用户名: 密码: 验证码:
几种合金熔体的不均匀性及其特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大量的研究发现,液态金属在不同的条件下表现出不同的结构、状态和性质,而作为初始状态的液相又与金属的最终凝固组织存在着密切的联系。这使得原本属于凝聚态物理领域的液态金属研究逐步被铸造和冶金工作者所重视。
     研究表明,很多合金熔体中存在着不均匀现象,而且表现为多种形式,例如,存在于升温过程中的亚稳不均匀现象;难混溶合金的液相分离现象;某些熔体中稳定存在着原子间化学作用强烈的原子团簇,使得熔体处于微观不均匀状态。在实际过程当中,这些不均匀现象对合金的熔炼和制备具有不可忽视的影响,因此进一步揭示熔体的各种不均匀现象及其特点具有重要的理论和实际意义。本文通过熔体的物理性质测试,对几种合金熔体的不均匀现象展开了以下研究:
     1.合金熔体在升温过程中的亚稳不均匀现象
     采用熔体电阻率测试装置,测量了Bi-Ga偏晶体系熔体在升降温过程中的电阻率。结果显示,熔体的电阻率在升温过程中出现异常变化,而在降温过程中与温度呈线性关系。分析表明,不混溶区间外成分的Bi-Ga合金熔体在升温过程中存在着亚稳微观不均匀现象,固态组织中一些富Bi或富Ga的微区由于分解的滞后被遗传到了熔体中。这种现象归因于该类合金熔体中同类原子间的结合力高于异类原子间的结合力,以及两组元元素间存在较大的密度差。微区的成分取决于合金熔体的成分。进一步升温导致微区的分解,使得熔体从微观不均匀状态向均匀状态过渡,在降温过程中表现为不可逆。
     难混溶Bi33.3Ga66.7合金熔体在升温至液相分离温度以上依然存在着明显的不均匀现象。通过等温电阻率测试,研究了该合金熔体的等温均匀化过程,基于熔体电阻率在等温过程中的变化特点,推导了描述熔体等温均匀化过程的半经验关系式,也即熔体中第二相液滴体积与等温时间的关系:
     通过该关系式分析发现,不均匀熔体中第二相Ga液滴在573 K以下具有较大的尺寸,尺寸越大,其受到由密度差引起的浮力越大,浮力明显阻碍了扩散过程,使得熔体均匀化需要较长的时间。而升温至673 K以上时,第二相液滴尺寸突然减小,浮力对扩散的阻碍作用明显降低,随着等温温度的继续提高,熔体均匀化所需的等温时间近线性缩短。
     研究了Sn对Bi33.3Ga66.7合金熔体中亚稳不均匀现象的影响。发现Sn的添加减小了熔体中第二相液滴的尺寸,降低了液滴与基体熔体间的界面张力,从而降低了不均匀现象的稳定性和缩短了等温均匀化所需时间。Sn的作用在573 K的较低温度下更为明显。
     2.难混溶合金的液相分离现象研究
     通过电阻率测试研究了Bi33.3Ga66.7合金熔体的液相分离现象,并着重研究了Sn、In对难混溶Bi33.3Ga66.7合金熔体液相分离的影响。结果显示,Sn能够降低Bi33.3Ga66.7合金熔体的液相分离温度、偏晶反应温度、不混溶区间的宽度,从而减弱合金熔体的液相分离趋势;In的添加提高了Bi33.3Ga66.7合金熔体的液相分离温度,降低了偏晶反应温度,增宽了不混溶区间的宽度,也即In加剧了合金熔体的液相分离趋势。
     通过热力学计算,分析了添加元素与难混溶合金各组元的混合行为。根据计算结果分析不同添加元素对液相分离的影响机理发现,当添加元素与难混溶合金的各组元均呈现自配位倾向时,该添加元素能够提高难混溶合金各组元间的互溶度,从而减弱合金的液相分离趋势;当添加元素与难混溶合金的一组元呈现自配位倾向而与另一组元呈现异配位倾向时,该添加元素降低了难混溶合金各组元间的互溶度,从而增强了合金的液相分离趋势。
     3.合金熔体中的原子团簇结构
     测量了有化合物形成倾向的In-Bi体系合金熔体的电阻率,发现熔体的电阻率在升降温过程中具有较好的一致性,说明该类熔体在升温过程中不存在类似于Bi-Ga偏晶体系熔体中的亚稳不均匀现象。但是,基于Nordheim定律的电阻率分析进一步证实了In-Bi熔体中稳定存在着化学结合较强的InBi类型原子团簇,说明In-Bi熔体不是理想的均匀熔体,熔体处于热力学稳定的微观不均匀状态。通过电阻率数据,估算了熔体中InBi类型原子团簇在不同温度下的含量,发现InBi原子团簇的摩尔分数×lnBi与温度T呈现如下经验关系:
     在降温至熔点以上不太高的温度处,In50Bi50熔体中的InBi原子团簇含量达到较高值,表现出明显的浓度起伏,导致熔体的电阻率正偏离于高温下的线性关系。
     根据熔体的电阻率特点,推断In-Bi体系熔体的结构特点为:在0-50 at.%In的成分区间内,熔体表现为InBi类型的原子团簇分布在近Bi性质的基体中;在50 at.%-100 at.%In的成分区间内,熔体的结构特点为InBi类型的原子团簇分布在近In性质的基体中。
     初步探讨了合金熔体电阻率与热力学性质间的关系发现,熔体的剩余电阻率Δρ与|ΔHmΔSm|存在着一定联系。对于673 K下的In-Bi体系熔体,通过计算分析获得Δρ与|ΔHmΔSm|的关系如下:
     采用高温熔体黏度仪测量了Al-12 wt.%Sn-4 wt.%Si合金熔体在降温过程中的黏度,发现熔体的黏度在1103 K和968 K处出现异常增大,计算表明熔体的流团尺寸和黏流激活能也伴随着突然增大。分析认为,在降温至1103 K-1138 K温度间隙时,熔体中Si-Si和Sn-Sn原子团簇迅速长大;在降温至968 K-998 K温度间隙处,熔体中的Si-Si原子团簇可能出现较大幅度的增长。依据熔体中原子团簇的变化特点,对合金熔体进行激冷处理,结果显示,熔体激冷处理工艺能够将高温熔体中较小的原子团簇保留到浇注温度,从而产生较深的过冷,进而细化了合金凝固组织。
A great number of investigations indicate that the structure, state and nature of liquid metal vary with the condition and correlate tightly to its as-cast structure. So, the studies on liquid metal are becoming popular for foundrymen and metallurgists which have ever been topics only in field of condensed matter physics. A popular result is that many alloy melts are in heterogeneous state in various manners. Such as, the metastable heterogeneity in heating process, the liquid phase separation of immiscible alloy, stable atom clusters formed in melt which make the melt in microheterogenous state. It should be stressed that the influence of heterogeneity in melts on the fabrication of alloy can not be neglected. So it is of great significance to further disclose the characteristic of heterogeneity in alloy melt. The works in present dissertation are carried out as follows:
     1. Metastable heterogeneity in alloy melts during heating
     The electrical resistivity of Bi-Ga melt during heating and cooling process was measured by resistivity measurement apparatus. The results show that the resistivity of miscible Bi-Ga alloy melt behaves anomalously with temperatue in heating process but linearly in cooling process, which indicates the existence of metastable microheterogeneity in melt during heating. Micro-domains enriched in Bi or Ga in solid state are retained to liquid state due to the relaxation of dissolution. This phenomenon is attributed to the more intensive bond between Bi-Bi and Ga-Ga than Bi-Ga, as well as the large density difference between Bi and Ga. The composition of micro-domains is found to depend on melt's composition. Further heating leads to the dissolution of micro-domains and the irreversible transition of melt from microheterogenous state to real homogeneous state.
     It is found that immiscible Bi33.3Ga66.7 melt is still in serious heterogeneous state even is heated up to far above phase separation temperature. Isothermal measurements of resistivity were carried out to study the homogenization process of immiscible alloy melt. Based on the characteristic of resistivity in isothermal process a semi-empirical formulation is established for the description of isothermal homogenization process of melt, i.e. the volume of second phase droplets in melt is written as a fuction of isothermal time:
     Discussions based on the formulation indicate that the second phase Ga droplets have large size in heterogeneous melt below 573 K, and the buoyancy greatly impedes the diffusion process, so the droplets present high stability. As the temperature goes up to 673 K, the size of droplets decrease sharply, then the influence of buoyancy on diffusion is feeble, so, with the increase of isothermal temperature the time need for homogenization decreaes nearly linearly.
     Through isothermal experiment, the influence of tin addition on the metastable heterogeneity in Bi33.3Ga66.7 melt was studied. It is found that tin addition decreases the size of second phase droplets, as well as the interface tension between droplets and matrix melt, as a result the stability of heterogeneity and the time need for homogenization is decreased. The effect of tin is more powerful at lower temperature 573 K.
     1. Study on phase separation of immiscible alloy melt
     The phase separation process of immiscible Bi33.3Ga66.7 alloy was studied through resistivity. Especially, the influence of tin and indium on phase separation of Bi33.3Ga66.7 alloy was investigated. The results indicate that tin addition weakens the phase separation tendency of melt through decreaing the phase separation temperature, monotectic reaction temperature and the width of immiscible gap. Contrarily, indium enhances the phase separation tendency by increasing the phase separation temperature and width of immiscible gap, as well as decreasing the monotectic reaction temperature.
     Based on thermodynamic calculation, the mixing behaviours of addition element with the components of immiscible monotectic alloy were discussed. Comparative analysis between the mixing behaviours of addition element with the components of immiscible alloy and its effect on phase separation shows that:the addition element which presents hetero-coordination tendency with one of the constituent of immiscible alloy but self-coordination tendency with the other could enhance the phase separation of immiscible alloy; The addition element which shows self-coordination tendency with both of the constituents of immiscible alloy could weaken the phase separation.
     The electrical resistivity of liquid In-Bi system was measured. The measured resistivity is well coincident in heating and cooling process, indicating that this liquid system does not contain metastable heterogeneity like that in liquid Bi-Ga system during heating. But, the analysis of resistivity of In-Bi melt based on Nordheim rule manifests the stable existence of InBi type atom clusters which make the melt in thermodynamically stable microheterogeneous state. The calculated mole fraction of InBi atom clusters at different temperature follows a good empirical relationship:
     As the temperature decreases to the vicinity of melting point, the content of InBi atom clusters in In50Bi50 melt attains to a large value leading to an apparent concentration fluctuation and discrepancy of resistivity of melt.
     The structural characteristics of liquid In-Bi system are deduced based on the characteristic of resistivity: in the composition interval 0-50 at.% In, the melt can be seen as InBi type atom clusters distributed in Bi-like melt; in the composition interval 50 at.%-100 at.% In, the melt can be seen as InBi type atom clusters distributed in In-like melt.
     Preliminary study on the correlation between resistivity and thermodynamic parameters was carried out. For liquid In-Bi system, a good relationship between△ρand |△Hm△Sm| is calculated as:
     The viscosity of A1-12 wt.% Sn-4 wt.% Si melt was measured by high-temperature viscometer. It is found that the viscosity increases anomalously at 1103 K and 968 K accompanied by the abrupt changes of size of fluid units and viscous activation energy. It is speculated that Si-Si and Sn-Sn atom clusters grow abruptly in the temperature interval 1103 K-1138 K, and Si-Si atom clusters may increase greatly between 968 K and 998 K. Melt chilling was carried out according to the above-mentioned characteristic of melt structure, and it is found that smaller atom clusters at high temperature can be retained to pouring temperature by chilling, which leads to deep undercooling of melt and hence refinement of solidification structure.
引文
[1]程素娟,秦绪波,李赛强.金属熔体中程有序结构的演化及其遗传性.科学技术与工程,2002,2(5):77-78.
    [2]边秀房,王伟民,李辉,马家骥,金属熔体结构.上海:上海交通大学出版社,2003.
    [3]边秀房,刘相法,马家骥,铸造金属遗传学.济南:山东科学技术出版社,1999.
    [4]Xiufang Bian and Weimin Wang. Thermal-rate treatment and structure transformation of Al-13 wt.% Si alloy melt. Materials Letters, 2000, (44):54-58.
    [5]HongSheng Chen, FangQiu Zu, Jie Chen, et al. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy. Science in China Series E: Technological Sciences, 2008,51(9): 1402-1408.
    [6]Q. Q. Sun, L. J. Liu, X. F. Li, F. Q. Zu, et al. A new understanding of melt overheating treatment of Sn-20 wt-%Sb from viewpoint of TI-LLST. Materials science and technology, 2009,25(1):35-38.
    [7]Yin F S, Sun X F, Yuan C et al. Effect of heat treatment on the microstructure and high temperature tensile properties of a cast nickel-base superalloy with high W, Mo and Nb contents. Trans Nonferrous Met Soc China,2002,12(1):83-87.
    [8]Sun X F, Yin F S, Li J G, et al. Solidification Behavior of a Cast Nickel-Base Superalloy. Acta Metall Sinica,2003, (39):27-29.
    [9]Yin Fengshi, Sun Xiaofeng, Hou Guichen, et al. Effect of Melt Overheating Treatment on the Solidification Segregation of M963 Cast Ni-Base Superalloy. Rare Metal Mater Eng, 2004, 33 (6):559-661.
    [10]Yuan C, Sun X F. Characteristics of high temperature rupture of a cast nickel base superalloy M963. J Mater Sci Techn,2001,17 (4):425.
    [11]F.S. Yin, X.F. Sun, H.R. Guan et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. Journal of Alloys and Compounds, 2004, (364): 225-228.
    [12]刘相法,AlTiB中间合金的遗传性研究,山东工业大学博士论文,1997.
    [13]Andre levi. The Iron Age,1927, (6), 960-964.
    [14]边秀房,铝合金的熔体结构及其遗传性研究,山东大学博士论文,2000.
    [15]V. Sklyarchuk, Yu. Plevachuk, S. Mudry, and I. Stec. Viscosity of liquid tellurium doped with 3D transition metals. J.Mol. Liq.,2005, (120),111-114.
    [16]Y. Kawakita and M. Yao. Short and long bonds in liquid tellurium. J. Non-Cryst. Solids,1999, (250-252):447.
    [17]Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych and B. Willersb. Electronic properties and viscosity of liquid Pb-Sn alloys. J. Alloys Compd.,2005, (394),63-68.
    [18]V. Filippov and P. Popel. Investigation of microheterogeneities in Ga-Pb melts by acoustic methods. J. Non-Cryst. Solids,2007, (353),3269-3273.
    [19]P.S. Popel, M. Calvo-Dahlborg and U. Dahlborg. Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy. J. Non-Cryst. Solids,2007, (353),3243-3253.
    [20]A.A. Vertman, A.M. Samarin, A.M. Yakobson, Izv. Akad:Nauk SSSR. Metallurgija i Toplivo, 1960,(3),17-22.
    [21]R. Kumar and C.S. Sivaramakrishnan. Structure and stability of liquid aluminium-zinc alloys. J. Mater. Sci.,1969, (5),4-8.
    [22]L A Zhukova, O P Aksyonova and A A Zhukov. Melts microheterogeneity in binary metallic systems having eutectic and monotectic transformations. Journal of Physics:Conference Series,2008, (98),032015.
    [24]Kita Y, Van Zytveld J B, Movrita Z, et al. Covalendy in liquid transition metal Si alloys. Condens Matter,1994, (6):811.
    [26]Sidorov V, Popel P, Calvo-Dahlborg M, et al. Heat treatment of iron based melts before quenching. Mater Sci Eng A,2001, (304-306):480.
    [27]Namkung J, Kim M C, Park C G. Mater Sci Eng A,2004, (375-377):1116.
    [28]Liang L H, Li J C, J iang Q. Physica B, Superheating thermodynamics of nanocrystals based on the interface effect.2002, (322):188-192.
    [30]王建华,易丹青.熔体过热处理对2618铝合金力!学性能的影响.机械工程材料,2002,26(9):22.
    [31]Ohmi T, Kudoh M. J J ap Inst Metals,1990,54 (6):700.
    [32]Qin Q D, Zhao Y G, Liang Y H, et al. Effects of melt superheating treatment on microstructure of Mg2Si/AI-Si-Cu composite J Alloys Compd,2005,399(1-2):106.
    [33]Haque M M, Ahmad F Ismail. Effect of superheating temperatures on microstructure and properties of strontium modified aluminium-silicon eutectic alloy. J Mater Process Techn, 2005, (162-163):312.
    [34]Wang Jun, He Shuxian, Mit suhiro Nishio. Grain refinement of Al-Si alloy (A356) by melt thermal treatment. J Mater Process Techn,2003, (141):29.
    [35]陈振华.Al-Si合金固液混合铸造中国有色金属学报,2000,10(3):349.
    [36]U. Dahlborg, M. Calvo-Dahlborg, P.S. Popel, et al. Structure and properties of some glass-forming liquid alloys. Eur.Phys. J,2000, B14:639-648.
    [37]F.C. Frank. Supercooling of liquids. Proc. Roy. Soc. London,1952, (A215):43-46.
    [38]D.R. Nelson, Order, frustration, and defects in liquids and glasses. Phys. Rev. B,1983, (28): 5515-5535.
    [39]秦敬玉.液态Al-Fe合金的微观不均匀结构研究.山东工业大学博士学位论文,1998.
    [40]Lucovsky G. Specification of medium range order in amphrous material. J Non-Crystalline Solids,1987,(97-98):155-158.
    [41]I. Kaban, Th. Halm, W. Hoyer. Structure of molten copper-germanium alloys. J. Non-Cryst. Solids,2001, (28):96-102.
    [42]I. Kaban a, W. Hoyer a, A. ll'inskii, et al. Temperature-dependent structural changes in liquid Ge15Te85. J. Non-cryst. Solids,2007, (353):1808-1812.
    [43]W. Hoyer, R Jodicke, Short-range and medium-range order in liquid Au-Ge alloys. J. Non-cryst. Solids,1995,(192-193):102-105.
    [44]S.N. Ohja. Metastable phase formation during solidification of undercooled melt. Mater. Sci. Eng. A,2001, (304-306):114.
    [45]A. Il'inskii, I. Kaban, Yu. Koval. On thermodynamic properties and atomic structure of amorphous and liquid alloys, J. Non-Cryst. Solids,2004, (345-346):251-255.
    [46]Toshio Itami, Hirokatsu Aoki, Takeru Shibata, Motoshige Ikeda, Koichi Hotozuka. The estimation of concentration fluctuations in liquid Ag-Si and Au-Si alloys. J. Non-Cryst. Solids,2007, (353):3011-3016.
    [47]H. Aoki, T. Shibata, T. Itami. Anomalous behaviours of the electrical resistivity of the melt of a typical III-V Ga-Sb system. J. Phys.:Condens. Matter,1999, (11):10315.
    [48]T. Itami, T. Masaki, K. Kuribayashi, et al. Microgravity conditions and electrical resistivity of liquid alloys with critical mixing. Int. J. Thermophys,1997, (18):447.
    [49]Motoshige Ikeda, Takeru Shibata, Hirokatsu Aoki, et al. The large concentration fluctuations in the liquid eutectic systems with deep eutectic points. J. Non-Cryst. Solids,2002, (312-314): 217-221.
    [50]H. Aoki, K. Hotozuka, T. Itami. The hidden structure in liquid IIIB-VB alloys. J. Non-Cryst. Solids,2002, (312-314):222-226.
    [51]G. Sivkov, D. Yagodin, S. Kofanov, et al. Physical properties of the liquid Pd-18 at.% Si alloy. J. Non-Cryst. Solids,2007, (353):3274-3278.
    [52]Y. Tsuchiya, S. Takeda, S. Tamaki, et al. Structural inhomogeneity and valence fluctuations in IIIb-Te liquid semiconductor. J. Phys. C Solid State Phys.,1982 (15):2561.
    [53]Y. Tsuchiya. Compressibility and Thermodynamics of the Structural Changes of Liquid In2Te3 and Ga2Te3. J. Phys. Soc. Jpn.,1988,57 (7):2425-2431.
    [54]Y. Kawakita, S. Takeda, M. Inui, et al. Structure and dynamical properties of liquid In2Te3. J. Non-Cryst. Solids,2002, (366):312-324.
    [55]M.V. Rovbo, E.E. Tretjakova, V.M. Matvejev, et al, in V.V. Zhuravlev (ed.), Surface and New Materials, Udmurth. University, Izhevsk, USSR,1990, p.92,
    [56]V.V. Makejev and P.S. Pope. ZH. Phys. Chim. (USSR),1990, (64):568.
    [57]P.S. Popel, E.L. Arkhangelsky and V.V. Makejev. Vysokotemp. Rasplavy (USSR),1995,(1): 85.
    [58]P.S. Popel, E.L. Presnyakova, V.A. Pavlov, E.L. Arkhangel'sky, Izv. Akad. Nauk SSSR. Metally.,1985, (2):53.
    [59]P.S. Popel, E.L. Demina, E.L. Arkhangel'sky, B.A. Baum. Teplofizika Vysokikh Temeperatur 1987,25(3):487.
    [60]O.A. Korzhavina, I.G Brodova, V.I. Nikitin, P.S. Popel, I.V. Polents. Rasplavy,1991, (1):10.
    [61]I.G. Brodova, P.S. Popel, V.O. Esin, E.L. Demina, I.V. Polents, A.I. Moisejev. Phys. Met. Metallogr.,1988,65(6):1149.
    [62]K.P. Bunin, Izv. Akad. Nauk SSSR.OTN,1946, (2):305.
    [63]I.V. Gavrilin, Izv. Akad. Nauk SSSR. Metally,1985, (2):66.
    [64]Jie Chen, Fang-Qiu Zu, Zhong-Yue Huang et al. Physics and chemistry of liquids,2009,47: 95-102.
    [65]JX.F.Li, F.Q.Zu, H.F.Ding, et al. Anomalous change of electrical resistivity with temperature in liquid Pb-Sn alloys. Physica B,2005,358:126-131.
    [66]F. Q. Zu, L. J. Guo, Z. G. Zhu, et al. Relative Energy Dissipation: Sensitive to Structural Changes of Liquids. Chin. Phys. Lett.,2002, (19):94.
    [67]F. Q. Zu, Y. Xi, R. R. Shen, et al. Effects of compound formation on liquid structure in Cu-Sn melts as a function of temperature. Phys. Chem. Liq.,2006, (44):543.
    [68]王广厚,团簇物理的新进展.物理学进展,1994,(14):15-65.
    [69]A. Il'inskii, S. Slyusarenko, O. Slukhovskii, et al. Mater. Sci. Eng. A,2001, (325):98.
    [70]J. Bletry. Geometrical models for liquid metals and alloys. Z Naturforsch,1978, (33a): 327-343.
    [71]Warren J Q Q. Concluding remarks. J. Non-Cryst. Solids,1996, (205-207):930-933.
    [72]滕新营.铁基合金的液态结构与物性研究.山东大学博士学位论文,2002.
    [73]G. Kahl, J. Hafner. The influence of medium-and long-range forces on the structure of liquid binary alloys. Phys. Chem. Liq.,1988, (17):267-277.
    [74]S.R. Elliott, Physics of amorphous materials, Longman, London and Newyork,1983
    [75]Steeb S, Hezel R. Z. Metallkd,1966, (57):374-378.
    [76]Y Waseda. The structure of Non-crystalline Materials. Newyork:McGRAW-GILL,1980.
    [77]O. Uemura,T. Satow, T. Yagihashi. Phys. Chem. Liq.,1978, (8):107.
    [78]Th. Halm, H. Neumann, W. Hoyer. Z. Naturforsch,1994, (49A):530.
    [79]I. Kaban, W. Hoyer. Interplay between atomic and electronic structure in liquid noble-polyvalent metal systems. J. Non-Cryst. Solids,2002, (312-314):41-46.
    [80]S.R. Elliott. Medium-range structural order in covalent amorphous solids. Nature,1991, (354):445-452
    [81]Cervinka L. Comments on medium-range order in metallic glasses. J. Non-cryst. Solids., 1993, (156-158):94-97.
    [82]Qin Jingyu, Bian Xiufang, Sliousarenko S I, et al. Journal of physics:Condensed Matter, 1998,(10):1211.
    [83]I. Kaban, W. Hoyer, A. II inskii, et al. Short-range order in liquid silver-tin alloys. J. Non-cryst. Solids,2003, (331):254-262.
    [84]V.I. Danilov, I.V. Radchenko. Zh. Exp. Teor. Fiz.,1937, (7):1158.
    [85]I. Kaban, W. Hoyer, A. Il'inskii, et al. Temperature-dependent structural changes in liquid Ge15Te85. J. Non-cryst. Solids,2007, (353):1808-1812.
    [86]I. Kaban, Th. Halm, W Hoyer. Structure of molten copper-germanium alloys. J. Non-Cryst. Solids,2001,288(1-3):96-102.
    [87]J. Brillo, A. Bytchkov, I. Egry, et al. Local structure in liquid binary Al-Cu and Al-Ni alloys J. Non-Cryst. Solids,2006,352 (38-39):4008-4012.
    [88]W. Hoyer, R. Jodicke. Short-range and medium-range order in liquid Au-Ge alloys. J. Non-Cryst. Solids,1995,(192-193):102-105.
    [89]关绍康,北京科技大学博士论文,1995.
    [90]O. AKINLADE, I. ALI and R. N. SINGH. CORRELATION BETWEEN BULK AND SURFACE PHENOMENA IN Ga-(Bi,In) AND In-Bi LIQUID ALLOYS. International Journal of Modern Physics B,2001,15 (22):3039-3053.
    [91]R. N. Singh and F. Sommer. Z. Metallkd.,1992, (83):553.
    [92]A. B. Bhatia and R. N. Singh. Short Range Order and Concentration Fluctuations in Regular and Compound Forming Molten Alloys. Phys. Chem. Liq.,1984, (13):177.
    [93]A. B. Bhatia and W. H. Hargrove. Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems. Phys Rev. B,1974, (10):3186.
    [94]AshwaniKumar. S.M.Rafique, N.Jha, T.P.Sinha. Complex formation study of thermodynamical, structural properties and density of states of Al-Mg binary alloy. Physica B, 2009,(404):1933-1939.
    [95]O.E. Awea, Y.A. Odusote, O. Akinlade, et al. Thermodynamic properties of some gallium-based binary alloys. Physica B,2008, (403):2629-2633.
    [96]O. Akinlade, A.O. Boyo, B.R. Ijaduola. Demixing tendencies in some Sn-based liquid alloys. J. Alloys Compd.,1999,(290):191.
    [97]Ziman J. M. A theory of the electrical properties of liquid metals-The monovalent metals. Phil. Mag.,1961,(6):1013.
    [98]王强,液态In<,1-x>Sb<,x>,Ga<,1-x>Sb<,x>电子输运性质的研究.中国科学院物理研究所博士论文,2000.
    [99]Takamichi Iida, Takamichi Iida, Roderick I. L. Guthrie(冼爱萍,王连文译).液态金属的物理性能.北京:科学出版社,2005.
    [100]P. D. Adams. Electrical resistivity of liquid binary alloys exhibiting a miscibility gap. Phys. Rev. Lett.,1970,25:1012.
    [101]V. V. Berezutski, M. I. Ivanov. Electrical resistivity of liquid Cu-Eu and Cu-Gd alloys, 1999,(282):1.
    [102]王强,陆坤权,李言祥.液态纯锑电阻率随温度的反常变化.科学通报,2001,46(12):990.
    [103]Yu. Plevachuk, V. Sklyarchuka, Yakymovycha, et al. Electronic properties and viscosity of liquid Pb-Sn alloys. J. Alloys Compd.,2005, (39):63-68.
    [104]Born M and Green H. S. A general kinetic theory of IiquidsIII. Dynamic properties. Proc. R. Soc.1947, (A190):455.
    [105]Johnson M. D., Hutch inson P. and March N. H. Proc. R. Soc.1964, (A282):283.
    [106]Shimoji M. Adv. Phys.,1967, (16):705.
    [107]Waseda Y. and Ohtani M. Sci. Rep. Res. Inst. Tohoku Univ.,1973, (24A):218.
    [108]Rice S. A. and Kirkwood J. G. J. Chem. Phys.,1959, (31):901.
    [109]Rice S. A. and Allnatt A. R. J. Chem. Phys.,1961, (34):2144.
    [110]Kitajima M, Saito K. and Shimoji M. Shear Viscosity of Liquid Na-K Alloys. Trans. JIM., 1976, (17):582.
    [111]Moelwyn-Hughes E. A. Physical chemistry. Oxford:Pergamon Press,1961.
    [112]A.I. Bachinskii, Selected Works [in Russian]. Moscow:Izd. Akad. Nauk SSSR,1960.
    [113]G.W. Stewart, R.L. Edwards. Comparison of viscosity and molecular Arrangement in Twenty-Two liquid Octyl Alcohols. Phys. Rev.,1931, (38):1575-1582.
    [114]J. Bernal. An attempt at a molecular theory of liquid structure. Trans. Faraday. Soc.,1937, (33):27-39.
    [115]S. Gruner, J. Marczinke, W. Hoyer. Short-range order and dynamic viscosity of liquid Cu-Ge alloys. J. Non-cryst. Solids,2009, (355):880-884.
    [116]L. Shcherbak, O. Kopach, Yu. Plevachuk et al. The viscosity of liquid cadmium telluride. Journal of Crystal Growth,2000, (212):385-390.
    [117]V.I. Lad'yanov, A.L. Bel'tyukov, V.V. Maslov et al. Viscosity of glass forming alloys based on Fe-Si-B system. J. Non-cryst. Solids,2007, (353):3264-3268.
    [118]程素娟,秦绪波,边秀房,王忠华In-5%Cu合金的液态结构与粘滞性研究.稀有金属材料与工程,2003,(32):911-914.
    [119]王焕荣,叶以富,闵光辉.共晶Ga-In合金的液态结构与粘度研究.金属学报,2001,(37):801-804.
    [120]Yu. Plevachuk, V. Sklyarchuk, O. Alekhin, et al. Viscosity of liquid In-Se-Tl alloys in the miscibility gap region. J. Alloys Compd.,2008, (452):174-177.
    [121]S. Mudry, Yu. Plevachuk, V. Sklyarchuk, et al. Viscosity of Bi-Zn liquid alloys. J. Non-cryst. Solids,2008, (354):4415-4417.
    [122]贾均,赵九洲,郭景杰,刘源.难混溶合金及其制备技术,哈尔滨:哈尔滨工业大学,2002
    [123]T.Carblerg, H.Fredriksson.17thAJAAConf.,Neworlean,1979, Paper 79-017.
    [124]B.Predel, L.Ratke and H.fredriksson, in:Fluid science and materials science in space (Ed.:H.U.Walter), Springer Verlag, Berlin,1987, p517.
    [125]崔红保.高温度梯度定向凝固Al-In和Cu-Pb合金组织演化.哈尔滨工业大学博士论文,2007.
    [126]郭景杰,刘源,贾均.过偏晶合金快速凝固过程中第二相液滴在液-液相变区内的粗化.2001,37(4):364-368.
    [127]徐锦锋.复相合金的快速凝固及电阻率研究.西北工业大学博士论文,2006.
    [128]刘向荣.空间模拟条件下共晶和偏晶合金的快速凝固,西北工业大学博士论文,2004.
    [129]何杰,赵九洲,王晓峰等.Al基难混溶合金快速定向凝固研究.金属学报,2007,43(6):573-577.
    [130]张宏闻,洗爱平.第三组元对偏晶合金凝固组织的影响.2000,36(4):347-350.
    [131]周丰茂,孙东科,朱鸣芳.偏晶合金液-液相分离的格子玻尔兹曼方法模拟.物理学报,2010,59(5):3394-3401.
    [134]F.S. Yin, X.F. Sun, H.R. Guan, Z.Q. Hu. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. J. Alloys Compd.,2004, (364):225-228.
    [135]Jun Wang, Shuxian He, Baode Sun, et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Materials Science and Engineering,2002, (A338):101-107.
    [136]Chen Zhong-wei, Jie Wan-qi, Zhang Rui-jie. Superheat treatment of Al-7Si-0.55Mg alloy melt. Materials Letters,2005, (59):2183-2185.
    [137]H.J. Koh a, P. Rudolph, N. Sch/ifer, et al. The effect of various thermal treatments on supercooling of PbTe melts. Materials Science and Engineering,1995, (B34):199-203.
    [138]S. Takayama, T. Oi. J. Appl. Phys.,1997, (50):1595.
    [139]V.P. Manov, S.I. Popel, P.I. Buler, et al. The influence of quenching temperature on the structure and properties of amorphous alloys. Mater. Sci. Eng., A Struct. Mater.:Prop. Microstruct. Process.,1991, (133):535-540.
    [140]I. Brodova, D. Bashylkov, A. Manukhin, et al. Disperse structure forming in rapidly quenched Al-Hf alloy. Mater. Sci. Eng., A,2001, (304-306):544-547.
    [1]余瑾,祖方遒,丁厚福,刘兰俊,李先芬,薛国宪.连续变温金属固-液电阻率测试装置及应用.稀有金属,2004,28(5):880-884.
    [2]桂满吕,贾均,李庆春,等.液态金属电阻率测定装置及应用.材料工程,1994,26(7):29-31.
    [3]陈志浩,合金熔体结构转变过程行为探讨.合肥工业大学博士论文,2008.
    [4]Emadi D, Gruzleski J E, Toguri J M. The effect of Na and Sr modification on surface tension and volumetric shrinkage of A356 alloy and their influence on porosity formation. Metal]. Trans. B,1993,(24):1055.
    [1]V. Filippov and P. Popel. Investigation of microheterogeneities in Ga-Pb melts by acoustic methods. J. Non-Cryst. Solids,2007, (353):3269-3273.
    [2]V. Sklyarchuk, Yu. Plevachuk, S. Mudry, et al. Viscosity of liquid tellurium doped with 3D transition metals. J.Mol. Liq.,2005,120(1-3):111-114.
    [3]Y. Kawakita and M. Yao. Short and long bonds in liquid tellurium. J. Non-Cryst. Solids,1999, 250-252:447-452.
    [4]P.S. Popel, M. Calvo-Dahlborg, U. Dahlborg. Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy. J. Non-Cryst. Solids,2007, (353):3243-3253.
    [5]贾均,赵九洲,郭景杰,刘源.难混溶合金及其制备技术,哈尔滨:哈尔滨工业大学,2002.
    [6]P.S. Popel, O.A. Chikova, I.G. Brodova, et al. Specific features of structure formation during solidification of alloys. Phys. Met. Metallogr.,1992,74 (3):274.
    [7]F.S. Yin, X.F. Sun, H.R. Guan, et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. Journal of Alloys and Compounds,2004, (364):225-228.
    [8]耿兴国,陈光,傅恒志.过热合金熔体的儿种物性滞后效应.材料科学与工程,2002,20(4):549-551.
    [9]T. Masaki, T. Onogi, K. Ogura, et al. The role of fluctuations on the electrical resistivity and atomic volume for some liquid alloys with critical mixing, J. Non-Cryst. Solids.1996, (205-207): 338-341.
    [10]Xianfen Li, Fangqiu Zu, Lanjun Liu, et al. Effect of Sn on reversibility of liquid-liquid transition in Bi-Sb-Sn alloys. Journal of Alloys and Compounds,2008, (453):508-512.
    [11]Q. Wang, X.M. Chen, C.X. Li, et al. Electrical resistivity of molten indium-antimony alloys. J. Appl. Phys.,2000,87 (9):4623-4625.
    [12]Yun Xi, Fang-Qiu Zu, Xian-Fen Li, et al. High-temperature abnormal behavior of resistivities for Bi-In melts. Physics Letters A,2004, (329):221-225.
    [13]边秀房,王伟民,李辉,马家骥,金属熔体结构,上海交通大学出版社,上海,2003
    [14]T.Iida, The Physical Properties of Liquid Metals, Oxford:Clarendon Press,1993.
    [15]Fang-Qiu Zu, Xian-Fen Li, Hou-Fu Ding et al. Electrical resistivity of liquid Bi-Sb alloys. Phase Transitions,2006,79(4-5):277-283.
    [16]Er-Guang Jia, Ai-Qing Wu, Li-Jun Guo, et al. Experimental evidence of the transformation from microheterogeneous to microhomogeneous states in Ga-Sn melts. Physics Letters A,2007, (364):505-509.
    [17]Yu. Plevachuk, V. Sklyarchuk, A. Yakymovych, et al. Microsegregation in liquid Pb-based eutectics. J. Non-Cryst. Solids,2008, (354):4443-4447.
    [18]U.Dahlborg, M.Calvo-Dahlborg, P. Popel, et al. Structure and properties of some glass-forming liquid alloys. Eur. Phys. J. B,2000,14(4):639-648.
    [19]G. Sivkov and D. Yagodin. Physical properties of the liquid Pd-18 at.% Si alloy. J. Non-Cryst. Solids. J. Non-Cryst. Solids,2007, (353):3274-3278.
    [20]M.V. Rovbo, E.E. Tretjakova, V.M. Matvejev, et al, in V.V. Zhuravlev (ed.), Surface and New Materials, Udmurth. University, Izhevsk, USSR,1990, p.92,
    [21]LI X F, ZU F Q, DING H F. et al. Anomalous change of electrical resistivity with temperature in liqud Pb-Sn alloys. Physics B:Condensed Matter,2005, (358):126-131.
    [22]HongSheng Chen, FangQiu Zu, Jie Chen, et al. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy. Science in China Series E: Technological Sciences,2008,51(9):1402-1408.
    [23]Q. Q. Sun, L. J. Liu, X. F. Li, F. Q. Zu, et al. A new understanding of melt overheating treatment of Sn-20 wt-%Sb from viewpoint of TI-LLST. Materials science and technology,2009, 25(1):35-38.
    [24]L A Zhukova, O P Aksyonova and A A Zhukov. Melts microheterogeneity in binary metallic systems having eutectic and monotectic transformation. Journal of Physics:Conference Series, 2008, (98):032015.
    [25]L. A. Zhukova and S. I. Pope]. Czech. ATOMIC STRUCTURE OF INTERFACE BOUNDARIES IN LIQUID METALLIC EUTECTIC EMULSION. Czech J. Phys.,1997, (47): 821-824.
    [26]Ivan G. Kaban and Walter Hoyer. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys. Phys. Rev. B,2008, (77):125426-1-7.
    [27]HONG ZhenYu, LU YongJun, XIE WenJun et al. The liquid phase separation of Bi-Ga hypermonotectic alloy under acoustic levitation condition. Chinese Science Bulletin,2007,52(11): 1446-1450.
    [28]C Zener. Theory of Growth of Spherical Precipitates from Solid Solution. J Appl Phys,1949, (20):950-953.
    [29]R.A. Khairulin, S.V. Stankus, A.L. Sorokin. Determination of the two-melt phase boundary and study of the binary diffusion in liquid Bi-Ga system with a miscibility gap. J. Non-Cryst. Solids,2002, (297):120-130.
    [1]贾均,赵九洲,郭景杰,刘源.难混溶合金及其制备技术.哈尔滨:哈尔滨工业大学出版社,2002.
    [2]T. Itami, T. Masaki, K. Kuribayasi,et al. Growth of fluctuations under microgravity in liquid Bi-Ga alloys. J. Non-Cryst. Solids,1996, (205-207):375-378.
    [3]Ivan G. Kaban, Walter Hoyer. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys. Phys. Rev. B,2008,77:125426.
    [4]I. Kaban, W. Hoyer. Effect of Cu and Sn on liquid-liquid interfacial energy in ternary and quaternary Al-Bi based monotectic alloys. Mater. Sci. Eng. A,2008,495:3.
    [5]J. Grobner, D. Mirkovic, R. Schmid-Fetzer. Monotectic four-phase reaction in Al-Bi-Zn alloys. Acta Mater.,2005,53:3271.
    [6]Yu. Plevachuk. Electrical conductivity measurements for immiscible In-Se-Te alloys. J. Alloys Compd.,1999,288:151-154.
    [7]Yu. Plevachuk, V. Didoukh, B. Sokolovskii. The miscibility gap region and liquid-liquid equilibrium in immiscible In-Tl-Te alloys. J. Alloys Compd.,1998,274:206-208
    [8]Yu. Plevachuk, V. Sklyarchuk, O. Alekhin, et al. Viscosity of liquid In-Se-Tl alloys in the miscibility gap region. J. Alloys Compd.,2008,452:174-177.
    [9]R.A. Khairulin, S.V. Stankus, A.L. Sorokin. Determination of the two-melt phase boundary and study of the binary diffusion in liquid Bi-Ga system with a miscibility gap. J. Non-Cryst. Solids,2002,297:120.
    [10]H. K. Sch rmann and R. D. Parks. Critical exponent of Phase separation in Metallic Binary liquids. Phys. Rev. Lett.,1971,26(7):367-370.
    [11]J H Perpezko, C Gaoup. Materials Processing in the Reduced Gravity Eviroment of Space. Elsevier Amsterdam,1982,491-540.
    [12]Dragan Manasijevic, Dusko Minic, Dragana Zivkovic, et al. Experimental investigation and thermodynamic calculation of the Bi-Ga-Sn phase equilibria. J. Phys. Chem. Solids,2009,70: 1267-1273.
    [13]O.E. Awe, Y.A. Odusote, O. Akinlade. L.A. Hussain. Thermodynamic properties of some gallium-based binary alloys. Physica B,2008,403:2629.
    [14]A. B. Bhatia, D. E. Thornton. Structural Aspects of the Electrical Resisivity of Binary Alloys, Phys. Rev. B,1970,2(8):3004-3012.
    [15]R.N. Singh. Short-range order and concentration fluctuations in binary molten alloys. Canad. J. Phys.,1987,65:309.
    [16]O. Akinlade, A.O. Boyo, B.R. Ijaduola. Demixing tendencies in some Sn-based liquid alloys. J. Alloys Compd.,1999,290:191.
    [17]B. Predel. Phase Equilibria crystallographic and thermodynamic data of Binary Alloys. Berlin: Springer Berlin Heidelberg,2006, p.1615.
    [18]O. Akinlade, I. Ali, R. N. Singh. Correlation between bulk and surface phenomena in Ga-(Bi,In) and In-Bi liquid alloys. Int. J. Mod. Phys. B,2001,15:3039.
    [19]Ching-feng Yang, Feng-ling Chen, Wojciech Gierlotka, et al. Thermodynamic properties and phase equilibria of Sn-Bi-Zn ternary alloys. Mater. Chem. Phys.,2008,112:94.
    [20]O. Akinlade, R.N. Singh, F. Sommer. Thermodynamic investigation of viscosity in Cu-Bi and Bi-Zn liquid alloys. J. Alloys Compd.,1998,267:195.
    [21]R. Novakovic, E. Ricci, D. Giuranno, et al. Thermodynamics and surface properties of liquid Bi-In alloys. Calphad.,2009,33:69.
    [22]D. S. Kanibolotsky, O. A. Bieloborodova, N. V. Kotova, et al. Thermodynamic properties of liquid Al-Si and Al-Cu alloys. J. Therm. Anal. Calorim.,2002,70:975.
    [23]V. T. Witusiewicz, I. Arpshofen, H. J. Seifert, et al. Thermodynamics of liquid and undercooled liquid Al-Ni-Si alloys. J. Alloys Compd.,2000,305:157.
    [24]P. D. Adams. Electrical resistivity of liquid binary alloys exhibiting a miscibility gap. Phys. Rev. Lett.,1970,25:1012.
    [1]Toshio Itami, Hirokatsu Aoki, Takeru Shibata, et al. The estimation of concentration fluctuations in liquid Ag-Si and Au-Si alloys. J. Non-cryst. Solids, 2007, (353):3011-3016.
    [2]Hirokatsu Aoki, Koichi Hotoduka, Toshio Itami. The hidden structure in liquid IIIB-VB alloys. J. Non-cryst. Solids, 2002, (312-314): 222-226.
    [3]Motoshige Ikeda, Takeru Shibata, Hirokatsu Aoki, et al. The large concentration fluctuations in the liquid eutectic systems with deep eutectic points. J. Non-cryst. Solids,2002, (312-314):217-221.
    [4]I. Kaban, W. Hoyer, A. Ilinskii, et al. Short-range order in liquid silver-tin alloys, J. Non-cryst. Solids,2003, (331):254-262.
    [5]Hartrnut Neumann, Frank Herwig, Walter Hoyer. The short range order of liquid eutectic A(?)-Te and A(?)-Te alloys. J. Non-cryst. Solids,1996, (205-207):438-442.
    [6]R.Novakovic, E.Ricci, D.Giuranno, et al. Thermodynamics and surface properties of liquid Bi-In alloys, CALPHAD:Computer Coupling of Phase Diagrams and Thermochemistry,2009, (33):69-75.
    [7]E. F. W. Seymour and G. A. Styles. Proc. Phys. Soc.,1966, (87):473.
    [8]T. Iida and S. Takeuchi:private communication.
    [9]Satoru OHNO and Shigeru TAMAKI. Electronic Properties of Liquid In-Bi Alloys, Journal of the physical society of Japan,1975,38(2):538-543.
    [10]M.I. Ivanov, V.V. Berezutski. Electrical resistivity of liquid Cu-Ce alloys. J. Alloys Compd., 2004, (375):58-61.
    [11]Safa Kasap, Cyril Koughia, Harry Ruda, et al. "Electrical Conduction in Metals and Semiconductors" in Springer Handbook of Electronic and Photonic Materials. Springer US.
    [12]T.E. Faber, J.M. Ziman, Philos. Mag.,1965,11:153
    [13]Takamichi Iida, Roderick I. L. Guthrie(冼爱萍,王连文泽).液态金属的物理性能.北京科学出版社,2005.
    [14]I.Kaban, Th.Halm, W. Hoyer. Structure of molten Copper-Germanium alloys..1. Non-cryst. Solids,2001, (288):96-102.
    [15]J. L. TOMLINSON AND B. D. LICHTER. METALLURGICAL TRANSACTIONS,1970, (1):305-307.
    [16]Y.A. Odusote, O.o. Fayose, P.J. Odigie. Mixing properties of X-Pb, (X=Cd, In) liquid binary alloys. J. Non-cryst. Solids, 2007, (353):4666-4671.
    [17]张燕Sn-Zn及Pb-In合金的温度诱导液-液结构转变研究.合肥工业大学硕士论文,2006.
    [18]Frederic Sar, Jean-Georges Gasser. Electronic transport properties of liquid Ga-Zn alloys. Intermetallics,2003,11:1369-1376.
    [19]O.E. Aweb, O. Akinladea, L.A. Hussain. Conditional probabilities and thermodynamic properties of liquid Ag-Au, Cd-Pb, and Ga-Zn alloys. J. Alloys Compd.,2005, (387):256-259.
    [1]M. Dzugutov, B.Sadgh, S.R. Elliott. Medium-range order in a simple monatomic liquid. J. Non-Cryst. Solids, 1998, (232-234):20-24.
    [2]G. Sivkov, D. Yagodin, S. Kofanov et al. Physical properties of the liquid Pd-18 at.% Si alloy. J. Non-Cryst. Solids, 2007, 353(32-40):3274-3278.
    [3]I. Kaban, W. Hoyer, A. ll'inskii et al. Temperature-dependent structural changes in liquid Ge,5Te85,J. Non-Cryst. Solids, 2007, (353):1808-1812.
    [4]I. Kaban, Th. Halm and W. Hoyer. Structure of molten copper-germanium alloys. J. Non-Cryst. Solids, 2001,288(1-3):96-102.
    [5]F.S. Yin, X.F. Sun, H.R. Guan et al. Effect of thermal history on the liquid structure of a cast nickel-base superalloy M963. Journal of Alloys and Compounds, 2004, (364): 225-228.
    [6]Chen Zhong-wei, Jie Wan-qi and Zhang Rui-jie. Superheat treatment of Al-7Si-0.55Mg alloy melt. Materials Letters,2005,59(17):2183-2185.
    [7]Tetsuichi Motegi. Grain-refining mechanisms of superheat-treatment of and carbon addition to Mg-Al-Zn alloys. Materials Science and Engineering A, 2005, (413-414): 408-411.
    [8]Andre Levi. Heredity in cast iron. The Iron Age, 1927, (6): 1960.
    [9]Yoshio Waseda, Susumu Takeda. Structural Inhomogeneity in Liquid Alloys. CHINESE JOURNAL OF PHYSICS,1993,3(2):225-250.
    [10]Y. Wa.seda,.The structure of Non-Crystalline Mutcrials., McGraw Hill, New York, (1980)
    [11]秦敬玉,边秀房,王伟民.Al和Sn液态结构的温度变化特性.物理学报,1998,47(3):438444.
    [12]Xiufang Bian and Weimin Wang. Thermal-rate treatment and structure transformation of Al-13 wt.% Si alloy melt. Materials Letters,2000, (44):54-58.
    [13]李培杰,陈岗,余瑞璜,贾均,李庆春,里豪森Al-Si合金熔体的价电子结构及其结构遗传,1997,(3):61-63
    [14]Jun Wang, Shuxian He, Baode Sun et al. Effects of melt thermal treatment on hypoeutectic Al-Si alloys. Materials Science and Engineering A,2002, (338):101-107.
    [15]Q. Q. Sun, L. J. Liu, X. F. Li, F. Q. Zu, et al. A new understanding of melt overheating treatment of Sn-20 wt-%Sb from viewpoint of TI-LLST. Materials science and technology,2009, 25(1):35-38.
    [16]HongSheng Chen, FangQiu Zu, Jie Chen, et al. The effect of melt overheating on the melt structure transition and solidified structures of Sn-Bi40 alloy. Science in China Series E: Technological Sciences,2008,51(9):1402-1408.
    [17]Xianfen Li, Fangqiu Zu, Jin Yu, et al. Effect of liquid-liquid transition on solidification of Bi-Sb10 wt% alloy. Phase transitions,2008,81(1):43-45.
    [18]Chunjing Sun, Haoran Geng, Zhongxi Yang, et al. Viscous and structural behaviors of molten In-Sn alloys. Materials Characterization.2005,55:383-387.
    [19]Peter H. Poole, Tor Grande, C. Austen Angell et al. Polymorphic Phase Transitions in Liquids and Glasses. Science,1997,275(5298):322-323.
    [20]Rong-Rong Shen, Fang-Qiu Zu, Qiang Li, et al. Study on temperature dependence of resistivity in liquid In-Sn alloy. Phys. Scr,2006, (73):1-4.
    [21]Qin Jing-Yu, Bian Xiu-Fang, and Wang Wei-Min. Characteristic of temperature-induced change on the structure of liquid Al and Sn. ACTA PHYSICA SINlCA,1998,47(3):438-444.(in Chinese)
    [22]Li Wang, Xiufang Bian, Jiantong Liu. Discontinuous structural phase transition of liquid metal and alloys (1). Physics Letters A,2004, (326):429-435.
    [23]P.S. Popel, M. Calvo-Dahlborg, U. Dahlborg, Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy, Journal of Non-Crystalline Solids.2007,353:3243-3253.
    [24]G.C. Yuan, Z.J. Li, Y.X. Lou et al. Study on crystallization and microstructure for new series of Al-Sn-Si alloys, Materials Science and Engineering A,2000, (280):108-115.
    [25]N H March and M P Tosi. Introduction to Liquid State Physics. Beijing, World Scientific, 2002,117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700