工程力学研究所工学硕士论文.2003.
    [22]石根华.数值流形方法与非连续变形分析.[M]裴觉民译.北京:清华大学出版社,1997,1-14.
    [23]康凤举,杨惠珍,高立娥等编著.现代仿真技术与应用[M].国防工业出版社.2008.2.
    [24]鲍虎军.中国基础科学.科学前沿[J].2003.3:26-32.
    [25]姜学智,李忠华.国内外虚拟现实技术的研究现状[J].辽宁工程技术大学学报.2004.4.23(2):239-240.
    [26]吴迪,黄文骞,虚拟现实技术的发展过程及研究现状[J].海洋测绘.2002.11.22(6).
    [27]基于ArcGIS和3DS Max房屋震三维可视化方法研究——以砖平房震害为例[D].中国地震局地质研究所工学硕士论文.2006.
    [28]胡少卿.建筑物的群体震害预测方法研究及基础设施经济损失预测方法探讨[D].中国地震局工程力学研究所工学博士论文.2007.
    [29]马宗晋,叶洪.2004年12月26日苏门答腊——安达曼大地震构造特征及地震海啸灾害[J].地学前缘.2005年第1期.
    [30]王亚勇.工程抗震展望——寄语2000年[J].工程抗震.2000.3.第1期:3-6.
    [31]王东明.地震现场建筑物安全性鉴定智能辅助决策系统[D].中国地震局工程力学研究所工学硕士论文.2003.
    [32]GB/T 18208.3—2000地震现场工作第3部分:调查规范.
    [33]袁一凡.直接损失评估教材[M].地震出版社.
    [34]王东明,丁世文,苗崇刚.对甘肃民乐——山丹6.1级地震震害的几点认识.自然灾害学报[J].2004.13(3):122-126.
    [35]孙柏涛,王东明.从阿尔及利亚地震结构震害看我国闽南地区结构的抗震能力[J].地震工程与工程振动,2004,24,(6):63-67.
    [36]胡庆昌.1995年1月17日日本阪神大地震中神户市房屋结构震害简介[J].建筑结构学报,1995.6,16(3):10-12.
    [37]汤统壁,吴从晓,聂一恒,周云.江西九江地震砌体结构震害分析[J].广州大学学报(自然科学版).2006,5(6):77-80.
    [38]贺秋梅,李方杰,吕红山,鄢家全,李小军.宁洱6.4级地震房屋建筑震害调查与分析[J].震灾防御技术.2007,2(3):279-284.
    [39]葛学礼,黄世敏,薛彦涛等.汶川地震都江堰市工程震害分析与恢复重建建议[J].工程抗震与加固改造.2008,30(4):2-10.
    [40]唐丽华,尹力峰.新疆巴楚-伽师6.8级地震房屋建筑震害原因浅析[J].内陆地震.2003,17(2):167-168.
    [41]王锡财,杨继恩,非明伦.澜沧一耿马地震民用建筑震害[J].地震研究.1992,15(3):309-310.
    [42]李宏男,肖诗云,霍林生.汶川地震震害调查与启示[J].建筑结构学报.2008,29(4):10-19.
    [43]李小军,曲国胜,张晓东.2005年巴基斯坦北部7.8级地震灾害调查与分析[J].震灾防御技术,2007,2(4):354-362.
    [44]卢永坤,曾应青,周光全,非明伦,陈坤华.2007年宁洱6.4级地震震害综述[J].地震研究,2007,30(4):364-372.
    [45]解丽,非明伦,卢永坤.2007年宁洱6.4级地震建(构)筑物震害特征[J].地震研究,2007,30(4):375.
    [46]李树祯.地震灾害评估[M].地震出版社,1996.
    [47]刘恢先.唐山大地震震害(第四册)[M].地震出版社,1986.
    [48]孙柏涛,孙福梁,李树祯,等.包头西6.4级地震震害四[M].中国科学技术出版社,2000
    [49]那向谦,周锡元,刘志刚.云南澜沧、耿马地展中建筑物的展害调查[M].建筑结构学报,1991,12(4):64-70.
    [50]杨玉成,杨柳,高学云,等.多层砖房的地震破坏和抗裂抗倒设计[M].地震出版社,1981
    [51]彭晓军,李焱,贺汉根.3DS模型在虚拟现实几何建模中的应用[J].计算机仿真.2003,20(3):52-54.
    [52]翟旭峰,朱杰杰,潘志庚.3dsMAX建模及其在虚拟现实中的应用[J].计算机仿真.2004,21(4):94-97.
    [53]廖振鹏、李大华、孙平善,中国地震烈度衰减的概率模型[R].1987.
    [54]陶夏新,椭圆衰减模型,中国科学院工程力学研究所研究报告[R].1982.
    [55]胡聿贤,地震工程学(第二版)[M].地震出版社,2006.
    [56]刘恢先,关于地震烈度及其工程应用问题[J],地球物理学报,Vol.21,No4,1978.
    [57]高德潜.地震烈度衰减规律研究现状综述[J]国际地震动态,1988,(04):1-3.
    [58]鲍霭斌,我国各地震区的烈度衰减规律[J].工程抗震与加固改造,1984,(03):1-3.
    [59]中国科学院工程力学研究所,等震线图与震级的统计关系[R],1977.
    [60]陈达生,刘汉兴.地震烈度椭圆衰减关系[J].华北地震科学,1989,7(3):31-41.
    [61]周克森.地震危险性分析与概率设定地震及其在城市震害预测中的应用[A].第七届全国地震工程学术会议论文集[C].北京:地震出版社,2006:235-243.
    [62]胡聿贤主编.地震安全性评价技术教程[M].地震出版社,1999.
    [63]李杰.区域性防灾系统研究的总体思路[J].郑州工学院学报.1990年3期.
    [64]李杰,宋建学.地震灾场的模拟控制问题研究.(I)地震灾场模拟[J].地震工程与工程振动.1996,16(2).
    [65]左惠强,谢礼立,Borcherdt,R D.设定地震影响场的GIS模拟[J].地震学报,1999,21(4):427-432.
    [66]李小军.对近年大震震害现象与工程地震问题研究的思考[J].国际地震动态,2001,7(8):26-32.
    [67]朱煌武.突发性地震灾害危机的预警和应急管理机制[J].灾害学,2004(1):78-82
    [68]郭增建,陈鑫连主编.城市地震对策[M].北京:地震出版社,1991.
    [69]尹之潜,等.震害与地震损失的估计方法[J].地震工程与工程震 动,1990,10(1).
    [70]冯启民、高惠瑛.水系统震害预测专家系统[J].地震工程与工程振动,2000,20(3):67-75
    [71]朱煌武等.合肥市防震减灾计算机信息管理系统[J].自然灾害学报,2000,9(3):59-63.
    [72]陈顒,震灾模拟仿真系统[J].国际地震动态.2000年02期.
    [73][日]滕五晓等编著.日本灾害对策体制[M].中国建筑工业出版社,2003.
    [74]阮经宜.关于地震影响场定量法的探索[J].华南地震,1984,4(2):65-70.
    [75]刘锡荟,陈一平,张卫东,汪培庄.建筑物震害预测的落影贝叶斯原理的应用[J].地震工程与工程振动,1985,(01).
    [76]杨玉成.豫北安阳小区现有房屋震害预测[J].地震工程与工程振动,1985,(03).
    [77]钟德理,冯启民.基于地震动参数的建筑物震害研究[J].地震工程与工程振动,2004,(05).
    [78]尹之潜,李树桢,杨淑文.单层工业厂房震害估计方法[J].地震工程与工程振动,1987,(04).
    [79]王立功.以徐州为例初探城市社会因素地震易损性分析[J].地震学报,1985,(01).
    [80]尹之潜,李树桢,杨淑文,赵直.震害与地震损失的估计方法[J].地震工程与工程振动,1990,(01)
    [81]金国梁,齐洪波,郭纲平.老旧民房地震破坏预测的方法[J].工程抗震与加固改造,1985,(02)
    [82]王安生,丁伯阳.砖筒水塔的震害预测公式[J].工程抗震与加固改造,1990,(02)
    [83]孙增寿,李金修,陈淮.工业设备震害的概率预测方法研究[J].世界地震工程,1994,(02).
    [84]陶正如,陶夏新.基于地震动参数的建筑物震害预测[J].地震工程与工程振动,2004,(02)
    [85]国家地震局灾害防御司译.未来地震的损失估计方法[M].北京:地震出版社,1991.
    [86]陈有库.城镇地区群体震害预测——快速法[D].中国地震局工程力学研究所硕士学位论文.哈尔滨:中国地震局工程力学研究所图书馆,1990.
    [87]陈德彬,高小旺.内框架房屋震害预测方法[A].第三届全国地震工程会议论文集[C].1990:1821-1826.
    [88]国家地震局,国家统计局,中国大陆地震灾害损失评估汇编(1990-1995)[M].北京:地震出版社,1996
    [89]中国地震局监测预报司,中国大陆地震灾害损失评估汇编(1996-2000)[M].北京:地震出版社,2001
    [90]尹之潜,李树桢,赵直,杨淑文,地震灾害预测与地震灾害等级[J].中国地震,1991,7(1):9-19
    [91]尹之潜,地震灾害及损失预测方法[M].北京:地震出版社,1996.
    [92]盛骤等主编,概率论与数理统计[M].北京:高等教育出版社,1989.
    [93]尹之潜,建筑物地震易损性矩阵建立[R].中国地震局工程力学研究所研究报告,1995.
    [94]苗崇刚,地震灾害损失评估[J].自然灾害学报,2000,9(2):105-108
    [95]汤泉,我国近期地震灾害经济损失特征研究[R].灾害学,1994,9(4):35-39
    [96]张祖勋,张剑清.数字摄影测量学[M].武汉大学出版社,1997.1
    [97]徐青,地形三维可视化技术[M].测绘出版社,2000
    [98]吴家铸,党岗,刘华峰,程志全,阳明,视景仿真技术及应用[M].西安电子科技大学出版社,2001.7
    [99]Richard S.Wright,Jr.Michael Sweet,OpenGL超级宝典[M].人民邮电出版社,2001.6
    [100]汤国安,垄键雅.数字高程模型地形描述精度量化模拟研究[J].测绘学报,2000.11
    [101]彭群生,鲍虎军,金小刚,计算机真实感图形的算法基础[M].科学出版社,1999.6
    [102]鲍虎军,金小刚,彭群生,计算机动画的算法基础[M].浙江大学出版社2000.12
    [103]徐德诗,黄建发.我国地震应急与救援发展的思考[J].国际地震动态,2006,10.
    [104]张跃.土木工程中的虚拟现实技术[N].科技日报,1997年6月23日.
    [105]彭斌,顾祥林,苗吉军,张伟平.砌体结构倒塌反应的图形仿真技术[J].同济大学学报(自然科学版).2004年10月.第32卷第10期
    [106]倪强,唐家祥.框架结构地震倒塌过程的多媒体视景系统研制[J].工程力学.2000.8.17卷第4期
    [107]陶亮.3D火灾逃生模拟系统设计与实践[J]沈阳农业大学学报(社会科学版),2007—10,9(5):779-782.
    [108]焦双健,冯启民,付长文.钢筋混凝土框架结构地震破坏的计算机模拟方法[J]地震工程与工程振动,2002,(02).
    [109]吴炜煜,张士纲.建筑工程多媒体仿真系统的研制与应用[J].清华大学学报,1999,39(10):104-107.
    [110]赵锋雷.基于离散单元的钢筋混凝土框架结构地震倒塌仿真分析[D].同济大学土木工程学院.2008.
    [111]吴家铸.视景仿真技术及应用[M].西安:西安电子科技大学出版社,2001.
    [112]王泳嘉.离散单元法及其在岩石力学中的应用[M].沈阳:东北大学出版社,1991.
    [113]吴炜煜,张士纲.建筑多媒体仿真系统的研制和应用[J].清华大学学报(自然科学版),1999,39(1):29-34.
    [114]吴炜煜.多媒体计算机辅助技术在土木工程领域的新近展[J].土木工程学报.2000,33(1):1-4.
    [115]江见鲸.工程结构计算机仿真分析[M].北京:清华大学出版社,1996.1-2.
    [116]张希黔.上海正大广场钢结构吊装施工方案虚拟仿真系统[J].施工技术.2000,29(8):9-11.
    [117]顾祥林.混凝土结构的计算机仿真[M].上海:同济大学出版社,2002.
    [118]黄定义,谢步瀛.建筑裂缝的图形仿真[J].计算机辅助工程,2000,(1)::5-10.
    [119]赵振东,林均歧.桩贯入地基过程的动画仿真[J].地震工程与工程振动,1996,16(4):104-113.
    [120]丁大均.现代混凝土结构学[M].北京:中国建筑工业出版社.2000.
    [121]MasonWoo,Jackie Neider,Tom Davis,Dave Shreiner,OpenGL Programeing Guide,SiliconGraphic
    [122]International Search and Rescue Advisory Group,Office for the Coordination of Humanitarian Affairs.UN Guidelines for international search and rescue responselAdvance Copy.1999.
    [123]X.Shen,R.Hage and N.D.Georganas,“Agent-aided Collaborative Virtual Environments over HLA/RTI”,Proc.IEEE/ACM Third International Workshop on Distributed Interactive Simulation and Real Time Applications(DI S-RT'99),Greenbelt MD,Oct.1999
    [124]J.C.Oliveira,X.Shen and N.D.Georganas,Collaborative Virtual Environment for Industrial Training and e-Commerce,Proc.Workshop on Application of Virtual Reality Technologies for Future Telecommunication Systems,IEEE Globecom'2000 Conference,Nov.-Dec.2000,San Francisco.
    [125]Approved Draft1516.1-2000 IEEE Standard for Modeling and Simulation(M&S)High Level Architecture(HLA)-Federate Interface Specification.http://standards.ieee.org/catalog/simint.html
    [126]Approved Draft 1516.2-2000 IEEE Standard forModeling and Simulation(M&S)HighLevelArchitecture(HLA)-ObjectModelTemplate(OMT)Specificati on http://standards.ieee.org/catalog/simint.html
    [127]Naylor T H,et al.Computer Simulation Techniques,New York:John Wiley & Sons,1966
    [128]Shannon R E,System Simulation the Art and Science,New Jersey:Prentice-Hall,1975
    [129]Carolina Cruz-Neira,Overview of Virtual Reality Systems,Proc.of ACM SIGGRAPH,1993
    [130]Singhal,S,Zyda,M.,Networked Virtual Environments.Addison-Wesley,New York,NY,1999.
    [131] Greenhalgh, C.,Benford,S., "Boundaries, Awareness, and Interaction in Collaborative Virtual Environments. " Proceedings of the IEEE Sixth InternationalWorkshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET-ICE), pp. 193 - 198. IEEE Computer Society, Cambridge, MA, June 1997.
    [132] Stone G F, McGinnis M L. Building scenarios in the next generation of simulations [J]. Systems, Man, and Cybernetics, 1998 IEEE International Conference on, 1998, 4:3652-3657. Sydac Homepage. www.Sydac.com
    [133] H, ZHAO, N. D. Georganas, HLA Real-Time Extension, Simulation Interoperability Workshop, Fall, 2001. H, ZHAO, N. D. Georganas, Enabling Technologies for Real-Time Distributed Simulation, Simulation Interoperability Workshop, Fall, 2001.
    [134] J.G.Anderson, on the Attenuation of Modified Mercalli Intensity With Distance in the United States, BSSA, Vol.68, No4. 1978.
    [135] AlexH Barbat, Fabricio YeDez Moya, Jose A Canas. Damage scenarios simulation for seismic risk assessment in urban zones [J]. Earthquake Spectra, 1996, 12(3):58-67.
    [136] Applied technology council-ATC13-earthquake damage evaluation data for California [R]. 1985.
    [137] Federalemergency management agency and national institute of building sciences-earthquake lori estimation methodologyHAZUS99-technical manual[R]. 1999.
    [138] Stone G F, McGinnis M L. Building scenarios in the next generation of simulations [J]. Systems, Man, and Cybernetics, 1998 IEEE International Conference on, 1998, 4: 3652-3657
    [139] Sydac Homepage. www.Sydac.com
    [140] http://hcilab. uniud. it/earthquake/, Virtual Reality simulation of the Friuliearthquake.
    [141] DMSOlHigh Level Archi tecture Federation Development and Execution Process(FEDEP) MODEL (Version 115) [ EB/ 0L ] . http :/ / wwwlhla dmsolmil ,19991
    [142] DoD Directive 5000. 59 - P. Modeling and Simulation (M &S) Master Plan [EB/ 0L]. Http: / / wwwldmso. mil ,1995
    [143] R. W. Lindeman, J. N. Templeman, J. L. Sibert, J. R. Cutler, Handling of Virtual Contact in Immersive Virtual Environments: Beyond Visuals, Virtual Reality (2002) 6:130-139.
    [144] Dias J M S, Galli R, Carlos A., mWorld:A Multiuser 3D Virtual Environment, IEEE Computer Graphics and Applications, March-April 1997:55-65.
    [145] Grigore Burdea, Philippe Coiffet, Virtual Reality Technology, John Wiley&Sons, Inc, 1994.
    [146] Chris Greenhalgh, Steven Benford, MASSIVE: A Collaborative Virtual Environment for Teleconferencing, ACM Transaction on Computer-Human Interaction, Sept 1995, 2(3):239-261.
    [147] Joseph L. Gabbard, Deborah Hix, J. Edward Swan Ⅱ, "User-Centered Design and Evaluation of Virtual Environments" , IEEE Computer Graphics and Applications, November/December 1999, pp. 51-59.
    [148] Stytz M R., Distributed Virtual Environments, IEEE Computer Graphics and Applications, May 1996:19-31.
    [149] Tolga K. Capin, etc, Virtual Human Representation and Communication in VLNet, IEEE Computer Graphics and Applications, March-April 1997.
    [150] Hoppe H, DeRose T et al. Surface reconstruction from unorganized points .Computer Graphics, 1992,262, 26(2):71-78.
    [151] Hummel R A. Feature detection using basis functions .Computer Graphics and Image Processing, 1979, 91, 9(1):40-55.
    [152] Liu H K. Two and three dimensional boundary detection . Computer Graphics and Image Processing, 1977, 62, 6(2):123-134.
    [153] Chaviaropoulons P K. Development of a state-of -the-art aeroelastic simulator for horizontal axis wind turbines .Wind Engineering, 1996,206, 20(6) :405-421 .
    [154] Miller J V et al. Geometrically deformed models: a method for extracting closed geometric models from volume data . Computer Graphics, 1991, 254, 25(4): 217-226.
    [155] Bryson. Virtual reality in scientific visualization .Communications of the ACM, 1996,375, 37(5): 62-71. [156] Wiliam F. Cofer, Documentation of strengths and weaknesses of current computer analysis methods for seismic performance of reinforced concrete members[R].Nov, 1999.
    [157] Sashi K. Kunnath, Andrei M. Reinhorn and Young J. Park. Analytical modeling of inelastic seismic response of R/C structures [J].SE, ASCE, Apr, 1990.
    [158] P. S. Skjrbk, Sr. K. Nielsen, P. H. Kirkegaard andA. S. Cakmak, Damage localization and quantification of earthquake excited RC-frames[J].EESD 27, 1998, 903-916.
    [159] Angelo D' Ambrisi and Filip C. Filippou, Correlation studies on aan RC frame shaking-table specimen [J].EESD 26, 1997, 1021-1040.
    [160] Bedard C. Composite reinforcing bars: assessingtheiruse in construction [J]. Concrete International, 1992, 14(1):55?92.
    [161] Turk. Object-orientedmodelingofdesignsystemforRCbuilding[J]. Journalo fComputinginCivilEngi-neeringASCE, 1994, 18(4):436-453.
    [162] Phillips D V. Finite element non -linear analysis ofconcrete structures [A]. Proceedings, thelnstitutionofCivilEngineers, Part2[C].March, 1976. 59-58.
    [163] http://opensees. berkeley. edu/OpenSees/home/about. php [164] http://nees. buffalo. edu/projects/NEESWood/
    [165] Sydac Homepage, www. Sydac. com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700