用户名: 密码: 验证码:
地下水污染评价中统计理论和应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对地下水污染评价中污染质空间分布与估计、污染趋势预测和风险分析问题,在对污染质检测数据的统计特征进行分析的基础上,着重探讨了Krige等统计学方法在地下水污染评价中的应用.文中介绍了对地下水水质检测数据进行统计分析的基础理论和方法,总结了典型Krige模型在空间域和在时空域中的形式,并对Krige建模的过程和特点进行了论述.论文根据长春地区地下水检测数据,比较了直接使用Krige方法和基于非参数秩检验和差异性比较基础上使用Krige方法绘制地下水中含氮化合物空间分布图的不同.利用时域Krige方法预测了含氮化合物的变化趋势,指出时域Krige预测方法对数据的结构和平稳性比较敏感.使用模糊数学和马尔可夫链风险分析方法对长春地区地下水化学污染进行了风险分析.结果表明综合采用Krige等统计方法评价地下水污染能够得到较好的评价效果.主要创新点是在理论上推导了时域漂移的泛Krige模型,获得一种简单形式;在应用上以长春地区为例,在对数据进行差异性检验的基础上利用Krige方法描述了部分污染质的空间分布,所获结果表明该方法能够得到更加符合实际情况的污染质空间分布图,同时考察了时域Krige方法的预测功能和效果.
The evaluations of Groundwater pollution require both objective depict and forecast of the space distribution and the space-time’s change about the contamination. On the basic of which to make evaluation of risk in water pollution. So we need not only numerical simulation and forecast model but also the more proper statistics analyses and depict methods.
     The research is carried out with the objective to study the law of time-space change of concentration of soluble substance during its diffusion and migration process. The research can provide scientific basis for effective prevention of water pollution and preferred plan for recovery.
     The mathematic model of the groundwater can be divided in determinacy model and randomness model. The determinacy model is on the theory basic of groundwater dynamics, and use PDE to calculate discharge and simulate the shift and change of the contamination. The randomness model always used for estimate of water parameter. From the long history of this study, the mathematic model is concentrate in determinacy model, the other is in the stage of developing, but they all require statistics analyses about results and describe the space distribution also the developing of contamination. So the describe method of the above problem is very important. The main content of this article is the statistics method of evaluate forecast and risk analyses about the groundwater assess.
     This article concentrates upon the assessment of water quality, which is an issue within environmental science, by introducing geological statistic methods into time-space domain since the target variable is not only a spatial one but also a time variable. Geological statistics, which is also called Kriging method, is the best unbiased estimation method that could be applied to any estimation procedure related to spatial data. With the aim to enhance the accuracy and stability of estimation and strengthen the estimating function, many new models have been created so far, forming many new branches. However the application of it in environmental science is still to be improved with very few examples of successful application. Based on refined mathematic models using Kriging method, this article point at assess, forecast and risk analyses of the groundwater pollution evaluate, then do several jobs as following:
     (1)After analyzing the statistical characteristic of the monitoring data, several features could be seen. First, the data is closely related to time and space. Different time, place and scope of monitoring can affect the data structure and probability distribution greatly. Therefore, both the spatial distribution and the timing changes should be considered in the research. Second, the data has significant randomness and continuity. No matter if it is atmosphere rainfall, surface runoff or migration of underground water solute that we are tracing; the spatial distribution and calculation of the parameters are have both randomness and continuity. Third, the data has a non-normal distribution. The structure of the data is not normally distributed. And the skewed distribution of it, which is widely seen,could not be analyzed by classical statistics. Fourth, exceptional values are frequently detected , so the process of calculation and analysis must be exceptional-value-adjusted. Fifth, qualitative variable and fuzziness are also seen in the qualitative analysis procedure; therefore useful information should be maintained to ensure the accuracy of the analysis result. Sixth, missing data can be frequently seen; therefore reasonable estimation of the missing data is necessary. These characteristics are defined the use of statistic analysis methods, so need select some can reflect the characteristics. In the article analyses the statistics methods which suit for measuring data of the groundwate, then set forth the necessary statistics analyses method.
     (2)The article illustrates the application of Kriging model in water resource assessment by demonstrating examples. The mathematical form of manifold Kriging models in time-space domain analyzes the development, application and problems of the models.
     (3)The application spatial Kriging model has been introduced into the space-time domain. The article advances the general theory of Kriging model in time-space domain.
     (4)Mainly focuses on the time-domain and universal Kriging model. By theorem derivation, the time-domain Kriging model has been found. The new form of universal Kriging model could be found by using drifting model, which is one original form of universal Kriging model, to meet the requirement of unbiased estimation.
     (5)This article discuss the definition of the groundwater risk theory and use Makov chain to determine matrix transfer, then give the risk analyses on groundwater pollution.
     In order to prove the effectiveness of the method, we study the application of Kriging model in water quality assessment taking pollution of surface and underground water as examples. We’ve got several conclusions as listed below.
     (1)Theory based on assumptions derived second-order stable model of a new form of pan-Krieger, this model is different from the airspace of the pan-Kriging model, it mainly in the time domain on the estimated drift, also taking into account the relatively fixed position of regionalized variable spatial variability of circumstances presents the characteristics of a more stable state, it suitable for detecting relatively fined position of the problem of estimating. Compared with the original model, reflecting the temporal and spatial characteristics of the data and the models forms to be simplified.
     (2)According to the observation data of nitrogen-based compound of underground water in Changchun area for the last three years, we draw a distribution diagram of the year 2006, and by using time domain Kriging model, we forecast the trend of the future two years. From the result Kriging method in time-space and variance in water,and provide a new thought about water resources assess. But it is sensitive about the space domain of data,so it has no advantage in forecast the trend of pollution. The research result shows that there won’t be drastic change of water quality in Changchun area in short-term, and the three ion concentrations will have relatively great change (rise),therefore reasonable prevention and recovery is highly needed.
     (3)Based on the feature that the test data does not meet the classical statistical theory, and introduce the overall distribution without demand. When the condition does not meet the study requirements, through statistical analysis of test books, and reasonable, still be able to reach a more satisfactory assessment of the spatial distribution of figure.
     (4)Based on the definition of risk analysis, the risk features of underground water pollution have been elaborated.Category of underground water body from 2004 to 2008 has been figured out by using fuzzy integration comment and the water body pollution trend from 2009 to 2010 has be forecasted by introducing Markov chain risk analysis model. It is concluded that Changchun underground water has a high risk of being polluted and there won’t be a favorable change in a short term.
     The article also points out the influence that the completeness of hydrology data have on the application of Kriging method. Meanwhile, since the Kriging method in time-space domain requires rather complicated mathematical derivation, related professional software need to be developed in order to realize wider application and better estimation. Therefore this is also the bottleneck of the further development of Kriging method in time-space domain.
引文
[1]翁文斌,王忠静,赵建世.现代水资源规划—理论、方法和技术[M].北京清华大学出版社,2004.
    [2]中国地质调查局.地下水污染调查评价规范》(编号DD2008-01)[C].2008.
    [3]王秉忱,杨天行,王宝金等.地下水污染地下水水质模拟方法[M].北京:北京师范学院出版社,1985.
    [4]林学钰.论地下水水质模型[M].长春地质学院建院40周年科学研究论文集.1992,吉林科学技术出版社.
    [5]马瑞杰.水环境数学模型正、反演数值方法研究与应用[D].长春:吉林大学博士学位论文, 2005.
    [6]薛禹群,吴吉春.地下水数值模拟在我国——回顾与展望[J].水文地质工程地质,1997,(4): 21-24.
    [7]钱家忠,吴剑锋,朱学愚等.地下水资源评价与管理数学模型的研究进展[J].科学通报,2001, (2): 99-103.
    [8]英爱文.地下水监测与评价[J].水文,2006,26(3):63-66.
    [9]谷朝君,潘颖.内梅罗指数法在地下水水质评价中的应用及存在问题[J].环境保护科学,2002, 28(109):45-47.
    [10]薛巧英.水环境质量评价方法的比较分析[J].环境保护科学,2004,30(4):64-67.
    [11]高彦伟,陈殿友,张书辰.长春市地下水化学污染风险分析[J] .工程勘察,2009,37(12): 74-78.
    [12]吴剑锋,朱学愚,钱家忠.时间序列模型和有限元模型在地下水资源评价和开发中的应用-以徐州市裂隙岩溶水为例[J].高校地质学报,2000,6(3):470-478.
    [13]姚宏,李圭白,张景成等.蒙特卡罗方法在水污染控制理论中的应用前景[J].哈尔滨工业大学学报,2004,36(1):129-131.
    [14]陈欢欢,李星,丁文秀.Suffer 8.0等值线绘制的十二种方法[J].工程地球物理学报,2007, 4(1):52-57.
    [15]牛文杰.三维数据场可视化克里金建模及其算法的理论和应用研究[D].北京:北京航空航天大学,2002.
    [16]韩燕.多种Krige方法的数学模型[D].长春:吉林大学综合信息矿产预测研究所,2003
    [17]肖斌,赵鹏大,候景儒.地质统计学新进展[J].地球科学进展,2000,15(3):293-29.
    [18]杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展[J].水科学进展,1998, (1): 84-98.
    [19] Campbell JB. Spatial variation of sand content and pH within single contiguous delineation of two soil mapping units[J]. Soil Sci. Am. J.,1978,(42):460-464.
    [20] Paz-Gonzalez A, Castro M T T, Vieira S R. Geostatistical analysis of heavy metal in a one-hectare plot under natural vegetation in a serpentine area[J]. Canadian Journal of Soil Science, 2002,81(3):469-479.
    [21] Cattle J A, McBrantney A B, Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[J].Journal of Environmental Quality, 2002,31:1576-1588.
    [22] Goovaerts P,Webster R, Dubois J P. Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics[J]. Environmental and Ecological Statistics, 1997,(4):31-48.
    [23] Juang K ,Chen Y, Lee D. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils[J]. Environmental Pollution,2004, (127):229-238.
    [24]李毅,王文焰,王全九.土壤空间变异性研究[J].水土保持学报,2002,16(1):68-71.
    [25]龚元石,廖超子,李保国.土壤含水量和容重的空间变异及其分形特征[J].土壤学报, 1998, 35(1):10-15.
    [26]白红军,余国营,王国平.地统计学在湿地土壤养分空间异质性研究中的应用[J].农业环境保护,2001,20(5):311-314.
    [27]朱益玲,刘洪斌,江希流.江津市紫色土中N、P养分元素区域空间变异性研究[J].环境科学,2004,25(1):138-143.
    [28]刘付程,史学正,于东升等.太湖流域典型地区土壤全氮含量的空间变异特征[J].地理研究, 2004,23(1):63-70.
    [29]苏伟,聂宜民,胡晓洁等.农田土壤微量元素的空间变异及Kriging估值[J].华中农业大学学报,2004,23(2):222-226.
    [30]郑袁明,陈同斌,陈煌等.北京市近郊区土壤镍的空间结构及分布特征[J].地理学报, 2003, 58(3):470-476. 2000,18(2):80-85.
    [31]郭旭东,傅伯杰,马克明等.基于GIS和地统计学的土壤养分空间变异性特征研究[J].应用生态学报,2000,11(4):557-563.
    [32]孟健,马小明.Kriging空间分析法及其在城市大气污染中的应用[J].数学的实践与认识, 2002,32(2):309-312.
    [33]耿海青,谷树忠,姜楠.从煤烟型污染的时空变化看西部地区的环境安全问题[J].兰州大学学报,2005,41(4):121-125.
    [34]王学军,席爽.北京东郊污灌土壤重金属含量的Krige插值及重金属污染评价[J].中国环境科学, 1997,17(3):225-228.
    [35] Dagan G. Flow and transport in porous formation[M]. Springer-Verlag,Berlin,1989.
    [36] Paz-Gonzalez A,Castro M T T,Vieira S R. Geostatistical analysis of heavy metal in a one-hectare plot under natural vegetation in a serpentine area[J]. Canadian Journal of Soil Science.2002,81(3):469-479.
    [37] Cattle J A, McBrantney A B, Minasny B. Kriging method evaluation for assessing the spatial distribution of urban soil lead contamination[J].Journal of Environmental Quality, 2002,31:1576-1588.
    [38] Neuman S P, Jacobson E A. Analysis of monintrinsic spatial variability by residual kriging with application to regional groundwater levels[J]. Mathematical Geology. 1984,16(5):499-521.
    [39] Hoeksema R J.Cokrining Model for estimation of water-table elevation[J]. Water Resources Reserch.1989,25(3):429-438.
    [40] Woldt W, Bogardi I. Ground water monitoring network design using multiple criteria decision making and geostatistics[J]. Water Resources Bulletin, 1992,28(1):45-62.
    [41] Grabow G I, Mote C R, Sanders W L, et al.. Groundwater monitoring network design using minimum well density[J].Water Science and Technology-A Journal of the International Association on Water Pollution Research, 1993,(28):327-335.
    [42]宋儒.应用Kriging方法研究格尔木河流域地下水位动态观测网的优化配置[J].中国煤田地质,1997,9(4):39-42.
    [43]郭占荣,刘志明,朱延华.Krige法在地下水观测网优化设计中的应用[J].地球学报, 1998, 19(4):429-433.
    [44]许晓彤,陶月赞,席道瑛.用地质统计学方法评价点污染源对河流水质的影响[J].水资源保护,2005,21(4):42-46.
    [45]陈锁忠,陶芸,杨旭.随机模型预测潜水位动态变化的方法[J].南京师范大学学报,2002, 2(1): 75-80.
    [46]刘瑞民,王学军,郑一等.地统计学在太湖水质研究中的应用[J].环境科学学报. 2002,22 (2):209-212.
    [47]陈家军,郭乔羽,王红旗等.应用协同—泛Krige法估计地下水水位[J].水利学报,2000, (7): 7-13.
    [48]仵彦卿,李俊亭.地质统计方法在地下水位动态预测中的应用[J].西安地质学院学报, 1991,13(Supplement):84-92.
    [49]李国敏,陈崇希.Krige法在地下水数值模型中的应用[J],地质科技情报. 1995,14(3):95-99.
    [50]李保国,胡克林,黄元仿等.区域浅层地下水硝酸盐含量评价的指示克力格法[J].水利学报, 2001,3:1-5.
    [51]胡克林,李保国,陈德立.区域潜层地下水埋深和水质的空间变异性特征[J].水科学进展, 2000,11(4):408-414.
    [52]宋儒.应用Kriging方法研究格尔木河流域地下水位动态观测网的优化配置[J].中国煤田地质, 1997,9(4):39-42.
    [53]廖华胜,李连侠,Li Shu-guang.地下水非平稳随机模型及空间变异性与非均匀性相互关系研究的展望[J].水利学报,2004,(10):13-21.
    [54]徐玉佩,邱元峰.求解地下水质污染问题的一种纯对流型概率统计模型[J].武汉水利电力大学学报,1999,32(1):13-16.
    [55]张征,赵俊琳,王红旗等.水环境污染物迁移参数空间变异性分析原理与方法[J].北京师范大学学报,1998,34(4):542-548.
    [56]张征,刘淑春.地下水评价中分布参数随机性的空间统计分析[J].环境科学学报,1999,(4): 410-414.
    [57]张征,解明曙,王毅力等.环境模拟与评价中多变量空间结构模型及应用[J].北京林业大学学报,2003,25(5):59-63.
    [58]陈彦,吴吉春.含水层渗透系数空间变异性对地下水数值模拟的影响[J].水科学进展,2005, 16(4):482-487.
    [59]虎维岳.地下水管理模型中的参数随机性问题[J].煤炭学报,2000,25(6):581-584.
    [60]吕连宏,刘淑春,王薇等.空间信息统计学在环境科学领域的应用进展[J].地质灾害与环境保护,2005,16(2):194-197.
    [61]雒文生,宋星原.确定-随机联合模型法水质模拟与预测[J].水电能源科学,1994,12(1): 1-8.
    [62]姚磊华.地下水水流模型的摄动待定系数随机有限元法[J].水利学报,1999,(7):60-64.
    [63]利用三角网法绘制等值线[M].出版单位不详,2008.
    [64]高洋,张健.基于自然邻点插值的数据处理方法[J],中国科学院研究生院学报,2005,3: 85-90.
    [65]左其亭,吴泽宁,赵伟.水资源系统中的不确定性及风险分析方法[J].干旱区地理,2003, 26(2):116-121.
    [66]刘涛,邵东国,顾文权.基于层次分析法的供水风险综合评价模型[J].武汉大学学报,2006, 39(4):25-28.
    [67]王栋,潘少明,吴吉春等.洪水风险分析的研究进展与展望[J].自然灾害学报, 2006,15 (1):103-109.
    [68]王宪恩.水污染价值损失总量控制理论研究[D].吉林大学博士学位论文,2003.
    [69]王治祯,傅海江等.环境应用数学[A].哈尔滨工业大学出版社,2007.
    [70]孙山泽,抽样调查[A].北京:北京大学出版社,200
    [71]施锡铨,范正绮.数据分析与统计建模[A].上海人民出版社.2007.
    [72]侯景儒,黄竞先等.地质统计学的理论与方法[M].地质出版社,1990.
    [73]杜德文,马淑珍,陈永良.地质统计学方法综述[J].世界地质,1995,14(4):79-84.
    [74]崔建福.Krige技术开发研究及其在煤气层地质统计分析中的应用[D].昆明:云南大学数学学院,2004.
    [75]侯景儒,潘汉军等.协同区域化与协同Krige法[J].北京科技大学学报,1991,13(2):95-103.
    [76] Armstrong,M. Problem with universal kriging[J]. Math.Geol. 1984b,16(1):101-108.
    [77] Davis,B. Indicator kriging as applied to and alluvial gold deposit. In G. Verly et al.[M].Editors, Geostatistics for Natural Resources Characterization, 1984,Reidel, Dordrecht, Holland.
    [78]候景儒,王志民,潘汉军等.时间-空间域中多元信息的地质统计学[J],北京科技大学学报.1995,17(2) :101-106.
    [79]余先川,候景儒,程晓春等.时空信息统计学的一些基本理论和方法[J].北京师范大学学报, 2003,39(3):353-359.
    [80]肖斌,赵鹏大,候景儒.时空域中的指示Krige理论研究[J].地质与勘探,1999,35(4): 25-28.
    [81]肖斌,潘懋,赵鹏大.时空多元指示Krige法的理论研究[J].北京大学学报,1999,37(1): 94-98.
    [82]肖斌,赵鹏大,候景儒.纯时间域多元信息地质统计学[J].物探化探计算技术,1998,20(3): 205-211.
    [83]侯景儒,黄竞先,吴雨沛.非参数及多元地质统计学的理论分析及其应用[M].北京:冶金工业出版社,1992.
    [84]侯景儒.中国地质统计学(空间信息统计学)发展的回顾及前景[J].地质与勘探,1997,33 (1):53-58.
    [85]韩晓华.时空信息统计学方法及其在地表水评价中的应用[D].吉林大学硕士学位论文,2007.
    [86]高彦伟,陈志文,刘吉平.时域漂移的泛Krige模型.世界地质,2009,28(2):254-257.
    [87]高彦伟,戴经隆,马瑞杰.时空域Krige方法在地下水评价中的应用[J].工程勘察,2007, (10):38-41.
    [88]高彦伟,董德明.长春地区地下水含氮化合物的空间分布及预测[J] .吉林大学学报(理学版),2008,46(4):795-798.
    [89]程晓春,余先川,李春生等.非线性空间信息统计学的理论方法和应用[J].大庆石油学院学报,2004,28(1): 70-72.
    [90]薛薇.统计分析与SPSS的应用[A].中国人民大学出版社,2001.
    [91]何书元.应用时间序列分析[A].北京:北京大学出版社,2002.
    [92]中国工程院“21世纪中国可持续发展水资源战略研究”项目组.中国可持续发展水资源战略研究综合报告.中国工程科学,2002年8月,2(2): 1-16.
    [93]牛文杰,杨钦.超大数据体泛克里金插值的研究[J].石油地球物理勘探,2001,36(6): 672-679.
    [94]吴琼,李宏卿,王如松等.长春市地下水污染及其调控[J].城市环境与城市生态,2003,16: 49-51.
    [95]平建华,李升,钦丽娟等.地下水动态预测模型的回顾与展望[J].水资源保护,2006,22(4):11-15.
    [96] Ball,W.P.and P.V.Roberts,Long-term sorption of halogenated organic chemicals by aquifer material,2,Intraparticle diffusion,Envion. Sci.Technol.,25(7),1237-1249,1991b.
    [97] Burr,D. T.,E.A. Sudicky,and R.L.Naff, Nonreactive and reactive solute transport in three-dimensional heterogeneous porous media: Mean displacement, plume spreading, and uncertainty. Water Resour. Res.,30(3),791-815,1994.
    [98] Chin,D.A.,and T. Wang,An investigation of first-order stochastic dispersion theories in isotropic media,Water Resour.Res.,28(8),1531-1542,1992.
    [99] Cooley R.L.Incorporation of prior information on parameters into nonlinear regression groundwater flow model.1,Theory.Water Resources Research,1982,18(4),965-976.
    [100] Harter T. and T.C.Jim Yeh , Stochastic analusis of solute transport in heterogeneous,variably saturated soils, Water Resour.Res.,32(6),1585-1595,1996.
    [101]徐玉佩,邱元峰.求解地下水质污染问题的一种纯对流型概率统计模型[J].武汉水利电力大学学报,1999,32(1):13-16.
    [102] Tompson,A.F.P.,Numerical simulation of chemical migration in physically and chemically heterogeneous poros media, Water Resour.Res.,29(11),3709-3726,1993.
    [103] Tompson,A.F.P.and L.W. Gelhar ,Numerical simulation of solute transport in three- dimensional,randomly heterogeneous porous media, Water Resour.Res.,26(10),2541-2562,1990.
    [104]叶许春,张世涛等.昆明盆地浅层地下水氮的分布及污染机理[J] .水土保持学报,2007, 21(4):185-188.
    [105]樊明辉,陈崇成,池天河.基于Krige法的定点监测数据连续空间变化研究与应用[J].计算机工程与应用,2005,9:210-212.
    [106]徐敏,曾光明,黄国和等.非线性随机水环境风险模型[J].水利学报,2005,(1):1-7.
    [107] Ardahanlioglu O,Oztas T,Evren S,et al..Spatial variability of exchangeable sodium,electrical conductivity,soil pH and boron content in salt-and sodium-affected areas of the Igdir plain(Turkey)[J]. Journal of Arid Environments,2003,(54):495-503.
    [108] Chin-Fu Tsang.非均匀介质中地下水流动与溶质运移模拟[J].地球科学,2000,25(5): 443-450.
    [109] Soutter M,Musy A.Coupling 1D Monte-Carlo simulations and geostatistics to assess groundwater vulnerability to pesticide contamination on a regional scale[J].Journal of Contaminant Hydrology,1998,(32):25-39.
    [110] Hwang S-A,Fitzgerald E F,Cayo M,et al. Assessing environmental exposure to PCBs among Mohawks at Akwesasne through the use of geostatistical methods[J].Environmental Research,1999,(80):19-199.
    [111] Oliver M A. Kriging: A method of estimation for environmental and rare disease data[M].London: Geological Society Special Publications,1997.
    [112]宋汉周.污染地下水治理过程不确定性的影响因素分析[J].水文,2003,23(4):8-12.
    [113]刘金清,陆建华.国内外水文模型概论[J].水文,1996,NO4:4-8.
    [114]郭琳,蔡固平,曾光明.二维随机水质模型在模拟污染带中的应用[J].中南大学学报,2004, 35(4):573-576.
    [115]杨宁、曹剑峰,等.基于GIS的磐石市地下水环境质量分析[J] .吉林大学学报(地球科学版),2006,36(Sup):47-50.
    [116]张朝生,章申,何建邦.长江水系沉积物重金属含量空间分布特征研究--地统计学方法[J].地理学报,1997,52(2):184-192.
    [117]李同斌,邹丽芝.地下水动力学[A].吉林大学出版社,1995.
    [118]康海彦.纳米铁系金属复合材料去除地下水中硝酸盐污染的研究[D].天津:南开大学环境科学与工程学院博士学位论文,2007.
    [119]陈慧选,吴持平,吴家华等.应用地质统计法对土壤环境重金属最佳估值的研究[J].农业环境与发展,1994,3:19-22.
    [120]赵士鹏,金伦.地统计学及其在土壤环境背景值制图中的应用[J].中国环境监测, 1992,8 (5):61-64.
    [121]李继清,张玉山,王丽萍等.洪水综合风险结构与综合评价方法[J].武汉大学学报, 2006, 39(2):5-10.
    [122]刘付程,史学正,潘贤章等.太湖流域典型地区土壤磷素含量的空间变异特征[J].地理科学, 2003,23(1):77-81.
    [123]孙开封,叶勇.泛Krige法在三维地震资料变速成图中的应用[J].石油物探,1998,37(2): 112-117.
    [124]张乃明,李保国,胡克林.太原污灌区土壤重金属和盐分含量的空间变异特征[J].环境科学学报,2001,21(3):349-353.
    [125]李保国,胡克林,黄元仿等.区域浅层地下水硝酸盐含量评价的指示克力格法[J].水利学报, 2001,(3):1-5.
    [126]郭建青,马健,母敏霞等.潜层含水层水文地质参数的统计分布与空间相关性[J].勘查科学技术,2002,4:9-16.
    [127]胡克林,李保国,陈德立.区域潜层地下水埋深和水质的空间变异性特征[J].水科学进展, 2000,11(4):408-414.
    [128]方燕娜,林学钰,廖资生.吉林中部平原区地下水动态变化特征和地下水超采状况的判定[J].水文.2005,25(5):19-22.
    [129]张行南,耿庆斋,逄勇.水质模型与地理信息系统的集成研究[J].水利学报,2004,(1):1-6.
    [130]张团峰,王家华.试论克里金估计与随机模拟的本质区别[J].西安石油学院学报,1997, 12(2): 52-55.
    [131]朱锦旗,王彩会.苏锡常地区浅层地下水铁锰离子分布规律及成因分析[J] .水文地质工程地质,2006(3):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700