用户名: 密码: 验证码:
光场中超冷原子气体的局域化特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超冷原子气体及其玻色-爱因斯坦凝聚(BEC)是当前物理学领域热点问题之一,尤其是利用光场驱动的Feshbach共振技术对凝聚体进行操控,为研究非线性系统的局域化特性提供了一个理想的媒质。超冷原子气体的局域态包括物质波孤子、安德森定域化等。本论文从描述孤子动力学特征的非线性薛定谔方程(NLSE)出发,运用拉格朗日变分法和数值方法对光场中超冷原子气体的物质波孤子、安德森定域化等局域态及凝聚体系统的耦合特性、相互作用和操纵控制等方面进行了研究。主要研究内容和取得的成果如下:
     1、研究了双势阱中耦合BEC物质波亮孤子的演化规律和特性。研究结果表明,系统参数对囚禁在双势阱中的物质波孤子的演化、交换特性和自陷行为产生重要影响。原子之间的相互作用在物质波孤子的演化过程中扮演了非常重要的作用,线性耦合度的增加导致孤子的形状发生变化。随着耦合程度的变化,孤子之间的相互作随之改变,物质波孤子先后呈现出自陷、约瑟夫森振荡现象。
     2、研究了在非线性空间调制下呈线性耦合的两组分BEC物质波亮孤子演化特性和相互作用。结果表明,s-波散射长度的空间变化改变了孤子的密度包络;在合适的初始条件下,可以存在稳定的孤子;孤子的演化规律取决于非线性空间调制系数的符号和数值大小,可以对凝聚体实现非线性空间管理
     3、研究了谐振势阱中同时呈线性和非线性耦合的BEC物质波亮孤子的演化特性和动力学行为。变分和数值结果一致表明,在一定条件下,耦合凝聚体存在稳定的孤子和自发振荡行为,并与外加囚禁势、非线性空间调制系数、原子的数目以及藕合系数相关。非线性空间调制对耦合凝聚体孤子和自发振荡产生重要影响,耦合物质波亮孤子的演化规律依赖于非线性空间调制系数的符号和大小。
     4、在准一维设置和弱无序的情况下,从NLSE出发,研究了囚禁在随机光斑电势中的BEC的安德森定域化及其膨胀特性和稳定性,并结合无序光场来研究物质波的非线性空间调制对安德森定域化的能量、形状和局域化长度的影响。结果发现,在无序存在和绝热条件下,BEC呈现出安德森定域化现象;局域态的中间区域宽度和尾部形状均受非线性空间调制影响。
The ultracold atom gas and Bose-Einstein condensation (BEC) is one of the hot issues in physics. More and more people focus on the manipulation of BEC by using Feshbach resonances driven by light field, which has provided an ideal medium for the localized characteristic of nonlinear systems. In this paper, by using Lagrange variational approach and numerical methods, we start from the nonlinear Schrodinger equation (NLSE) and study matter-wave soliton and Anderson localization in ultracold atomic gases, and do some work in coupling characteristics, the interaction and manipulation of BEC system. These works are summarized as follows:
     1. The evolution characteristics of coupled BEC matter-wave bright soliton tapped the double-well potentials are investigated. The results show that the system parameters influence on the evolution, switching characteristics and self-trapping behavior of matter-wave solitons. Interactions between the atoms play an important role in the evolution of matter-wave soliton. The soliton's shape changes with the increasing of the linear coupling. Moreover, the interaction between solitons changes with the variety in the degree of coupling, and the self-trapping and Josephson oscillations appear in BEC.
     2. The evolution and interactions of the linear coupling two-component BEC matter-wave bright soliton are studied in the presence of spatially modulated nonlinearity. The results show that the envelope of the soliton density changes with the spatial variation of the s-wave scattering length. The stable soliton can exist in appropriate initial conditions. The evolution of the solitons depends on the sign and value of the coefficient of the spatially modulated nonlinearity. The nonlinear space management to the condensate can be achieved.
     3. The dynamic characteristics of the linear and nonlinear coupling BEC matter wave bright solitons trapped an harmonic trap are investigated. The results show that there exist stable solitons and spontaneous oscillation in the condensates under the variant conditions. The stability of the two stationary states is relative to the external trapping potential, the spatially modulated nonlineanty, the number of atoms and the coupled terms. Moreover, we also find that the spatially modulated nonlinearity influences on both the solitons and spontaneous oscillation of atoms in two linearly coupling condensates. The validity of the theoretical predictions is confirmed by the numerical simulation of the coupled equations.
     4. Starting from the quasi-one-dimensional NLSE, we studied the localization of a weakly interacting BEC in a random speckle. The stability and dilatation of localized states are investigated. Meanwhile, we also studied the effects of the spatially modulated nonlinearity on the shape, energy and localization length of the density envelope. The results show that there exists Anderson localization in the presence of disorder and adiabatic condition, It was found that the nonlinear spatial modulation has influence on the central region and the tail of the localized state.
引文
[I]Bose S N. Planck's law and light quantum hypothesis. Z. Phys.,1924,26:178-181.
    [2]Einstein A. Quantentheorie des einatomigen idealen Gases. Sitzungsber. Preuss. Akad.Wiss., Phys. Math. K1,1924,22:261-267.
    [3]Balykin V I, Letokhov V S, and Mushin V I. Observation of the cooling of free sodium atoms in a resonance laser field with a scanning frequency. JETP Lett.,1979,29: 560-564.
    [4]Phillips W D, Metcalf H. Laser deceleration of an atomic beam. Phys. Rev. Lett.,1982, 48:596-599.
    [5]Anderson M H, Ensher J R, Matthews M R, et al. Observation of Bose-Einstein condensation in a dilute atomic vapor. Science,1995,269:198-201.
    [6]Davis K B, Mewes M-O, Andrews M R, et al. Bose-Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett.,1995,75:3969-3973.
    [7]Bradley C C, Sackett C A, Tollett J J, et al. Evidence of Bose-Einstein condensation in atomic gas with attractive interactions. Phys. Rev. Lett.,1995.75:1687-1690.
    [8]Esslinger T, Bloch I and Hansch T W. Bose-Einstein condensation in a quadrupole-loffe-configurantion trap. Phys. Rev. A,1998,58:R2664-2667.
    [9]Regal C A, Greiner M, and Jin D S. Observation of resonance condensation of Fermionic atom pairs. Phys. Rev. Lett.,2004,92:040403.
    [10]Klaers J, Schmitt J, Vewinger F, et al. Bose-Einstein condensation of photons in an optical microcavity. Nature,2010,468:545-548.
    [11]Li Z D, He P B, Li L, et al. Magnetic soliton and soliton collisions of spinor Bose-Einstein condensates in an optical lattice. Phys. Rev. A,2005,71:053611.
    [12]Liang Z X, Zhang Z D, Liu W M. Dynamics of a bright soliton in Bose-Einstein condensates with time-dependent atomic scattering length in an expulsive parabolic potential. Phys. Rev. Lett.,2005,94:050402.
    [13]Xie Z W, Zhang W P, Chui S T, et al. Magnetic solitons of spinor Bose-Einstein condensates in an optical lattice. Phys. Rev. A,2004,69:053609.
    [14]Xie Z W, Cao Z X, Kats E I, et al. Nonlinear dynamics of a dipolar Bose-Einstein condensate in an optical lattice. Phys. Rev. A,2005,71:025601.
    [15]Wang Y. Z, Zhou S Y, Long Q, et al. Evidence for a Bose-Einstein condensate in dilute Rb gas by absorption image in a quadrupole and Ioffe configuration trap. Chin. Phys. Lett.,2003,20:799-801.
    [16]Hai W H, Feng M, Zhu X W, et al. Alternative quantum perturbation theory without divergences. Phys Rev A,2000,61:052105
    [17]Lee C H, Hai W H, Shi L, et al. Chaotic and frequency-locked atomic population oscillations between two coupled Bose-Einstein condensates. Phys. Rev. A,2001,64: 053604.
    [18]Lee C H, Hai W H, Luo X L, et al. Quasispin model for macroscopic quantum tunneling between two coupled Bose-Einstein condensates. Phys. Rev. A,2003,68: 053614.
    [19]Lee C H, Hai W H, Shi L, et al. Phase-dependent spontaneous spin polarization and bifurcation delay in coupled two-component Bose-Einstein condensates. Phys. Rev. A,2004,69:033611.
    [20]Liu M, Wen L H, Xiong H W, et al. Structure and generation of the vortex-antivortex superposed state in Bose-Einstein condensates. Phys. Rev. A,2006,73:063620.
    [21]Zhang W P, Wright E M, Pu H, et al. Fundamental limit for integrated atom optics with Bose-Einstein condensates. Phys. Rev. A,2003,68:023605.
    [22]Zhai H, Chen W Q, Xu Z, et al. Skyrmion excitation in a two-dimensional spinor Bose-Einstein condensate. Phys. Rev. A,2003,68:043602.
    [23]Zhai H, Zhou Q, Lu R, et al. Double-layer Bose-Einstein condensates with a large number of vortices. Phys. Rev. A,2004,69:063609.
    [24]Zhang P, Xu Z, You L. Nonadiabatic production of spinor condensates with a quadrupole-Ioffe-configuration trap. Phys. Rev. A,2006,73:013623.
    [25]Chen S, Zhou X J, Yang F, et al. Analysis of runaway evaporation and Bose-Einstein condensate by time-of-flight absorption imaging. Chin. Phys. Lett.,2004,21: 2105-2108.
    [26]Zhang Y Y and Yin L. Three-body recombination of a condensed Bose gas near a Feshbach resonance. Phys. Rev. A,2005,72:043607.
    [27]Ma X Q, Xia L, Yang F, et al. Population oscillation of the multicomponent spinor Bose-Einstein condensate induced by nonadiabatic transitions. Phys. Rev. A,2006, 73:013624.
    [28]Wu Y, Yang X X, and Xiao Y. Analytical method for yrast line states interacting Bose-Einstein condensates. Phys. Rev. Lett.,2001,86:2200.
    [29]Wu Y and Deng L. Ultraslow optical solitons in a cold four-state medium. Phys. Rev. Lett.,2004,93:143904.
    [30]Wang S J, Jia C L, Zhao D, et al. Dark and bright solitons in a quasi-one-dimensional Bose-Einstein condensate. Phys. Rev. A,2003,68:015601.
    [31]Huang G X, Velarde M G, and Makarov V A. Dark solitons and their head-on collisions in Bose-Einstein condensates. Phys. Rev. A,2001,64:013617.
    [32]Xiong H W, Liu S J, Huang G X, et al. Canonical statistics of trapped ideal and interacting Bose gases. Phys. Rev. A,2002,65:033609.
    [33]Huang G X, Szeftel J, and Zhu S H. Dynamics of dark solitons in quasi-one-dimensional Bose-Einstein condensates. Phys. Rev. A,2002,65:053605.
    [34]Huang G X, Makarov V A, and Velarde M G. Two-dimensional solitons in Bose-Einstein condensates with a disk-shaped trap. Phys. Rev. A,2003,67:023604.
    [35]Xie Q T, Hai W H, and Chong G S. Chaotic atomic tunneling between two periodically driven Bose-Einstein condensates. Chaos,2003,13:801-805.
    [36]Kuang L M and Ouyang Z W. Macroscopic quantum self-trapping and atomic tunneling in two-species Bose-Einstein condensates. Phys. Rev. A,2000,61:023604
    [37]Hai W H, Lee C H, and Chong G S. Propagation and breathing of matter-wave-packet trains. Phys. Rev. A,2004,70:053621.
    [38]Chong G S, Hai W H, and Xie Q T. Spatial chaos of trapped Bose-Einstein condensate in one-dimensional weak optical lattice potential. Chaos,2004,14: 217-223.
    [39]Li W D, Zhang Y B, and Liang J Q. Energy-band structure and intrinsic coherent properties in two weakly linked Bose-Einstein condensates. Phys. Rev. A,2003,67: 065601.
    [40]Ng H T, Law C K, and Leung P T. Quantum-correlated double-well tunneling of two-component Bose-Einstein condensates. Phys. Rev. A,2003,68:013604.
    [41]Law C K. Dynamic quantum depletion in phase-imprinted generation of dark solitons. Phys. Rev. A,2003,68:015602.
    [42]Inouye S, Andrews M R, Stenger J, et al. Observation of Feshbach resonance in a Bose-Einstein condensate. Nature,1998,392:151-154.
    [43]Theis M, Thalhammer G, Winkler K, et al. Tuning the scattering length with an optically induced Feshbach resonance. Phys. Rev. Lett.,2004,93:123001.
    [44]Strecker K E, Partridge G B, Truscott A G, et al. Formation and Propagation of Matter Wave Soliton Trains. Nature,417,2002:150-153.
    [45]Khaykovich L, Schreck F, Ferrari G, et al. Formation of a matter-wave bright soliton. Science,2002,296:1290-1293.
    [46]Li T C, Kelkar H, Medellin D, et al. Real-time control of the periodicity of a standing wave:an optical accordion. Opt. Express,2008,16:5465-5470.
    [47]Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys.,1999,71:463-512.
    [48]Sulem C and Sulem P L. The Nonlinear Schrodinger Equation (New York:Springer) (1999).
    [49]Sanchez-Palencia L, Clement D, Lugan P, et al. Disorder-induced trapping versus Anderson localization in Bose-Einstein condensates expanding in disordered potentials. New J. Phys.,2008,10:045019.
    [50]Modugno M. Exponential localization in one-dimensional quasi-periodic optical lattices. New J. Phys.,2009,11:033023.
    [51]Giorgini S, Pitaevskii L P, and Stringari S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys.,2008,80:1215-1274.
    [52]Eiermann B, Anker Th, Albiez M, et al. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett.,2004,92:230401.
    [53]Burger S, Bongs K, Dettmer S, et al. Dark solitons in Bose-Einstein condensates. Phys. Rev. Lett.,1999,83:5198-5201.
    [54]Densehlag J, Simsarina J E, Feder D L, et al. Generating solitons by phase engineering of a Bose-Einstein condensate. Science,2000,287:97-101.
    [55]Dum R, Cirac J I, Lewenstein M, et al. Creation of dark soliton and vortices in Bose-Einstein condensates. Phys. Rev. Lett.,1998,80:2972-2975.
    [56]Busch Th and Anglin J R. Motion of dark solitons in trapped Bose-Einstein condensates. Phys. Rev. Lett.,2000,84:2298-2301.
    [57]Anderson B P, Haljan P C, Regal C A, et al. Watching dark solitons decay into vortex rings in a Bose-Einstein condensate. Phys. Rev. Lett.,2001,86:2926-2929.
    [58]Dutton Z, Budde M, Slowe C, et al. Observation of quantum shock waves created with ultra compressed slow light pulses in a Bose-Einstein condensate. Science,2001, 293:663-668.
    [59]Frantzeskakis D J, Theocharis G, Diakonos F K, et al. Interaction of dark solitons with localized impurities in Bose-Einstein condensates. Phys. Rev. A,2002,66: 053608.
    [60]Brazhnyi V A and Konotop V V. Evolution of a dark soliton in a parabolic potential: Application to Bose-Einstein condensates. Phys. Rev. A,2003,68:043613.
    [61]Theocharis G, Frantzeskakis D J, Kevrekidis PG, et al. Dark soliton dynamics in spatially inhomogenous media:Application to Bose-Einstein condensates. Mathematics and Comprters in Simulation,2005,69:537-552.
    [62]Theocharis G, Kevrekidis PG, Oberthaler M K, et al. Dark matter-wave solitons in the dimensionality crossover. Phys. Rev. A,2007,76:045601.
    [63]Theocharis G, Weller A, Ronzheimer J P, et al. Multiple atomic dark solitons in cigar-shaped Bose-Einstein condensates. Phys. Rev. A,2010,81:063604.
    [64]Adhikari S A. Mean-field model of interaction between bright vortex solitons in Bose—Einstein condensates. New J. Phys.,2003,5:137.
    [65]Sakaguchi H and Malomed B A. Two-dimensional matter-wave solitons in rotating optcal lattices. Phys. Rev. A,2007,75:013609.
    [66]Kapitula T, Kevrekidis P G, and Carretero-Gonzalez R. Rotating matter waves in Bose-Einstein condensates. Physica D,2007,233:112-137.
    [67]Salasnich L and Malomed B A. Vector solitons in nearly one-dimensional Bose-Einstein condensates. Phys. Rev. A,2006,74:053610.
    [68]Kartashov Y V, Vysloukh V A, and Torner L. Rotary solitons in Bessel optical lattices. Phys. Rev.Lett.,2004,93:093904.
    [69]Baizakov B B, Malomed B A, and Salerno M. Phys. Matter-wave solitons in radially periodic potentials. Rev. E,2006,74:066615.
    [70]Mihalache D, Mazilu D, Lederer F, et al. Stable spatiotemporal solitons in a Bessel optical lattices. Phys. Rev. Lett.2005,95:023902.
    [71]Mateo A M, Delgado V, and Malomed B. Three-dimensional gap solitons in Bose-Einstein condensates supported by one-dimensional optical lattices. Phys. Rev. A,2010,82:053606.
    [72]Mihalache D, Mazilu D, Lederer F, et al. Stable three-dimensional spatiotemporal solitons in a two-dimensional photonic lattice. Phys. Rev. E,2004,70:055603(R).
    [73]Matuszewski M, Infeld E, Malomed B A, et al. Fully three dimensional breather solitons can be created using Feshbach resonances. Phys. Rev. Lett.,2005,95, 050403.
    [74]Leblond H, Malomed B A, Mihalache D, et al. Three dimensional vortex solitons in quasi-two-dimensional lattices. Phys. Rev. E,2007,76:026604.
    [75]Myatt C J, Burt E A, and Ghrist R W, et al. Production of two overlapping Bose-Einstein condensates by sympathetic cooling. Phys. Rev. Lett.,1997,78: 586-589.
    [76]Stenger J, Inouye S, Stamper-Kurn D M, et al. Spin domains in ground-state Bose-Einstein condensates. Nature,1998,396:345-348.
    [77]Hall D S, Matthews M R, Wieman C E, et al. Measurements of relative phase in two-component Bose-Einstein condensates. Phys. Rev. Lett.,1998,81:1543-1546.
    [78]Ananikian D and Bergeman T. Gross-Pitaevskii equation for Bose particles in a double-well potential:Two-mode models and beyond. Phys. Rev. A,2006,73: 013604.
    [79]Fedichev P O, Kagan Yu, Shlyapnikov G V, et al. Influence of nearly resonant light on the scattering length in low-temperature atomic gases. Phys. Rev. Lett.,1996,77: 2913-2916.
    [80]Sakaguchi H and Malomed B A. Matter-wave solitons in nonlinear optical lattices. Phys. Rev. E,2005,72:046610.
    [81]Anderson P W. Absence of diffusion in certain random lattices. Phys. Rev.,1958, 109:1492-1505.
    [82]Boiron D, Mennerat-Robilliard C, and Fournier J-M, et al. Trapping and cooling cesium atoms in a speckle field. Eur. Phys. J. D,1999,7:373-377.
    [83]Eckardt A, Holthaus M, Lignier H, et al. Exploring dynamic localization with a Bose-Einstein condensate. Phys. Rev. A,2009,79:013611.
    [84]Larcher M, Dalfovo F, and Modugno M. Effects of interaction on the diffusion of atomic matter waves in one-dimensional quasiperiodic potentials. Phys. Rev. A,2009, 80:053606.
    [85]Gavish U and Castin Y. Matter-wave localization in disordered cold atom lattices. Phys. Rev. Lett.,2005,95:020401.
    [86]Roati G, D'Errico C, Fallani L, et al. Anderson localization of a non-interacting Bose-Einstein condensate. Nature,2008,453:895-898.
    [87]Billy J, Jossel V, and Zuo Z, et al. Direct observation of Anderson localization of matter waves in a controlled disorder. Nature,2008,453:891-894.
    [88]Pecseli H L and Rasmussen J J. Nonlinear electron waves in strongly magnetized plasmas. Plasma Phys.1980,22:421-438.
    [89]Aitchison J S, Weiner A M, Silberberg Y, et al. Experimental observation of spatial soliton interactions. Opt. Lett.,1991,16:15-17.
    [90]Porkolab M and Goldman M V. Upper-hybrid solitons and oscillating-two-stream instabilities. Phys. Fluids,1976,19:872-881.
    [91]Fedele R, Miele G, Palumbo L, et al. Thermal wave model for nonlinear longitudinal dynamics in particle accelerators. Phys. Lett. A,1993,173:407-413.
    [92]Russell J S. Report of wave.14th meeting of the British association for advancement of science, London:John Murray,1844:311-390.
    [93]Korteweg D J and DeVires G. On the change of form long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag.1895,39: 422-443.
    [94]Zabusky N J and Kruskal M D. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett.,1965,15:240-243.
    [95]Hasegawa A and Tappert F D. Transmission of stationary nonlinear optical pulses in dispersive dielectric fiber (I) Anomalous dispersion. Appl. Phys. Lett.,1973,23: 142-144.
    [96]Mollenauer L F, Stolern R H, and Gordon J P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett.,1980,45: 1095-1098.
    [97]Shi T T, Chi S. Nonlinear photonic switching by using the spatial soliton collision. Opt. Lett.,1990,15:1123-1125.
    [98]Shalaby M, Barthelemy A. Experimental spatial soliton trapping and switching. Opt. Lett.,1991,16:1472-1474.
    [99]Wu Y D. New all-optical switch based on the spatial soliton repulsion. Opt. Express, 2006,14:4005-4012.
    [100]Taya M, Bashaw M C, Fejer M M, et al. Y junction arising from dark-soliton propagation in photovoltaic media. Opt. Lett.,1996,21:943-945.
    [101]Shih M F, Chen Z, M. Mitchell, et al. Waveguides induced by photorefractive screening solitons. J. Opt. Soc. Am. B,1997,14:3091-3101.
    [102]Law C T, Zhang X, Swartzlander G A, et al. Waveguiding properties of optical vortex solitons. Opt. Lett.,2000,25:55-57.
    [103]Lu K Q, Zhao W, Yang Y L, et al. Waveguides induced by grey screening solitons. Chin. Phys.2006,15:1009-1963.
    [104]Wesner M, Herden C, Pankrath R, et al. Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides. Phys. Rev. E,2001,64:036613.
    [105]Kip D, Amastassiou C, Eugenieva C, et al. Transmission of image through highly nonlinear media by gradient-index lenses formed by incoherent solitons. Opt. Lett., 2001,26:524-526.
    [106]Chiao R Y, Garmire E, and Towness C H. Self-trapping of optical beams. Phys. Rev. Lett.,1964,13:479-482.
    [107]Christodoulides D N and Carvalho M I. Compression, self-bending, and collapse of Gaussian beams in photorefractive crystals. Opt. Lett.,1994,19:1714-1716.
    [108]Segev M, Crosignani B, Di Porto P, et al. Stability of photorefractive spatial solitons. Opt. Lett.,1994,19:1296-1298.
    [109]Morin M, Duree G, Salamo G, et al. Waveguides formed by quasi-steady-state photorefractive spatial solitons. Opt. Lett.,1995,20:2066-2068.
    [110]Fressengeas N, Maufoy J, Kugel G., et al. Temporal behavior of bidimensional photorefractive bright spatial solitons. Phys. Rev. E,1996,54:6866-6875.
    [111]Fressengeas N, Wolferberger D, Maufoy J, et al. Build up mechanisms of (1+1)-dimensional photorefractive bright spatial quasi-steady-state and screening solitons. Opt. Commun.1998,145:393-400.
    [112]DelRe E and Palange E. Optical nonlinearity and existence conditions for quasi-steady-state photorefractive solitons. J. Opt. Soc. Am. B,2006,23:2323-2327.
    [113]Segev M, Valley G C, Crosignani B, et al. Steady-state spatial soliton in photorefractive material with external applied field. Phys. Rev. Lett.,1994,73: 3211-3214.
    [114]Christostoulides D N and Carvalho M I. Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B,1995,12:1628-1633.
    [115]Shih M F, Leach P, Segev M, et al. Two-dimensional steady-state photorefractive screening solitons. Opt. Lett.,1996,21:324-326.
    [116]Carvalho M I, Singh S R, Christodoulides D N. Self-deflection of steady-state bright spatial solitons in biased photorefractive crystals. Opt. Commun.,1995,120: 311-315.
    [117]Chen Z, Segev M, Coskun T H, et al. Observation of incoherently coupled photorefractive spatial soliton pairs. Opt. Lett.,1996,21:1436-1438.
    [118]Christodoulides D N, Coskun T H, Mitchell M, et al. Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett.,1997,78:646-649.
    [119]Belic M R, Stepken A, and Kaiser F. Spatial screening solitons as particles. Phys. Rev. Lett.,2000,84:83-86.
    [120]Valley G C, Segev M, Crosignani B, et al. Dark and bright photovoltaic spatial solitons. Phys. Rev. A,1994,50:R4457-4460.
    [121]Taya M, Bashaw M C, Fejer M M, et al. Observation of dark photovoltaic spatial solitons. Phys. Rev. A,1995,52:3095-3100.
    [122]Segev M, Valley G. C, Bashaw M C, et al. Photovoltaic spatial solitons. J. opt. Soc. Am. B,1997,14:1772-1781.
    [123]She W L, Lee K K, and Lee W K. Observation of two-dimensional bright photovoltaic spatial solitons. Phys. Rev. Lett.,1999,83:3182-3185.
    [124]Liu J S and Lu K Q. Screening-photovoltaic spatial solitons in biased photovoltaic photorefractive crystals and their self-deflection. J. Opt. Soc. Am. B,1999,16: 550-555.
    [125]Lu K Q, Tang T T, and Zhang Y P. One-dimensional steady-state spatial solitons in photovoltaic photorefractive materials with an external applied field. Phys. Rev. A, 2000,61:053822.
    [126]Hou C F, Li Y, Zhang X F, et al. Grey screening-photovoltaic spatial soliton in biased photovoltaic photorefractive crystals. Opt. Commun.,2000,181:141-144.
    [127]Shih M, Segev M., and Salamo G. Three-dimensional spiraling of interacting spatial solitons. Phys. Rev. Lett.,1997,78:2551-2551;
    [128]Carmon T, Uzdin R, Pigier C, et al. Rotating propeller solitons. Phys. Rev. Lett., 2001,87:143901.
    [129]Desyatnikov A S and Kivshar Y S. Rotating optical soliton clusters. Phys. Rev. Lett., 2002,88:053901.
    [130]Eisenberg H S, Silberberg Y, Morandotti R, et al. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett.,1998,81:3383-3386.
    [131]Morandotti R, Peschel U, Aitchison J S, et al. Dynamics of discrete solitons in optical waveguide arrays. Phys. Rev. Lett.,1999,83:2726-2729.
    [132]Christodoulides D N, Lederer F, and Silberberg Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature,2003,424:817-823.
    [133]Fleischer J W, Segev M, Efremidis N K, et al. Observation of two-dimensional discrete solitons in optically-induced nonlinear photonic lattices. Nature,2003,422: 147-150.
    [134]Martin H, Eugenieva E D, Chen Z, et al. Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices. Phys. Rev. Lett.,2004,92: 123902.
    [135]Fleischer J W, Bartal G, Cohen O, et al. Observation of vortex-ring "discrete" solitons in 2D photonic lattices. Phys. Rev. Lett.,2004,92:123904.
    [136]Chen Z G, Martin H, Eugenieva E D, et al. Anisotropic enhancement of discrete diffraction and formation of two-dimensional discrete-soliton trains. Phys. Rev. Lett., 2004,92:143902.
    [137]Iwanow R, Schiek R, Stegeman G I, et al. Observation of discrete quadratic solitons. Phys. Rev. Lett.,2004,93:113902.
    [138]Wang X S, Chen Z G, and Kevrekidis P G. Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys. Rev. Lett.,2006,96: 083904.
    [139]Kartashov Y V, Vysloukh V A, and Torner L. Observation of discrete solitons and soliton rotation in optically induced periodic ring lattices. Phys. Rev. Lett.,2005,94: 043902.
    [140]Wang X S and She W L. Spontaneous one-and two-dimensional optical spatial solitons supported by photoisomerization nonlinearity in a bulk polymer. Phys. Rev. E,2005,71:026601.
    [141]Wang X S, She W L, and Lee W K. Optical spatial soliton supported by photoisomerization nonlinearity in a polymer with a background beam. J. Opt. Soc. Am. B,2006,23:2127-2133.
    [142]Agrawal Govind P. Nonlinear Fiber Optics & Applications of Nonlinear Fiber Optics. Third Edition. Beijing:Publishing House of Electronics Industry,2002.1-550.
    [143]恽旻,印建平.晶格原子光学及其应用.量子电子学报,2006,23(1):10-21.
    [144]Bloch I, Dalibard J, and Zwerger W. Many-body physics with ultracold gases. Rev. Mod. Phys.,2008,80:885-964.
    [145]Greiner M, Mandel O, Esslinger T, et al. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms. Nature,2002,415:39-44.
    [146]Zhang W P and Walls D F. Erratum:Gravitational and collective effective effects in an output coupler for a Bose-Einstein condensate in an atomic trap. Phys. Rev. A, 1998,57:4248-4248.
    [147]Stenger J, Inouye S, Stemper-Kum D M, et al. Spin domains in ground-state Bose-Eintein condensates. Nature,1998,396:345-348.
    [148]Demler E and Zhou F. Spinor Bosonic atoms in optical lattices:symmetry breaking and fractionalization. Phys. Rev. Lett.,2002,88:163001.
    [149]Raghavan S, Smerzi A, Fantoni S, et al. Coherent oscillations between two weakly coupled Bose-Einstein condensates:Josephson effects, π oscillations, and macroscopic quantum self-trapping. Phys. Rev. A,1999,59:620-633.
    [150]Williams J E. Optimal condition for obserbing Josephson oscillations in a double-well Bose-Einstein condensate. Phys. Rev. A,2001,64:013610.
    [151]Paraoanu Gh -S, Rodriguez M, and Torma P. Josephson effect in superfluid atomic Fermi gases. Phys. Rev. A,2002,66:041603(R).
    [152]Adhikari S K. Josephson oscillation and induced collapse in an attractive Bose-Einstein condensate. Phys. Rev. A,2005,72:013619.
    [153]Liu B, Fu L B, Yang S P, et al. Josephson oscillation and transition to self-trapping for Bose-Einstein condensates in a triple-well trap. Phys. Rev. A,2007,75:033601.
    [154]Dahan M B, Peik E, Reichel J, et al. Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett.,1996,76:4508-4511.
    [155]Morsch O, Muller J H, Christiani M, et al. Bloch oscillations and mean-field effects of Bose-Einstein condensates in ID optical lattices. Phys. Rev. Lett.,2001,87: 140402.
    [156]Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice. Phys. Rev. Lett.,2006,96:033001.
    [157]Trompeter H, Krolikowski W, Neshev D N, et al. Bloch oscillations and Zener tunneling in two-dimensional photonic lattice. Phys. Rev. Lett.,2006,96:053903.
    [158]Burger S, Cataliotti F S, Fort C, et al. Superfluid and dissipative dynamics of a Bose-Einstein condensate in a periodic optical pontential. Phys. Rev. Lett.,2001,86: 4447-4450.
    [159]Orezel, Tuchman A K, Fenselau M L, et al. Squeezed states in a Bose-Einstein condensate. Science,2001,291:2386-2389.
    [160]Dalfovo F, Giorgini S, Pitaevskii L P, et al. Theory of Bose-Einstein Condensation in trapped gases. Rev. Mod. Phys.,1999,71:463-512.
    [161]Leggett A J. Bose-Einstein Condensation in the alkali gases:some fundamental concepts. Rev. Mod. Phys.,2001,73:307-356.
    [162]Zaltharov V E and Shabat A B. Exact theory of two-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP,1972,34:62-69.
    [163]Parkes E J, Duffy B R, Abbott P C. The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A,2002,295: 280-286.
    [164]Chen Y and Yan Z Y. The Weierstrass elliptic function expansion method and its applications in nonlinear wave equations. Chaos, Solitons and Fractals,2006,29: 948-964.
    [165]Fan E G. and Zhang H Q. A note on the homogeneous balance method. Phys. Lett. A, 1998,246:403-406.
    [166]Fan E G. Two new applications of the homogeneous balance method. Phys. Lett. A, 2000,265:353-357.
    [167]Wang M L, Zhou Y B, and Li Z B. Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A, 1996,216:67-75.
    [168]Zhong W P, Xie R H, Belic M, et al. Exact spatial soliton solutions of the two-dimensional generalized nonlinear Schrodinger equation with distributed coefficients. Phys. Rev. A,2008,78:023821.
    [169]Wang D S, Zhang H Q. Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equations. Chaos, Solitons and Fractals, 2005,25:601-610.
    [170]Wahlquist H D and Estabrook F B. Backlund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett.,1973,31:1386-1390.
    [171]Wadati M. Backlund transformation for solutions of the modified Korteweg-de Vries equation. J. Phys. Soc. Japan,1974,36:1498-1498.
    [172]Ablowitz M J, Ramani A, and Segur H. Nonlinear evolution equations and ordinary differential equations of Painleve type. Lett. Nuovo Cimento,1978,23:333-338.
    [173]Ablowitz M J, Ramani A, and Segur H. Exact linearization of a Painleve transcendent. Phys. Rev. Lett.,1977,38:1103-1106.
    [174]Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett.,1971,27:1192-1194.
    [175]Chen S H, Yi L, Guo D S, et al. Self-similar evolutions of parabolic, Hermite-Gaussian. and hybrid optical pulses:Universality and diversity. Phys. Rev. E,2005,72:016622.
    [176]Conte R and Musette M. Linearity inside nonlinearity:exact solutions to the complex Ginzburg-Landau equation. Physica D,1993,69:1-17.
    [177]Marklund M, Shukla P K, and Stenflo L. Ultra-short solitons and kinetic effects in nonlinear metamaterials. Phys. Rev. E,2006,73:037601.
    [178]Zhang S W and Yi L. Exact solutions of a generalized nonlinear Schrodinger equation, Phys. Rev. E,2008,78:026602.
    [179]Bondeson A, Lisak M, and Anderson D. Soliton perturbations:a variational principle for the soliton parameters. Phys. Scr.,1979,20:479-485.
    [180]Minzoni A A, Smyth N F, and Worthy A L. A variational approach to the stability of an embedded NLS soliton at the edge of the continuum. Phys. D,2005,206: 166-179.
    [181]Anderson D, Lisak M and Berntson A. A variational approach to nonlinear evolution equations in optics. Pramana, J. Phys.,2001,57:917-936.
    [182]Kivshar Y S, Krolikowski W. Lagrangian approach for dark solitons. Opt. Commun.,1995,114:353-362.
    [183]Al Khawaja U, Stoof H T C, Hulet R G, et al. Bright Soliton Trains of Trapped Bose-Einstein Condensates. Phys. Rev. Lett.,2002,89:200404.
    [184]Schmelcher G T P, Oberthaler M K, Kevrekidis P G, et al. Lagrangian approach to the dynamics of dark matter-wave solitons. Phys. Rev. A,2005,72:023609.
    [185]Saito H, Ueda M. Dynamically Stabilized Bright Solitons in a Two-Dimensional Bose-Einstein Condensate. Phys. Rev. Lett.,2003,90:040403.
    [186]Cuevas J, Malomed B A, Kevrekidis P G. Motion of discrete solitons assisted by nonlinearity management. Phys. Rev. E,2005,71:066614.
    [187]Itin A, Morishita T, Watanabe S. Reexamination of dynamical stabilization of matter-wave solitons. Phys. Rev. A,2006,74:033613.
    [188]程永山.玻色-爱因斯坦凝聚和磁性薄膜中孤子特性研究[博士学位论文].武汉:华中科技大学图书馆,2007.
    [189]Perez-Garcia V M, Michinel H, Cirac J I, et al. Low energy excitations of a Bose-Einstein Condensate:A time-dependent variational analysis. Phys. Rev. Lett.,1996,77:5320-5323.
    [190]Salasnich L, Parola A, and Reatto L. Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates. Phys. Rev. A,2002,65:043614
    [191]Anderson D. Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A,1983,27:3135-3145.
    [192]Manousakis M, Droulias S, Papagiannis P, et al. Propagation of chirped solitary pulses in optical transmission lines:perturbed variational approach. Opt. Commun., 2002,213:293-299.
    [193]Kasamatsu K and Tsubota M. Modulation instability and solitary-wave formation in two-component Bose-Einstein condensates. Phys. Rev. A,2006,74:013617.
    [194]Hooley S and Benedict K A. Dynamical instabilities in a two-component Bose-Einstein condensate in a one-dimensional optical lattice. Phys. Rev. A,2007, 75:033621.
    [195]Barontini G and Mofugno M. Instabilities of a matter wave in a matter grating. Phys. Rev. A,2009,80:063613.
    [196]Li H, Wang D N, and Cheng Y S. Dynamics of dark-bright vector solitons in a two-component Bose-Einstein condensate. Chaos, Solitons and Fractals,2009,39: 1988-1993.
    [197]Cheng Y S, Li H and Gong R Z. Effects of parameters on the stationary state and self-trapping of three coupled Bose-Einstein condensate solitons. Chin. Opt. Lett., 2005,3:715-718.
    [198]Albiez M, Gati R, Folling J, et al. Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction. Phys. Rev. Lett.,2005,95: 010402.
    [199]Kierig E, Schnorrberger U, Schietinger A, et al. Single-particle tunneling in strongly driven double-well potentials. Phys. Rev. Lett.,2008,100:190405.
    [200]Middelkamp S, Theocharis G, Kevrekidis P G, et al. Dark solitons in cigar-shaped Bose-Einstein condensates in double-well potentials. Phys. Rev. A,2010,81: 053618.
    [201]Thomas N R and Wilson A C. Double-well magnetic trap for Bose-Einstein condensates. Phys. Rev. A,2002,65:063406.
    [202]Sun B, You L, and Zhou D L. Entanglement between two fermionic atoms inside a cylindrical harmonic trap. Phys. Rev. A,2007,75:012332.
    [203]Albiez M, Gati R, Foiling J, et al. Direct observation of tunneling and nonlinear self-trapping in a single Bosonic Josephson junction. Phys. Rev. Lett.,2005,95: 010402.
    [204]Brezger B, Hackermuller L, Uttenthaler S, et al. Matter-wave interferometer for large molecules. Phys. Rev. Lett.,2005,88:100404.
    [205]Wu B and Niu Q. Nonlinear Landau-Zener tunneling. Phys. Rev. A,2000,61:023402.
    [206]Liu J, Wu B, and Niu Q. Nonlinear evolution of quantum states in the adiabatic regime. Phys. Rev. Lett.,2003,90:170404.
    [207]Wang G F, Ye D F, Fu L B,et al. Landau-Zener tunneling in a nonlinear three-level system. Phys. Rev. A,2006,74:33414.
    [208]Milburn G J, Corney J, Wright E M, et al. Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential. Phys. Rev. A,1997,55, 4318-4324.
    [209]Kagan Y, Surkov E L, and Shlyapnikov G V. Evolution of a Bose gas in anisotropic time-dependent traps. Phys. Rev. A,1997,55:R18-R21.
    [210]Smerzi A and Fantoni S. Large amplitude oscillations of a Bose condensate. Phys. Rev. Lett.,1997,78:3589-3593.
    [211]Wang G F, Fu L B, Zhao H, et al. Self-trapping and its periodic modulation of Bose-Einstein condensates in double-well trap. Acta Phys. Sin.,2005,54: 5003-5013.
    [212]Wang G F, Fu L B, Liu J. Periodic modulation effect on self-trapping of two weakly coupled Bose-Einstein condensates. Phys. Rev. A,2006,73:13619.
    [213]Ma Y, Fu L B, Yang Z A, et al. Dynamical phase changes of the self-trapping of Bose-Einstein condensates and its characteristic of entanglement. Acta Phys. Sin., 2006,55:5623-5628.
    [214]Liu Z Z, Yang Z A. Influence of noise on self-trapping of Bose-Einstein condensates in double-well trap. Acta Phys. Sin.,2007,56:1245-1252.
    [215]Thomas N R, Wilson A C, and Foot C J. Double-well magnetic trap for Bose-Einstein condensates. Phys. Rev. A,2005,65:063406.
    [216]Tiecke T G, Kemmann M. Buggle Ch, et al. Bose-Einstein condensation in a magnetic double-well potential. J. Opt. B:Quantum. Semiclass. Opt.,2003,5: S119-S123.
    [217]Radhakrishnan R and Lakshmanan M. Bright and dark soliton solutions to coupled nonlinear Schrodinger equations. J. Phys. A,1995,28:2683-2692.
    [218]Porsezian K, Sundaram S P, and Mahalingam A. Complete integrability of N-coupled higher-order nonlinear Schrodinger equations in nonlinear optics. J. Phys. A,1999,32:8731-8737.
    [219]Schumayer D and Apagyi B. Painleve test of coupled Gross-Pitaevskii equations. J. Phys. A,2001,34:4969-4981.
    [220]Ostrovskaya E A and Kivshar Y S. Localization of two-component Bose-Einstein condensates in optical lattices. Phys. Rev. Lett.,2004,92:180405.
    [221]Coullet P and Vandenberghe N. Chaotic dynamics of a Bose-Einstein condensate in a double-well trap. J. Phys. B.,2002,35:1593-1612.
    [222]Ohberg P and Santos L. Solitons in two-component Bose-Einstein condensates. J. Phys. B,2001,34:4721-4735.
    [223]Adhikari S K, Malomed B A, Salasnich L, et al. Spontaneous symmetry breaking of Bose-Fermi mixtures in double-well potentials. Phys. Rev. A,2010,81:053630.
    [224]Shchesnovich V S, Cavalcanti S B, and Kraenkel R A. Solitons in tunnel-coupled repulsive and attractive condensates. Phys. Rev. A,2004,69:033609.
    [225]Cheng Y S, Li H, and Yin D J. Effects of localized impurity of trap on characteristics of two Bose-Einstein condensates. Chin. Opt. Lett.,2005,3:305-307.
    [226]Raghavan S and Agrawal G P. Switching and self-trapping dynamics of Bose-Einstein solitons. J. Mod. Opt.,2000,47:1155-1169.
    [227]Cheng Y S, Li H, and Gong R Z. Effects of cigar-shaped traps on switching and self-trapping of two Bose-Einstein condensate solitons. Chinese Journal of Quantum Electronics(量子电子学报),2005,22:879-883.
    [228]Li H, Cheng Y S, and Huang D X. Effects of traps on dynamics of two couped Bose-Einstein condensates. Opt. Commun.,2006,258:306-314.
    [229]Li H, Wang D N, and Cheng Y S. Switching and self-trapping effects on three couped Bose-Einstein condensate solitons. Chaos, Solitons and Fractals,2007,33: 1592-1600.
    [230]Andrews M R, Townsend C G, Miesner H J, et al. Observation of interference between two Bose condensates. Science,1997,275:637-641.
    [231]Ohhberg P and Santos L. Dark solitons in a two-component Bose-Einstein condensate. Phys. Rev. Lett.,2001,86:2918-2921.
    [232]Donley E A, Claussen N R, Thompson S T, et al. Atom-molecule coherence in a Bose-Einstein condensate. Nature,2002,417:529-533.
    [233]Kevrekidis P G, Susanto H, Carretero-Gonzalez R, et al. Vector solitons with an embedded domain wall. Phys Rev E,2005,72:066604.
    [234]Gubeskys A, Malomed B A, and Merhasin I M. Two-component gap solions in two-and one-dimensional Bose-Einstein condensates. Phys. Rev. A.,2006,73:023607.
    [235]Tiesinga E, Verhaar B J, and Stoof H T C. Threshold and resonance phenomena in ultracold ground-state collisions. Phy. Rev. A,1993,47:4114-4122.
    [236]Inouye S, Andrews M R, Stenger J, et al. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature,1998,392:151-154.
    [237]Deconinck B, Kevrekidis P G, Nistazakis H E, et al. Linearly coupled Bose-Einstein condensates:From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral waves. Phys. Rev. A,2004,70:063605.
    [238]Niarchou P, Theocharis G, Kevrekidis P G, et al. Soliton oscillations in collisionally inhomogeneous attractive Bose-Einstein condensates. Phys. Rev. A,2007,76: 023615.
    [239]Cheng Y S, Gong R Z, and Li H. Dynamics of two coupled Bose-Einstein condensate solitons in an optical lattice. Opt. Express,2006,14:3594-3601.
    [240]Li H and Wang D N. Switching and self-trapping dynamics of dark solitons in a two-component Bose-Einstein condensate. Chin. Phys. Lett.,2007,24:871-873.
    [241]Franzosi R and Penna V. Self-trapping mechanisms in the dynamics of three coupled Bose-Einstein condensates. Phys. Rev. A,2001,65:013601.
    [242]Cheng Y S. Effective potential of two coupled binary matter wave bright solitons with spatially modulated nonlinearity. J. Phys. B,2009,42:205005.
    [243]Li H and Wang D N. Control for dynamics of two coupled Bose-Einstein condensates by potential deviation in finite traps. Chaos Solitons & Fractals,2008, 36:1377-1384.
    [244]Bondeson A, Lisak M, and Anderson D A. A variational principle for the soliton parameters. Physica Scripta 1979,20:479-485.
    [245]Holm D D, Marsden J E, Ratiu T S, et al. Nonlinear stability of fluid and plasma equilibria. Phys. Rep.,1985,123:1-116.
    [246]Karpaman V I and Maslov E M. Perturbation theory for solitons. Sov. Phys. JETP, 1977,46:281.
    [247]Berge L. Wave collapse in physics:principles and applications to light and plasma waves. Phys. Rep.1998,303:259-370.
    [248]Wen J Y, Chen M H, Zhang M D, et al. Influence of pulse frequency shifting on soliton transmission system. Chinese Science Bulletin,1995,40:734-738.
    [249]Wiersma D S, Bartolini P, Lagendijk A, et al. Localization of light in a disordered medium. Nature,1997,390:671-673.
    [250]Scheffold F, Lenke R, Tweer R, et al. Localization or classical diffusion of light. Nature,1999,398:206-207.
    [251]Storzer M, Gross P, Aegerter C M, et al. Observation of the critical regime near Anderson localization of light. Phys. Rev. Lett.,2006,96:063904.
    [252]Weaver R L. Anderson localization of ultrasound. Wave Motion,1990,12:129-142.
    [253]Maynard J D. Acoustical analogs of condensed-matter problems. Rev. Mod. Phys., 2001,73:401-417.
    [254]Dalichaouch R, Armstrong J P, Schultz S, et al. Microwave localization by two-dimensional random scattering. Nature,1991,354:53-55.
    [255]Schwartz T, Bartal G, Fishman S, et al. Transport and Anderson localization in disordered two-dimensional photonic lattices. Nature,2007,446:52-55.
    [256]Lahini Y, Avidan A, Pozzi F, et al. Anderson localization and nonlinearity in one-dimensional disordered photonic lattices. Phys. Rev. Lett.,2008,100:013906.
    [260]Reppy J D. Superfluid helium in porous media. J. Low Temp. Phys.,1992,87: 205-245.
    [261]Phillips P and Dalidovich D. The elusive Bose metal. Science,2003,302:243-247.
    [262]Dubi Y, Meir Y and Avishai Y. Nature of the superconductor-insulator transition in disordered superconductors. Nature,2007,449:876-880.
    [263]Kondov S S, McGehee W R, Zirbel J J, et al. Three-dimensional Anderson localization of ultracold matter. Science,2011,334:66-68.
    [264]Jendrzejewski F, Bernard A, Miiller K, et al. Three-dimensional localization of ultracold atoms in an optical disordered potential.2011, e-print arXiv:1108. 0137v2.
    [265]Kulatunga P, Sukenik C I, Balik S, et al. Measurement of correlated multiple light scattering in ultracold atomic 85Rb. Phys. Rev. A,2003,68:033816.
    [266]Skipetrov S E, Minguzzi A, Tiggelen B A, et al. Anderson localization of a Bose-Einstein condensate in a 3D random potential. Phys. Rev. Lett.,2008,100: 165301.
    [268]Lugan P, Aspect A, Sanchez-Palencia L, et al. One-dimensional Anderson localization in certain correlated random potentials. Phys. Rev. A,2009,80: 023605.
    [269]Adhikari S K and Salasnich L. Localization of a Bose-Einstein condensate in a bichromatic optical lattice. Phys. Rev. A,2009,80:023606.
    [270]Cheng Yongshan and Adhikari S K.Symmetry breaking in a localized interacting binary Bose-Einstein condensate in a bichromatic optical lattice. Phys. Rev. A,2010, 81:023620.
    [271]Cheng Yongshan and Adhikari S K. Matter-wave localization in a random potential. Phys. Rev. A,2010,82:013631.
    [272]Cheng Yongshan and Adhikari S K. Spatially-antisymmetric localization of matter wave in a bichromatic optical lattice. Laser Phys. Lett.,2010,7(11):824-830.
    [273]Cheng Yongshan and Adhikari S K. Localization of collisionally inhomogeneous condensates in a bichromatic optical lattice. Phys. Rev. A,2011,83:023620.
    [274]Cheng Yongshan and Adhikari S K. Matter-wave localization in a weakly perturbed optical lattice. Phys. Rev. A,2011,84:053634.
    [275]Cheng Yongshan and Adhikari S K. Localization of a Bose-Fermi mixture in a bichromatic optical lattice. Phys. Rev. A,2011,84:023632.
    [276]Goodman J W. Speckle Phenomena in Optics:theory and applications.2007 (Englewood, CO:Roberts & Company Publishers)
    [277]Fallani L, Fort C, and Inguscio M. Bose-Einstein condensates in disordered potentials. Advance in Atomic, Molecular, and Optical Physics,2008,56:119-160.
    [278]Lye J E, Fallani L, Modugno M, et al. Bose-Einstein Condensate in a Random Potential. Phys. Rev. Lett.,2005,95:070401.
    [279]Horak P, Courtois J-Y, and Grynberg G. Atom cooling and trapping by disorder. Phys. Rev. A,1998,58:3953-3962.
    [280]Huntley J M. Noise-immune phase unwrapping algorithm. Applied Optics.1989,28: 3268-3270.
    [281]Akkermans E, Ghosh S, and Musslimani H M. Numerical study of one-dimensional and interacting Bose-Einstein condensates in a random potential. J. Phys. B,2008, 41:045302.
    [282]Muruganandam P and Adhikari S K. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap. Comput. Phys. Commun.,2009, 180:1888-1912.
    [283]Adhikari S K and Malomed B A. Two-component gap solitons with linear interconversion. Phys. Rev. A,2009,79:015602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700