用户名: 密码: 验证码:
光伏发电系统及其控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对光伏并网发电系统的逆变器并联技术、并网的最大功率跟踪控制、系统的稳定性和可靠性、不平衡负载对光伏系统中三相逆变器输出电压不对称的影响等关键问题,深入研究了光伏逆变器并联控制方法、并网最大功率跟踪控制技术、光伏发电系统谐波抑制以及三相不平衡负载控制方法等,提出了相应的解决方案。论文的主要研究工作和成果包括:
     (1)提出了一种高性能逆变器并联控制方法:以现场可编程门阵列(Field Programmable Gate Array, FPGA)产生各并联逆变器的正弦脉冲宽度调制(Sinusoidal Pulse Width Modulation, SPWM)波频率和相位,以确保输出电压绝对同步,用单相交流电压、电流构造三相交流电压、电流。根据瞬时无功理论计算方法把逆变器输出交流电流变换成两相瞬时电流分量,再经同步d-q变换得到有功电流和无功电流,最后用数字信号处理器(Digital Signal Processor, DSP)控制两台逆变器并联的瞬时有功、无功功率相等,从而使两台逆变器输出的电流均流。实验结果表明,该控制方法能达到各逆变器功率均分、逆变电源之间无环流的目的。
     (2)提出了一种光伏并网系统的最大功率传输方法,其控制思想是:在DC/DC变换器中用增量电导法的单周期功率扰动控制策略实现光伏电池最大功率跟踪;在DC/AC并网逆变器中用光伏电池最大功率输出时的最大直流电流作为并网逆变器输出交流电流反馈控制的瞬时参考电流的峰值,以电网电压的相位和频率作为瞬时交流参考电流的相位和频率,对该瞬时交流电流与并网交流电流的差进行PI控制,为确保并网逆变器的稳定性和可靠性;同时还引入了电网电压前馈和滤波器电容电流反馈控制。详细分析了并网控制系统的工作原理和控制策略,并用Matlab/Simulink对光伏系统进行仿真验证,验证了以上控制策略的可行性。
     (3)设计了一种新型无源三相△-带通滤波器,抑制大功率高频开关器件组成的光伏发电系统运行过程中产生的谐波成分。理论分析、仿真和实验研究结果表明,该滤波器能有效抑制光伏发电系统的3-19次等谐波(谐波总含量从31.5%减小到3.1%),提高了系统的功率因数和设备利用率,减小了线路耗损和电压损失,保证了光伏发电系统稳定可靠运行,提高了光伏发电系统供电的电能质量。
     (4)提出了一种三相逆变电源的输出电压分相控制方法,通过分别对三相逆变器输出线电压的控制,实现三相电压的平衡。三相逆变器中,传统的对称分量法是根据叠加原理对三相逆变器输出电压的正、负、零序分量分别进行补偿,以维持三相电压的平衡,它存在运算量大、实时性差、控制困难、效果不理想等缺点。理论分析、仿真和实验结果表明,本文所提出的方法简单、易实现,能够使三相最大不平衡度(A相额定负载、B相200%负载、C相空载)从传统的5.49%降到1%左右,有效地补偿因不平衡负载引起的逆变器输出电压畸变,从而保证逆变器在带任意不平衡负载时仍能维持三相逆变器的输出电压平衡。
There exist many key problems in the development of photovoltaic power generation (PVPG) system and power-control of a grid-connected PVPG system, such as the parallel inverter technology of a grid-connected PVPG system, the maximum power track and control of a grid-connected PVPG system, the stability and reliability of the system, the influence of the unbalanced output-voltage of a three-phase inverter with unbalanced payload, etc. In this dissertation, we research deeply into these key problems, and propose corresponding solutions, i.e., a parallel control technology for a photovoltaic inverter, the maximum power track and control technology of a grid-connected PVPG system, harmonic suppression in a PVPG system, as well as a control algorithm for a three-phase unbalanced payload. The main research work and contributions of this dissertation are listed as follows:
     (1) A control scheme for high-performance paralleled-inverter in a PVPG system is proposed. This schemde is described below. Firstly, the frequency and phase of a sinusoidal-pulse width-modulation (SPWM) waveform is generated by a field programmable gate array (FPGA), which ensures the sysnchronization of the output voltages. After that, the three-phase alternating voltage and current are reconstructed from their single-phase ones. And then, they are transformed into two two direct components based on instantaneous reactive-power theory, which are transformed into their conresponding active and reactive currents using synchronous d-q transformation. Finally, the instantaneous reactive and active power of the two paralled-inverters are calculated and kept identical by a digital signal processor (DSP), thus the output current of the two inverters is current-sharing. Experiment results show that the control scheme is capable of power-sharing and small circumfluence between the inverters.
     (2) A maximum power-transmission method for PVPG grid-connected system is proposed. Its control strategy is described as follows:based on incremental conductance method, a control strategy of one cycle power-disturbance is applied in the DC/DC converter to track the PV battery maximum power; the maximum DC current of the PV battery maximum power output is used as the peak value of the instantaneous reference current for the AC feedback control of the output current of the grid-connected inverter in the DC/AC grid-connected inverter. The phrase and frequency of the grid voltage is used as those of the instantaneous AC reference current, the difference between which and the grid AC current is utilized for PI control. For assuring the stability and reliability of the grid-connected inverter, a grid-voltage feed-forward and a feedback of the filter-capacitor current are introduced. The principle and control strategy of the grid-connected control system are detailed analyzed. Simulation for the PV system is done using Matlab/Simulink tools, which validates the feasibility of the above-mentioned control-strategy.
     (3) This dissertation analyzed the causes that SPWM inverter power supply produces the harmonic and then designed a new three-phase△-band-pass filter. The theoretic analysis and the simulation showed that the filter can restrain the 3rd-19th components and the harmonic component are reduced from 31.5% to 3.1%. Consequently, the power factor and exploitation rate of equipment are improved and the loss-free line and loss of voltage are cut down considerable. Therefore, the PV system can work steadily and the quality of power is improved.
     (4) A split-phase control method of the output voltage of three-phase inverted power-supply is proposed. Applying the control of output line-voltage of a three-phase inverter, the balance of the three-phase voltage can be utilized, the traditional compensation method of the positive-, negative-and zero-sequence components of output voltage of the three-phase inverter under the case of unbalanced load is implemented by symmetrical component decomposing and superimpose theory in order to keep the the symmetric three-phase output voltage. However it is time-consuming, poor real-time and not easy to control. Thus, this dissertation proposed a novel individual phase control for output voltage of the three-phase inverter. The theoretic analysis and the simulation showed that this method is capable of reducing the maximal unbalance degree (rated load of A-phase,200% rated load of B-phase and no-load of C-phase) from traditional 5.49% to 1%, and the output voltage can reach the balance steadily and reliably when the unbalanced loads goes to 200%. Consequently, the voltage distorting caused by unbalanced load can be compensated effectively, so that the balanced output voltage is guaranteed under any unbalanced load.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359.
    [2]刘飞.单相光伏并网系统的分析与研究[博士学位论文].合肥:合肥工业大学,2005.
    [3]冯垛生主编.太阳能发电原理与应用[M].北京:人民邮电出版社.2007.
    [4]赵为.太阳能光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2003.
    [5]赵玉文.我国太阳能光伏产业发展形式和思考[J].世界科技研究与发展.2003,25(4):31-38.
    [6]赵争鸣,刘建政,孙晓瑛,袁立强.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [7]沈辉,曾祖勤.太阳能光伏发电技术[M].北京:化学工业出版社,2004.
    [8]王长贵,王斯成.太阳能光伏发电实用技术[M].北京:化学工业出版社,2005.
    [9]刘树民.太阳能光伏发电实用技术[M].北京:科学出版社,2006.
    [10]许颇.基于z源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006.
    [11]张卫平等编著.绿色电源:现代电能变换技术及应用[M].北京:科学出版社,2001.
    [12]赵玉文.太阳能光伏技术的发展概况[J].第五届全国光伏技术学术研讨会沦文集,1998.
    [13]懂密.太阳能光伏并网发电系统的优化设计与控制策略研究[博士学位论文].中南大学,2007
    [14]朱配清.单相光伏并网系统的研究[硕士论文].成都:西南交通大学,2010.
    [15]中国资源综合利用协会可再生能源专业委员会[J].中国光伏发电的技术现状及展望.可再生能源,2002.3.
    [16]周志敏,周纪海,纪爱华.逆变电源实用技术设计与应用[M].北京:中国电力出版社,2005.
    [17]N. Kakimoto, S. Takayama, H. Satoh, K. Nakamura. Power Modulation of Photovoltaic Generator for Frequency Control of Power System[J]. IEEE Transactions on Energy Conversion,2009, 24(4):943-949.
    [18]N. Femia, G. Petrone, G. Spagnuolo, M. Vitelli. A Technique for Improving P&O MPPT Performances of Double-Stage Grid-Connected Photovoltaic Systems[J]. IEEE Transactions on Industrial Electronics,2009,56(11):4473-4482.
    [19]E. Ozdemir, S. Ozdemir, L.M.Tolbert. Fundamental-Frequency-Modulated Six-Level Diode-Clamped Multilevel Inverter for Three-Phase Stand-Alone Photovoltaic System[J]. IEEE Transactions on Industrial Electronics,2009,56(11):4407-4415.
    [20]张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,2004.
    [21]Jung-Min Kwon; Bong-Hwan Kwon; Kwang-Hee Nam. Grid-Connected Photovoltaic Multistring PCS with PV Current Variation Reduction Control[J]. IEEE Transactions on Industrial Electronics, 2009,56(11):4381-4388.
    [22]N.D. Benavides, P.L. Chapman. Modeling the Effect of Voltage Ripple on the Power Output of Photovoltaic Modules[J]. IEEE Transactions on Industrial Electronics,2008,55(7):2638-643.
    [23]R. Araneo, S. Lammens, M. Grossi, S. Bertone. EMC Issues in High-Power Grid-Connected Photovoltaic Plants[J]. IEEE Transactions on Electromagnetic Compatibility,2009,51(3):639-648.
    [24]N. Femia, G. Lisi, G. Petrone, G. Spagnuolo, M. Vitelli. Distributed Maximum Power Point Tracking of Photovoltaic Arrays:Novel Approach and System Analysis[J]. IEEE Transactions on. Industrial Electronics,2008,55(7):2610-2621.
    [25]J. M. Kwon, B. H. Kwon, K. H. Nam. Three-Phase Photovoltaic System with Three-Level Boosting MPPT Control[J]. IEEE Transactions on Power Electronics,2008,23(5):2319-2327.
    [26]P. W. Lee, Y. S. Lee, X.C. Liu. Steady-state analysis of an interleaved boost converter with coupled inductors[J]. IEEE Transactions on Industrial Electronics,2000,4(47):787-795.
    [27]J. C. Hernandez, P. G. Vidal, F. Jurado. Lightning and Surge Protection in Photovoltaic Installations[J]. IEEE Transactions on Power Delivery,2008,239(4):1961-1971.
    [28]H. S. H. Chung, K. K. Tse, S. Y. R. Hui. A novel maximum power point tracking technique for solar panels using a SEPIC or Cuk converter[J]. IEEE Transactions on Power Electronics,2003, 8(3):717-24.
    [29]E. V. Solodovnik, S. Y. Liu, R. A. Douglas. Power controller design for maximum power tracking in solar installations[J]. IEEE Transaction on Power Electronics,2004,19(5):1295-1304.
    [30]G. R. Walker, P. C. Sernia. Cascaded DC-DC converter connection of photovoltaic modules [J]. IEEE Transaction on Power Electronics,2004,19(4):1130-1139.
    [31]R. L. Lin, Y. T Chen, R. L Lin. Electronic ballast for fluorescent lamps with phase-locked loop control scheme[J]. IEEE Transaction on Power Electronics,2006,21(1):254-262.
    [32]F. T Wakabayashi, C. A Canesin. An improved design procedure for LCC resonant Filter of dimmable electronic ballasts for fluorescent lamps, based on lamp model[J]. IEEE Transaction on Power Electronics,2005,20(5):1186-1196.
    [33]姚玮,陈敏,陈晶晶,朱鹏军,钱照明.一种用于无互联线逆变器并联的多环控制方法[J].电工技术学报,2008,23(1):84-89.
    [34]王凤岩.快速瞬态响应电压调节器控制方法的研究:[博士学位论文].成都:西南交通大学,2005.
    [35]康勇.高频大功率SPWM逆变电源输出电压控制技术研究[D].武汉:华中科技大学博士论文,1994.
    [36]单鸿涛,陈息坤,康勇,鹿婷.一种新型实用数字化并联UPS系统[J].电气应用,2005,24(8):38-4.
    [37]周志敏,周纪海,纪爱华.逆变电源实用技术[M].中国电力出版社,2005.
    [38]段善旭,孟宇,陈坚.电压型逆变电源并联控制技术研究[J].中国国际电源新技术研讨会,1999:23-25.
    [39]陈宏,胡育文.逆变电源并联技术[J].电工技术学报,2001,17(5):55-59.
    [40]何中一,邢岩,付大丰.模数混合分布式逆变器并联控制方法[J].中国电机工程学报,2007,27(4):113-117.
    [41]T. F. Wu, Y. E. Wu, H. M. Hsieh, Y. K. Chen. Current Weighting Distribution Control Strategy for Multi-Inverter Systems to Achieve Current Sharing[J]. IEEE Transactions on Power Electronics, 2007,22(1):160-168.
    [42]陈良亮,肖岚,龚春英,严仰光.逆变器并联系统直流环流产生原因及其检测与抑制方法[J].中国电机工程学报,2004,24(9):56-61.
    [43]J. A. Abu Qahouq, H. Lilly, D Huard. Sensorless Current Sharing Analysis and Scheme for Multiphase Converters[J]. IEEE Transactions on Power Electronics,2008,23(5):2237-2247.
    [44]肖岚,刘爱忠,方天治等.使用平均电流控制的逆变器并联系统[J].中国电机工程学报,2008,28(3):77-82.
    [45]R. Azar, R. Udrea, N. W. Tung, F. Dawson, W. Findlay, P. Waind. The Current Sharing Optimization of Paralleled IGBTs in a Power Module Tile Using a PSpice Frequency Dependent Impedance ModelfJ]. IEEE Transactions on Power Electronics,2008,23(1):206-217.
    [46]L. L Chen, L. Xiao, C. Y Gong. Circulating currents characteristics analysis and the control strategy of parallel system based on double close-loop controlled VSI[J]. IEEE Annual Power Electronics Specialists Conference, Aachen, Germany,2004.
    [47]M. Ponjavic, R. Djuric. Electric current sharing for synchronised DC/DC converters operating in discontinuous conduction mode[J]. IEE Proceedings Electric Power Applications,2005, 152(1):119-127.
    [48]于玮,徐德鸿,周朝阳.并联UPS系统均流控制[J].中国电机工程学报,2008,28(21):63-67.
    [49]姜桂宾,裴云庆,杨旭等.SPWM逆变电源的无互联信号线并联控制技术[J].中国电机工程学报,2003,23(12):94-98.
    [50]余蜜,康勇,张宇等.基于环流阻抗的逆变器并联控制策略[J].中国电机工程学报,2008,28(18):42-46.
    [51]C. J. Zhang, G. T. Chen, Z. G Guo, W. Y Wu. An Alternating-master-salve Parallel Control Research for Single Phase Paralleled Inverters Based on CAN Bus[J]. IPEMC'06, Xian, China,2006.
    [52]A. Tuladhar, H. Jin, T. Unger, K. Mauch. Control of Parallel Inverters in Distributed AC Power Systems with Consideration of Line Impedance Effect[J]. IEEE Transactions on Industrial Applications,2000,5(36):131-137.
    [53]M. J. Guerrero, L. G. Vicuna, M. Castilla, Jaume Miret, A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems[J]. IEEE Transactions on Power Electronics,2004,9(19):1205-1212.
    [54]谢孟,蔡昆,胜晓松.400Hz中频单相电压源逆变器的输出控制及其并联运行控制[J].中国电机工程学报,2006,26(6):78-82.
    [55]肖岚,陈良亮,李睿,严仰光.基于有功和无功环流控制的DC-AC逆变器并联系统分析与实现[J].电工技术学报,2005,20(10):7-12.
    [56]肖岚,胡文斌,蒋渭忠等.基于主从控制的逆变器并联系统研究[J].东南大学学报(自然科学版),2002,32(1):133-137.
    [57]段善旭,刘邦银,康勇等.基于分散逻辑的UPS逆变电源并联控制技术[J].电力电子技术,2004,38(2):56-58.
    [58]孔雪娟,王荆江,彭力等.采用SVPWM的三相逆变电源的分散逻辑并联运行[J].中国电机工程学报,2003,23(6):81-86.
    [59]B. K. De, B. Bolsens, K. J. Vanden. A Voltage and Frequency Droop Control Method for Parallel Inverters[J]. IEEE Power Electronics Specialists Conference,2004,4:2501-2507.
    [60]T. G. Koo, Y. B. Byun, K. Y. Joe. A Wireless Parallel Operation Control of a Two-Module UPS System for Equivalent Load Sharing[J]. IEEE IECON,2000:2291-2296.
    [61]J. M. Guerrero, L. G. Vicuna, J. Matas. A Wireless Controller to Enhance Dynamic Performance of Parallel Inverters in Distributed Generation Systems[J]. IEEE Transactions on Power Electronics, 2004,19(5):1205-1210.
    [62]陈良亮,肖岚,胡文斌等.双闭环控制电压源逆变器并联系统环流特性研究[J].电工技术学报,2004,19(5):22-26.
    [63]邢岩,严仰光.一种实现瞬时均流的UPS冗余并联新方法[J].清华大学学报(自然科学版),2003,43(3):333-336.
    [64]张宇,康勇.逆变器并联系统中死区的环流效应[J].电源技术学报,2005,2(4):292-295.
    [65]王林兵.DC_DC模块化组合变流器的研究[D].合肥:浙江大学学博士论文,2007.
    [66]鞠洪新.分布式微网电力系统中多逆变电源的并网控制研究[D].合肥:合肥工业大学博士学位论文,2006.
    [67]陈息坤.高频模块化UPS及其并联控制技术研究[D].武汉:华中科技大学博士学位论文,2005.
    [68]陈良亮.无输出隔离变压器的逆变器并联系统研究[D].南京:南京航空航天大学博士学位论文,2004.
    [69]朱鹏程.用于UPFC的串_并联双变流器控制策略研究[D].武汉:华中科技大学博士学位论文,2005.
    [70]张宇.三相逆变器动态特性及其并联系统环流抑制的研究[D].武汉:华中科技大学博士学位论文,2005.
    [71]曹立霞.大型互联电力系统分布式并行无功优化的研究[D].济南:山东大学博士学位论文,2005.
    [72]郭卫农CVCF-PWM VSI输出波形瞬时控制技术研究[D].武汉:华中科技大学博士论文,2001.
    [73]林新春.UPS无互联线并联控制技术研究[D].武汉:华中科技大学博士论文,2003.
    [74]谢红胜.基于CAN总线的UPS智能模块化技术研究[D].武汉:华中科技大学硕士论文,2004.
    [75]谢孟.单相400Hz中频电压源逆变器的输出控制及其并联运行控制[D].北京:中国科学院研究生院博士学位,2006.
    [76]单鸿涛.SPWM逆变电源的数字化及其并联技术研究[D].武汉:华中科技大学博士学位,2009.
    [77]邢岩,严仰光.电流型调节逆变器的冗余并联控制方法[J].中国电机工程学报2004,24(11):199-202.
    [78]王福昌,鲁昆生.锁相技术[M].武汉:华中科技大学出版社,1996.
    [79]E. Twining, and D. G. Holmes. Grid Current Regulation of a Three-Phase Voltage Source Inverter with an LCL Input Filter [J]. IEEE Transactions on Power Electronics,2003,18(3):888-895.
    [80]孙良,杨鹏.自动控制原理[M].北京:北京工业大学出版社,2006.
    [81]E. Figueres, G. Garcera, J. Sandia, F. Gonzalez-Espin, J. C. Rubio. Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters with an LCL Grid Filter[J]. IEEE Transactions on Industrial Electronics,2009,56(3):706-717.
    [82]刘飞.三相并网光伏发电系统的运行控制策略[D].武汉:华中科技大学博士学位论文,2008.
    [83]余蜜.光伏发电并网与并联关键技术研究[D].武汉:华中科技大学博士学位论文,2009.
    [84]吴理博.光伏并网逆变系统综合控制策略研究及实现[D].北京:清华大学博士学位论文,2006.
    [85]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007, 27(16):60-64.
    [86]吴春华,陈国呈,丁海洋,武慧,宋丹.一种新型光伏并网逆变器控制策略[J].中国电机工程学报,2007,27(33):103-107.
    [87]吴浩伟,段善旭,徐正喜.一种新颖的电压控制型逆变器并网控制方案[J].中国电机工程学报,2008,28(33):20-24.
    [88]沈国桥,徐德鸿.LCL滤波并网逆变器的分裂电容法电流控制[J].中国电机工程学报,2008,28(18):36-41.
    [89]徐志英,许爱国,谢少军.采用LCL滤波器的并网逆变器双闭环入网电流控制技术[J].中国电机工程学报,2009,29(27):37-41.
    [90]杨勇,阮毅,叶斌英,汤燕燕.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009,29(33):41-46.
    [91]E. Twining, D. G. Holmes. Grid Current Regulation of a three-Phase Voltage Source Inverter with an LCL Input Filter. IEEE Transactions on power electronics,2003,18(3):888-895.
    [92]杨文杰.光伏发电并网与微网运行控制仿真研究.成都:西南交通大学硕士论文.2010.
    [93]张强,张崇巍,张兴,谢震.风力发电用大功率并网逆变器研究[J].中国电机工程学报,2007,27(16):54-59.
    [94]E. Figueres, G. Garcera, J. Sandia,F. Gonzalez-Espin,and J.C. Rubio. Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters with an LCL Grid Filter. IEEE Transactions on Industrial Electronics,2009,56(3):706-717.
    [95]L.B Wu, Z.M. Zhao andJ.Z Liu. A Single-Stage Three-Phase Grid-Connected Photovoltaic System with Modified MPPT Method and Reactive Power Compensation. IEEE Transactions on Energy Conversion,2007,22(4):881-886.
    [96]A. Salvador, B.M Sergio, B.Josep, G. Javier, G. Davidand B. Josep. Interfacing Renewable Energy Sources to the Utility Grid Using a Three-Level Inverter. IEEE Transactions on Industrial Electronics, 2006,53(5):1504-1511.
    [97]A.S. Leonardo, P. Srinivas, M.B. Peter andW. K. Johann. A Modified Direct Power Control Strategy Allowing the Connection of Three-Phase Inverters to the Grid through LCL Filters. IEEE Transactions on Industrial Electronics,2007,43(5):1388-1400.
    [98]张国荣.电能质量综合调节器_UPQC_及其控制策略研究[D].华中科技大学博士学位论文,2008.
    [99]沈国桥.燃料电池并网逆变技术研究[D].杭州:浙江大学博士学位论文,2008.
    [100]T. Kerekes,R. Teodorescu,M. Liserre,C. Klumpner,M. Sumner. Evaluation of Three-Phase Transformerless Photovoltaic Inverter Topologies. IEEE Transactions on Power Electronics,2009, 24(9):2202-2211.
    [101]S.Y. Park, C. L. Chen, J. S. Lai, and S. R. Moon. Admittance Compensation in Current Loop Control for a Grid-Tie LCL Fuel Cell Inverter. IEEE Transactions on Power Electronics,2008, 23(4):1716-1723.
    [102]钱照明.电磁兼容设计基础及干扰抑制技术[M].浙江大学出版社.2000.
    [103]吴忠,李红,左鹏,刘伟志.自然采样SPWM逆变电源的谐波分析及抑制策略[J].电网 技术,2001,25(4):17-20.
    [104]曹太强,许建平,徐顺刚.开关电源谐波的研究[J].电焊机2007,5(37):58-60.
    [105]徐政译.电力系统谐波一基本原理、分析方法和滤波器设[M].机械工业出版社2003.
    [106]孙驰,毕增军,魏光辉.基于空间矢量电流调节器的三相四桥臂逆变器的解耦控制研究[J].电工电能新技术.2003,22(3):37-40.
    [107]孙驰,毕增军,魏光辉.一种新颖的三相四桥臂逆变器解耦控制的建模与仿真[J].中国电机工程学报,2004,24(1):1-7.
    [108]曹太强,许建平,吴吴,王杰.基于DSP的直流电机数字调速系统设计[J].电力电子技术,2008,42(2):73-77.
    [109]陈道炼,李旭,张蓉,张海涛.组合式三相高频脉冲直流环节逆变器研究[J].中国电机工程学报,2005,25(8):75-79.
    [110]孙进,宋聚明,卢家林,苏彦民.针对不平衡负载三相逆变电源控制方法的研究[J].电工电能技术,2003,22(1):29-31.
    [111]孔雪娟,王荆江.基于内模原理的三相电压源型逆变电源的波形控制技术[J].中国电机工程学报,2003,23(7):67-70.
    [112]彭力,白丹.三相逆变器不平衡负载抑制研究[J].中国电机工程学报,2004,24[5]:174-178.
    [113]林金燕.不平衡负载和非线性负载下逆变器的研究[硕士论文].杭州:浙江大学,2007.
    [114]S. Hirve, K.Chatterjee, B. G. Fernandes, M. Imayavaramban, S Dwari. PLL-Less Active Power Filter Based on One-Cycle Control for Compensating Unbalanced Loads in Three-Phase Four-Wire System[J]. IEEE Transactions on Power Delivery,2007,22(4):2457-2465.
    [115]P. Sanchis, A. Ursua, E.Gubia, J. Lopez and L. Marroyo. Control of three-phase stand-alone photovoltaic systems with unbalanced loads [J]. IEEE ISIE,2005,20(23):633-638.
    [116]R. M. D Vecchio. Multiterminal Three Phase Transformer Model With Balanced or Unbalanced Loading., IEEE Transactions on Power Delivery 2008,23(3):1439-1447
    [117]J. Salmon, J Ewanchuk. A Single Switch Split DC-Rail Boost Converter Topology Operated Under Steady-State Unbalanced Load Conditions in Discontinuous Conduction[J]. IEEE Transactions on Power Electronics,2007,22(6):2454-2465.
    [118]孙驰,马伟明,鲁军勇.三相逆变器输出电压不平衡的产生机理分析及其矫正[J].中国电机工程学报,2006,26(21):57-64.
    [119]白丹,蔡志开,彭力,康勇,陈坚.三相逆变电源不平衡负载的研究[J].电力系统自动化,2004,28(9):53-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700