用户名: 密码: 验证码:
定子双绕组感应风力发电系统的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石能源的快速消耗和环境污染的日益严重,开发和利用可再生能源替代有限的化石能源,已成为最现实的战略选择。而风电作为最清洁的可再生能源之一,已受到全世界的广泛关注,并在近年内得到了飞速的发展。
     陆上风电场的不断开发,使得可开发且经济的风场日趋变少,并且占地过多,大量的自然植被被破坏,以及造成的环境负面效应等原因已迫使风电场转向海上发展。而随着海上风电场的离岸距离日渐变远,基于电压源换流器的直流集电输送方案将成为海上风电集电输送的主要选择。这就使得探索和研究可直接输出高压直流电的风力发电机系统成为了未来发展风电的必然需求,在此背景下本文提出将定子双绕组感应发电机(DWIG)系统应用于风力发电,研究自主知识产权的风电技术。
     论文针对DWIG风力发电系统的关键技术展开了重点研究,分析了DWIG的数学模型和DWIG风力发电系统的基本控制原理,对电流调制策略进行了更深一步的探讨,提出了一种基于空间电压矢量的滞环电流调制新策略,改善传统滞环电流方法的相间影响,限制开关频率波动,提高电流跟踪性能,使波形更趋于正弦化,并且调试简单,容易实现;为了使系统能够充分利用低风速下的风能,实现宽风速范围运行,提出一种新的DWIG风力发电系统拓扑,对新系统在高低风速两种不同运行方式下的控制策略做了详细的介绍,并针对新系统在拓扑和控制上的特殊性,给出适合于该系统的励磁优化方案,实现了系统在1:4宽转速范围内运行时的励磁变换器容量仅为系统容量的31%;为了实现系统的并网运行,研制了与系统配套运行的全功率并网逆变器,考虑到系统的直流侧电压控制已在发电机侧完成的特殊性,采用了新的双环控制策略,实现稳定运行,性能出色;设计了基于“工控机+数据采集卡+变频器+异步电动机”的风力机模拟系统,解决了在实验室模拟风场运行进行系统实验的难题;提出了适用于DWIG风力发电系统的最大功率追踪控制策略,在不同风速下实现系统输出最大功率,以最大程度地利用风能;研制出一套DWIG风力发电系统的实验室模拟运行平台,包括风力机模拟系统、DWIG发电系统、并网逆变器系统和监控显示系统四部分,可在此平台上进行一系列的实验,验证仿真结果的正确性和控制策略的可行性,并可同时实现系统的并网运行和最大功率追踪。
     此外,为了验证DWIG风力发电系统在工程应用上的可行性,在室外的实际风场竖立了一台20kW的DWIG风力发电系统机组,为将来的工程实践奠定了坚实基础;最后,对系统在电网故障下的运行进行了分析和研究,并通过仿真验证了DWIG风力发电系统在电网对称和不对称故障时的低电压穿越能力。
As fossil energy is consumed rapidly and environment problem becomes increasingly severe, thechoice of exploiting and using renewable energy to replace fossil energy has been the most practicalstrategy. Wind power, as one of the most clean renewable energy, has attracted worldwide attention anddeveloped quickly in recent years.
     Continuously exploiting onshore wind farms results in less and less of exploitable and economic windfields exist. Many factors as too much occupied area, destruction of vast natural vegetation, andenvironmental negative impact, forced the development of wind farms to be transferred to offshore areagradually. With the distance of offshore wind farms far away from the shore gradually, the DC electrictransmission scheme based on the voltage source converter will be the central choice for offshore windfarms. This makes exploration and research on wind power generators which can directly output high dcvoltage as inevitable demand for future wind power development. Under this circumstance, this thesis putsforward that the dual stator-winding introduction generator (DWIG) system can be applied to wind powergeneration for novel wind energy technology with independent intellectual property.
     The thesis focuses on key technologies for DWIG wind power system. Firstly, mathematical modelsof DWIG and basic control theories for DWIG wind power system are deeply analyzed. on that basis, anovel hysteresis current control method based on space voltage vector is proposed for further research oncurrent modulation strategy. Improved hysteresis current method avoids the influence among three legs,limits switch frequency fluctuation, make waveforms more sine, and that easy to implement and debug.Secondly, in order to realize operating under wide wind speed range and broaden the utilization ability ofwind energy under low wind speed, a novel topology for DWIG wind power system is presented. Controlstrategies under low and high wind speed area are introduced in detail. Meanwhile, optimal scheme ofexcitation capacity is given in consideration of particular topology and voltage control strategy. Thescheme helps to realize that the capacity of the system operating in the speed range of1:4is only31%. Thegrid-connected inverter supporting DWIG wind power system is also prepared for realizing grid-connectedoperation. As voltage adjustment on the dc side has been completed on the generator side, a differentdouble loop control strategy is adopted for inverter’s stable operation. The results proved the excellecentperformance of the designed grid-connected inverter. In order to regulate the prime mover to imitate windturbine in the laboratory and achieve the effect of operation in real wind fields, wind turbine simulation system composed by "Industrial Personal Computer+Data Acquisition Card+Micromaster+Asynchronous Motor" is specially designed. The maximum power tracking strategy for DWIG wind powersystem is of course discussed in the thesis, which makes the system output maximum power under differentwind speed. Moreover, an experimental platform for DWIG wind power system is built, which includes fourparts such as wind turbine simulation system, DWIG power generation system, grid inverter system, monitor anddisplay system, and so on. A series of experiments completed on this platform verify the correctness ofsimulation results, feasibility of control strategy, maximum power tracking algorithm.
     In addition, in order to verify the feasibility of DWIG wind power system in engineering application, a20kW prototype unit standing in actual wind field is established, which can lay a solid foudation in the futureengineering practice. Finally, analysis and investigation of operating during grid voltage dips and unbalancedconditions caused by grid fault for DWIG wind power system is completed, simulation results prove the lowvoltage ride-through(LVRT) capability of DWIG wind power system operating under grid fault.
引文
[1]哥本哈根世界气候大会(COP15)背景及成果.黑龙江金融,2009,12:11.
    [2]陈立宏.哥本哈根及哥本哈根之后的应对气候变化[J].中国财政,2010,2:27-28.
    [3]郭全英.中国风力发电成本研究,[硕士学位论文],沈阳,沈阳工业大学,2002.
    [4]杨海霞.挑战海上风电.中国投资,2010,8:1.
    [5]朱宜飞,陶铁玲.大规模海上风电场输电方式的探讨.中国工程科学,2010,12(11):89-97.
    [6]殷占宝.高压直流输电和海上输电的优缺点分析[J].电力与能源,2007,33:615.
    [7] W.L. Kling, R.L. Hendriks, R. Vailati. HVDC connection of offshore wind farms to the transmissionsystem. IEEE Transactions On Energy Conversion,2007,22(1):37-43.
    [8]姚伟,程时杰,文劲宇.直流输电技术在海上风电场并网中的应用.中国电力,2007,40(10):70-74.
    [9]金璐.应用于风力发电的轻型直流输电的研究,[硕士学位论文].乌鲁木齐,新疆大学,2009.
    [10] Li Ran, J.R. Bumby, P.J. Tavner, et al. Coordinated control of an HVDC link and doubly fedinduction generators in a large offshore wind farm. IEEE Transactions on Power Delivery,2006,21(1):463-471.
    [11]罗隆福,付颖,李勇,等.直流输电控制器原理及稳态特性分析.电力自动化设备,2009,29(1):65-69.
    [12] Lie Xu, L. Z. Yao, C. Sasse. Grid integration of large DFIG-based wind farms using VSCtransmission. IEEE Transactions on Power Systems,2007,22(3):976-984.
    [13] Lie Xu, Bjarne R. Andersen. Grid connection of large offshore wind farms using HVDC. WindEnergy,2006,9(4):371-382.
    [14]解蕾.用于海上风电并网连接的VSC-HVDC系统的控制策略研究,[硕士学位论文].上海,上海交通大学,2009.
    [15] N. M. Kirby, Lie Xu, M. Luckett, et al. HVDC transmission for large offshore wind farms. PowerEngineering Jounal,2002,16(3):135-141.
    [16] C.M. Franck. HVDC Circuit Breakers: A Review Identifying Future Research Needs. IEEETransactions on Power Delivery,2011,6(2):998-1007.
    [17] N. Flourentzou, V.G. Agelidis, G.D. Demetriades. VSC-Based HVDC Power Transmission Systems:An Overview. IEEE Transactions on Power Electronics,2009,24(3):592-602.
    [18] S. Bozhko, R. Blasco-Gimenez, R. Li, et al.Control of Offshore DFIG-Based Wind Farm Grid WithLine-Commutated HVDC Connection. IEEE Transactions on Energy Conversion,2007,22(1):71-78.
    [19] S. M. Muyeen, R. Takahashi, J. Tamura. Operation and Control of HVDC-Connected OffshoreWind Farm. IEEE Transactions on Sustainable Energy,2010,1(1):30-37.
    [20] A. Prasai, Yim Jung-Sik, D. Divan, et al. A New Architecture for Offshore Wind Farms. IEEETransactions on Power Electronics,2008,23(3):1198-1204.
    [21] R. O’Donnell, N. Schofield, A.C. Smith, et al. Design Concepts for High-VoltageVariable-Capacitance DC Generators. IEEE Transactions on Industry Applications,2009,45(5):1778-1784.
    [22] P. Fairley. The greening of GE[alternative energy]. IEEE Spectrum,2005,42(7):28-33.
    [23] M. Leijon, M. Dahlgren, L. Walfridsson, et al. A recent development in the electrical insulationsystems of generators and transformers. IEEE Electrical Insulation Magazine,2001,17(3):10-15.
    [24] S. Siegfriedsen, G. B hmeke. Multibrid technology-a significant step to multi-megawatt windturbines. Wind Energy,1998,1(2):89-100.
    [25] H. Li, Z. Chen. Overview of different wind generator systems and their comparisons. IETRenewable Power Generation,2008,2(2):123-138.
    [26] A.D. Hansen, L.H. Hansen. Wind turbine concept market penetration over10years (1995-2004).Wind Energy,2007,10(1):81–97.
    [27] L. H. Hansen, L. Helle, F. Blaabjerg, et al. Conceptual survey of generators and power electronicsfor wind turbines. Riso National Laboratory Technical Report Riso-R-1205(EN) Roskilde, Denmark,December2001.
    [28] M. R. Dubois, H. Polinder, J.A. Ferreira. Comparison of generator topologies for direct-drive windturbines. Proc. Nordic Countries Power and Industrial Electronics Conf.(NORPIE), Aalborg,Denmark, June2000:22-26.
    [29]郭家虎.变速恒频双馈风力发电系统控制技术的研究,[博士学位论文].上海,上海交通大学,2009.
    [30]张凤阁.磁场调制式无刷双馈电机的研究,[博士学位论文].沈阳:沈阳工业大学,1999.
    [31]彭军林.无刷双馈电机及其控制研究,[硕士学位论文].武汉:华中科技大学,2006.
    [32] R.Spee, A.K.Wallace, Performance simulation of brushless doubly-fed adjustable speed drives, IEEEIndustrial Application Society Annual Meeting,1989(1):738~743.
    [33] Williamson S, Ferreira A.C, Wallace A.K., Generalised theory of the brushless doubly-fedmachine.I.Analysis, Electric Power Applications,1997,144(2):111~122.
    [34]陈建伟.基于双PWM变换器的直驱永磁同步风力发电系统建模与控制策略研究,[硕士学位论文].乌鲁木齐,新疆大学,2010.
    [35]肖磊.直驱型永磁风力发电系统低电压穿越技术研究,[硕士学位论文].长沙,湖南大学,2009.
    [36]吴轩钦.电励磁同步电机双三电平矢量控制系统研究及其应用,[博士学位论文].徐州,中国矿业大学,2011.
    [37] C. Bansal, T.S. Bhatti, D.P. Kothari. Bibliography on the Application of Induction Generator inNonconventional Energy Systems.IEEE Trans on Energy Conversion,2003,18(3):433-438.
    [38] H.D. Mathur. Discussion of "Bibliography on the application of induction generators innonconventional energy systems". IEEE Transactions on Energy Conversion,2004,19(3):650-650.
    [39] C. Bansal, T.S. Bhatti, D.P. Kothari. Closure on "Bibliography on the application of inductiongenerators in nonconventional energy systems". IEEE Transactions on Energy Conversion,2004:19(3):650-651.
    [40]刘陵顺,胡育文,黄文新.电力电子变换器控制的异步电机发电技术.电工技术学报,2005,20(5):1-7.
    [41]黄文新.笼型异步电机——电力电子变换器高压直流发电系统研究,[博士学位论文].南京,南京航空航天大学,2002.
    [42]张兰红.异步电机起动/发电系统研究,[博士学位论文].南京,南京航空航天大学,2006.
    [43] Chen Hao, D. C. Aliprantis. Analysis of Squirrel-Cage Induction Generator with Vienna Rectifierfor Wind Energy Conversion System. IEEE Transactions on Energy Conversion,2011,26(3):967-975.
    [44] G. Quinonez-Varela, A. Cruden. Modelling and validation of a squirrel cage induction generatorwind turbine during connection to the local grid. IET Gener. Transm. Distrib.,2008,2(2):301–309.
    [45] Olorunfemi Ojo,Innocent Ewean Davidson,PWM-VSI inverter-assisted stand-alone dualstator winding induction generator,IEEE Trans On.IA,2000,36(6):1604~1611.
    [46] Olorunfemi Ojo,Innocent Ewean Davidson,A dual stator winding Induction Generator with aFour Switch Inverter-battery Scheme for Control, Power Electronics Specialists Conferece,PESC’2000,2000IEEE31st Annual,2000:230~234.
    [47]王东,马伟明,顾伟峰,等.12/3相双绕组感应发电机的谐波不对称分析.中国电机工程学报,2004,24(5):148152.
    [48]肖飞,张波涛,马伟明,等.一种双绕组感应发电机及其励磁控制.电力系统自动化,2003,27(18):2629.
    [49]傅玉,马伟明,王东,等.新型定子双绕组自激感应发电机的电压调节.中国电机工程学报,2003,23(3):121125.
    [50]张波涛,马伟明,肖飞,等.12/3相双绕组感应发电机励磁系统的控制方法和动态特性的研究.中国电机工程学报,2005,25(12):143~148.
    [51]李勇,胡育文,刘陵顺,等.带整流桥负载的定子双绕组感应发电机系统宽转速运行时的稳态特性.中国电机工程学报,2008,28(17):125-131.
    [52]李勇,胡育文,黄文新,等.变速运行的定子双绕组感应电机发电系统控制技术研究.中国电机工程学报,2008,28(20):124-130.
    [53]李勇,胡育文,黄文新,等.基于空间电压矢量调制的定子双绕组感应发电机系统电压控制技术.中国电机工程学报,2008,28(26):111-117.
    [54]李勇,胡育文,陈光辉,等.基于直接功率控制的定子双绕组感应发电机系统电压调节技术.中国电机工程学报,2008,28(23):112-118.
    [55]刘陵顺,胡育文,黄文新.变速运行的双绕组感应发电机电磁优化设计.中国电机工程学报,2006,26(3):125-130.
    [56]刘陵顺,胡育文,黄文新.变速运行的双绕组异步发电机控制绕组无功容量的优化分析.中国电机工程学报,2006,21(3):94-99.
    [57] Li Y, Hu Yuwen, Huang Wenxin. The Capacity Optimization for the static excitation controller of thedual-stator-winding induction generator operating in a wide speed range[J]. IEEE Trans. onIndustrial Electronics,2009,56(2):530-541.
    [58] Kai Shi, Wenxin Huang, Yuwen Hu, et al. An indirect-field-oriented dual stator-winding inductiongenerator for the wind power system applications. International Conference on WNWEC,2009,pp:1-5.
    [59] Bu Feifei, Huang Wenxin, Hu Yuwen, et al. A novel6/3-phase dual stator-winding inductiongenerator system applied in wind power generation. International Conference on PEDS,2009,pp:1360-1365.Kai Shi, Wenxin Huang, Yuwen Hu, et al. An indirect-field-oriented dualstator-winding induction generator for the wind power system applications. International Conferenceon WNWEC,2009, pp:1-5.
    [60] Feifei Bu, Wenxin Huang, Yuwen Hu, Kai Shi. An Excitation-Capacitor-Optimized DualStator-Winding Induction Generator with the Static Excitation Controller for Wind PowerApplication. IEEE, Trans. On Energy Conversion,2011, Vol.26, pp:122-131.
    [61]卜飞飞,黄文新,胡育文,施凯.定子双绕组感应电机风力发电系统励磁电容的优化选取.电工技术学报,2011,26(10):152-160.
    [62]李勇,胡育文,黄文新.定子双绕组异步电机发电系统的瞬时功率直接控制方法.中国,ZL200710025332.5.
    [63]胡育文,黄文新,刘陵顺.定子双绕组异步电机发电系统设计及控制方法.中国,ZL200510041200.2.
    [64]胡育文,黄文新.海上风力发电场的定子双绕组异步电机矩阵式集电发电系统.中国,ZL200510041199.3.
    [65]黄文新,卜飞飞,胡育文,施凯.定子双绕组异步电机发电系统宽风速范围内风力发电的方法.中国,发明专利,ZL200910035437.8.
    [66]卜飞飞,黄文新,胡育文,施凯.定子双绕组异步风力发电系统及控制法.中国,发明专利,ZL201010018309.5.
    [67]顾和荣,杨子龙,邬伟扬.并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(9):100-112.
    [68]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [69]刘迪吉,航空电机学,北京,航空工业出版社,1992.
    [70]陈坚,交流电机数学模型及调速系统,北京,国防工业出版社,1989.
    [71]汤蕴缪,史乃,电机学,北京,机械工业出版社,2005.
    [72]汤蕴缪,张奕黄,范瑜,交流电机动态分析,北京,机械工业出版社,2005.
    [73]刘陵顺,胡育文,黄文新.定子双绕组异步发电机漏电抗计算的研究,航空学报,2006,27(1):109-114.
    [74]刘陵顺,定子双绕组感应发电机的设计及控制系统的研究,[博士学位论文],南京,南京航空航天大学,2007.
    [75]李勇,基于电力电子技术的异步电机发电系统研究,[博士学位论文],南京,南京航空航天大学,2009.
    [76] H. Akagi, Y. Kanazawa, A. Nabae. Generalized theory of the instantaneous reactive power inthree-phase in three-phase circuits, Proceeding of IEEE&JIEE IPEC, Tokyo,1983:1375~1386.
    [77] H. Akagi, Y. Kanazawa, A. Nabae. Instantaneous reactive power compensators comprisingswitching devices without energy storage component, IEEE Transaciton on Industry Application,1984,20(3):625~630.
    [78]王兆安,李民,卓放,三相电路瞬时无功功率理论的研究,中国电工技术学报,1992,8:55~59.
    [79]刘进军,王兆安,瞬时无功功率与传统功率理论的统一数学描述及物理意义,中国电工技术学报,1998,12:6~12.
    [80] J. L. Willems. A new interpretation of the Akagi-Nabae power component for nonsinuoidalthree-phase situation, IEEE Transaction on Instrumentation and Measurement,1992,41(4):523~527.
    [81]王茂海,刘会金,通用瞬时功率定义及广义谐波理论,中国电机工程学报,2001,21(9):68-73.
    [82] Fang Zheng Peng, Jih-Sheng Lai. Generalized instantaneous reactive power theory for three-phasepower systems, IEEE Transaction on Instrumentation and Measurement,1996,45(1):293~297.
    [83] Fang Zheng Peng, Donald J. Adams. Harmonic and reactive power compensation based on thegeneralized instantaneous reactive power theory for three-phase four-wire systems, IEEETransaction on Power Electronics,1998,13(6):1174~1181.
    [84] M. Malinowski. Sensorless control strategies for three-phase PWM rectifiers,[Ph.D. Thesis],Warsaw University of Technology,2001.
    [85] Su Chen, Geza Joos. Direct power control of three phase active filter with minimum energy storagecomponents. IEEE Applied Power Electronics Conference and Exposition,2001:570~576.
    [86]叶万富.定子双绕组感应发电系统的研究,[硕士学位论文].南京:南京航空航天大学大学,2005.
    [87]王超,黄文新,王前双.基于异步电机的风力机特性模拟[J].电力电子技术,2010,44(6):7-9.
    [88]沈欢庆.风力发电网侧逆变器控制系统的研究,[硕士学位论文].上海:上海大学,2009.
    [89]赵梅花,阮毅.直驱式风力发电系统并网逆变器控制策略研究.电力电子技术,2010,44(5):26~29.
    [90]张厥盛,郑继禹,万心平.锁相技术.西安:西安电子科技大学出版社,2009.
    [91]远坂俊昭.锁相环电路设计与应用.北京:科学出版社,2006.
    [92]张兴.PWM整流器及其控制策略的研究,[博士学位论文].合肥:合肥工业大学,2003.
    [93]王翀.两级式光伏并网逆变器及其功率解耦研究,[硕士学位论文].南京:南京航空航天大学,2010.
    [94] B. Rabelo, W. Hofmann. M. Gluck. Emulation of the static and dynamic behaviour of a wind-turbinewith a DC-machine. The35th Annual IEEE Power Electronics Specialists Conference,2004:2107~2112.
    [95]刘其辉,贺益康,赵仁德.基于直流电动机的风力机模拟特性.中国电机工程学,2006,26(7):134~138.
    [96]卞松江,潘再平,贺益康.风力机特性的直流电机模拟.太阳能学报,2003,24(3):360~364.
    [97]贾要勤.风力发电实验室模拟风力机.太阳能学报,2004,25(6):735~739.
    [98] M. Chinchilla, S. Arnaltes, J.L. Rodriguez-Amenedo. Laboratory set-up for wind turbine emulation.IEEE ICIT’2004,2004(1):553~557.
    [99] H. M. Kojabadi, Liuchen Chang, T. Boutot. Developement of a novel Wind Turbine Simulator forWind Energy Conversion Systems Using an inverter-controlled induction motor. IEEE Transactionon Energy Conversion,2004,19(3):547~552.
    [100]叶杭治.风力发电机组控制技术.北京:机械工业出版社,2006.
    [101] Siegfried Heier, Grid integration of wind Energy conversion systems, John Wiley&Sons Ltd,1998.
    [102]陈伯时.电力拖动自动控制系统.北京:机械工业出版社,2006.
    [103] T. Thiringer J. Linders. Control by variable rotor speed of a fixed-pitch wind turbine operating in aWide Speed Range. IEEE Transactions on Energy Conversion,1993,8(3):520-526.
    [104]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制.电力系统自动化,2003,27(20):62~67.
    [105] R. Pena, J.C. Clare, G.M. Asher, Doubly fed induction generator uising back-to-back PWMconverters and its application to variable speed wind-energy generation, IEE Proceedings ElectricPower Applications,1996,143(5):380~387.
    [106] E.Koutroulis, K.Kalaitzakis. Design of a maximum power tracking system forwind-energy-conversion applications. IEEE Transactions on industrial electronics,2006,53(2):486~494.
    [107]齐志远,王生铁.小型风力发电系统最大功率控制的扰动法.内蒙古工业大学学报,2005,24(2):91~96.
    [108]张勇.适用于风力发电的定子双绕组感应发电系统研究,[硕士学位论文].南京:南京航空航天大学,2009.
    [109] Dong Wang, Weiming Ma, Fei Xiao, etc. A novel stand-alone dual stator-winding inductiongenerator with static excitation regulation. IEEE Transaction on Energy Conversion,2005,20(4):826~835.
    [110]何世恩,董新洲.大规模风电机组脱位原因分析及对策,电力系统保护与控制,2012,40(1):131-137.
    [111]刘岱,庞松林.风电集中接入对电网影响分析,电力系统及其自动化学报,2011,23(3):156-160.
    [112]关宏亮.大规模风电场接入电力系统的小干扰稳定性研究,北京,华北电力大学,2008.
    [113]张保会,王进,李光辉,等.具有低电压穿越能力的风电接入电力系统继电保护的配合,电力自动化设备,2012,32(3):1-6.
    [114]张红光.大容量风电并网对电力系统安全稳定的影响研究,北京,华北电力大学,2008.
    [115]熊卿.配电变压器一体化静止无功补偿器关键技术研究,武汉,华中科技大学,2011.
    [116]项真,解大,龚锦霞,等.用于风电场无功补偿的STATCOM动态特性分析,电力系统自动化,2008,32(9):91-95.
    [117] Clements Jauch, Julija Matevosyan, Thomas Ackermann, et al. International comparison ofrequirements for connection of wind turbines to power systems. Wind Energy,2005,8(3):295-306.
    [118]马骁.静止无功发生器联合补偿协调控制研究,哈尔滨,哈尔滨工业大学,2011.
    [119]谭光慧,纪延超,王建赜,史国勋.风力发电低电压穿越调节装置,ZL201020502514,授权日期:2011年1月26日。
    [120] J. Morren, S. W. H. de Haan. Ridethrough of wind turbines with doubly-fed induction generatorduring a voltage dip. IEEE Transactions on Energy Conversion,2005,20(1):435-441.
    [121] A. Dittrich, A. Stoev. Comparison of fault ride-through strategies for wind turbines with DFIMgenerators. European Conference on Power Electronics and Applications,2005:1-8.
    [122]徐殿国,王伟,陈宁.基于撬棒保护的双馈电机风电场低电压穿越动态特性分析,中国电机工程学报,2010,33(22):29-36.
    [123] C. Abbey, G. Joos. Short-term energy storage for wind energy applications[C]. Industry ApplicationsConference,2005:2035-2042.
    [124] A. Petersson, S. Lundberg, T. Thiringer. A DFIG wind turbine ride-through system, influence on theenergy production. Wind Energy,2005,8(3):251-263.
    [125] Janos Rajda, Anthony William Galbraith, Colin David Schauder. Device, system and method forproviding a low-voltage fault ride-through for a wind generator farm: United States, US2006/0267560A1.2006.
    [126] C. Zhan, C. D. Barker. Fault ride-through capability investigation of a doubly-fed induction generatorwith an additional series-connected voltage source converter. Proceedings of the8th IEEInternational Conference on AC and DC Power Transmission,2006:79-84.
    [127] P. S. Flannery, G. Venkataramanan. Evaluation of voltage sag ride-through of a doubly fed inductiongenerator wind turbine with series grid side converter. IEEE Power Electronics SpecialistsConference,2007:1839-1845.
    [128]胡家兵,孙丹,贺益康,等.电网电压骤降故障下双馈风力发电机建模与控制[J].电力系统自动化,2006,30(8):21-26。
    [129] Xiang Dawei, Li Ran, P. J. Tavner. Control of a doubly fed induction generator in a wind turbineduring grid fault ride-through. IEEE Transaction on Energy Conversion,2006,21(3):652-662.
    [130] M. R. Rathi, N. Mohan. A novel robust low voltage and fault ride through for wind turbineapplication operating in weak grids. Proceedings of the31st Annual Conference of IEEE onIndustrial Electronics Society,2005:2481-2486.
    [131]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略,电力系统自动化,2009,33(12):91-96.
    [132]王文亮,葛宝明,毕大强.储能型直驱永磁同步发电控制系统,电力系统保护与控制,2010,38(14):43-48.
    [133]胡书举,李建林,许洪华.永磁直驱风电系统低电压运行特性的分析,电力系统自动化,2007,31(17):73-77.
    [134]王虹富,林国庆,邱家驹,等.利用串联制动电阻提高风电场低电压穿越能力,电力系统自动化,2008,32(18):81-85.
    [135]侯世英,房勇,曾建兴,等.应用超级电容提高风电系统低电压穿越能力,电机与控制学报,2010,14(5):26-31.
    [136] M. Fatu, C. Lascu, G. D. Andreescu, et al. Voltage sags ride-through of motion sensorless controlledPMSG for wind turbines. IEEE Industry Applications Conference,42nd IAS Annual Meeting,2007:171-178.
    [137] M. Fatu, C. Lascu, G. D. Andreescu, et al. Voltage Sags Ride-Through of Motion SensorlessControlled PMSG for Wind Turbines. Industry Applications Conference,42ndIAS Annual Meeting,New Orleans, LA, USA,2007:171-178.
    [138] A. Yazdani. A neutral-point clamped converter system for direct-drive variable-speed wind powerunit. IEEE Transactions on Energy Conversion,2006,21(2):596-607.
    [139]陈毅东,杨育林,王立乔,等.电网不对称故障时全功率变流器风电机组控制策略,电力系统自动化,2011,35(7):75-80.
    [140] Hong-Seok. Song, In-Woo Joo, Kwanghee Nam. Source voltage sensorless estimation scheme forPWM rectifiers under unbalanced conditions. IEEE Transactions on Inductry Electron.,2003,50(6):1238-1245.
    [141] Yin Bo, R. Oruganti, S. K. Panda, et al, An output-power-control strategy for a three-phase PWMrectifier under unbalanced supply conditions. IEEE Transactions on Inductry Electron.,2008,55(5):2140-2151.
    [142]肖磊,黄守道,黄科元,等.不对称电网故障下直驱永磁风力发电系统直流母线电压稳定控制,电工技术学报,2010,25(7):123-129.
    [143] D. Vincenti, H. Jin. A three phase regulated PWM rectifier using direct on-line feed forward inputunbalance correction control. Electrical and Computer Engineering Conference,1993:72-75.
    [144]黄守道,肖磊,黄科元,等.不对称电网故障下直驱型永磁风力发电系统网侧变流器的运行与控制,电工技术学报,2011,26(2):173-180.
    [145] M. Chinchilla, S. Arnaltes, J. C. BURGOS. Control of permanent-magnet generators applied tovariable speed wind energy systems connected to the grid. IEEE Trans on Energy Conversion,2006,21(1):1302135.
    [146] C. Chompoo-Inwai, C. Yingvivatanapong, K. Methaprayoon, et al. Reactive compensationtechniques to improve the ride through capability of wind turbine during disturbance. IEEETransations on Industry Applications,2005,41(6):666-672.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700