用户名: 密码: 验证码:
应用多模态磁共振成像对注意功能神经基础的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
注意是指对客观环境或主观意识的某一方面进行准备与选择的过程,是认知科学的中心主题。因为人脑只能同时处理有限的信息量,因而在日常生活中必须适当的对信息进行选择处理。随着神经心理学和神经影像学等研究技术的不断进步,注意的研究可以导致教育和认知训练等方面的革新。此外,许多神经精神疾病,如注意缺陷多动障碍、精神分裂症等,往往伴随注意能力的缺陷,因此,对注意的神经基础的研究也有助于揭示相关疾病的发病机制。
     注意包含不同的维度和特征。以往大量疾病和功能成像研究表明注意网络可分为警觉、定向和执行控制三个子网络,各有特定的解剖区域和生化机制。警觉是指维持一个灵敏状态以接受信息的传入,定向是指从传入的感觉中选择信息,执行控制是指解决反应中的冲突。然而,由于注意理论上的不一致以及脑成像模态的多样化,使得目前对注意功能的脑结构和功能基础仍然存在许多争论,这极大地阻碍了认知科学的发展。本研究借助于功能磁共振成像、弥散张量成像和结构磁共振成像等多模态脑成像方法,系统全面的研究注意功能的神经基础。研究结果表明注意的子网络与任务状态下的脑功能连接、白质各向异性和皮质厚度等指标均存在显著联系。本研究因而有助于我们从多种角度深入认识注意的神经机制。
     第一部分:任务状态下的脑功能连接影响注意的执行控制
     目的:执行控制功能是注意功能的一部分,是涉及行为调节、语言、记忆和情绪等高级的认知过程。本研究探讨执行控制过程中正常人大脑前扣带回与其它脑区之间的功能连接状况,及功能连接与注意网络测试行为学表现之间的关系。材料与方法:20例17~20岁的健康男性志愿者进行3.0T功能磁共振扫描,采用注意网络测试作为实验范式,注意网络测试能在单一的任务实验中提供警觉、定向和执行控制三种注意子网络功能的行为学数据。利用SPM进行数据预处理,分析执行控制网络激活的脑区,并计算前扣带回与背外侧额前皮质之间的功能连接,然后与注意网络测试的行为学得分做相关分析。
     结果:受试者的平均反应准确率达到95.4%,表明注意网络测试易于理解且数据可信。他们的执行控制和平均反应时间之间存在显著相关(r=0.58;P<0.01),警觉、定向和执行控制三个网络得分无相关性。执行控制网络激活的区域主要包括:前扣带回、额中回、额上回、丘脑等。在执行控制过程中,背侧前扣带回与两侧的背外侧额前皮质之间存在显著的功能连接,但只有左侧的背侧前扣带回与左侧的背外侧额前皮质之间的功能连接系数与执行控制的行为学得分存在显著负相关(r=-0.627;P<0.01),控制年龄、平均反应时间和准确率作为协变量。全脑功能连接分析也发现其他注意相关的区域与背侧前扣带回存在显著的功能连接,特别是左侧,主要包括两侧的缘上回、辅助运动区、岛叶和皮层下核。
     结论:注意的警觉、定向和执行控制三个子网络的行为学得分互不相关,表明它们三个是独立的网络系统。背侧前扣带回与背外侧额前皮质之间存在功能连接,并对注意的执行控制功能存在有利的影响,这有助于我们理解注意功能中相关脑区的功能整合作用。
     第二部分:注意三个子网络与后顶叶灰、白质的关系
     目的:神经心理学和功能影像学研究发现人脑后顶叶是行使注意功能的关键脑区。一般来讲,后顶叶涉及三个明确的认知功能:空间感知、视觉运动转换和视空间注意。警觉、定向和执行控制包含了后顶叶的这些功能,并且将不同的注意组分整合为一个完整的系统。注意的解剖结构基础,尤其是后顶叶的功能目前仍存有争论,这一方面说明注意功能的复杂性,另一方面也说明后顶叶各个分区参与了不同的注意亚功能网络。本研究即借助弥散张量成像和结构磁共振成像方法,调查后顶叶各个亚区皮质与皮质下的白质特性与注意功能的关系。
     材料与方法:我们收集了36位(男性22名)健康青少年的的磁共振和弥散张量成像数据。受试者男女之间的年龄和受教育程度无显著差异。本次试验使用注意网络测试的效率得分来检测注意的警觉、定向和执行控制表现。利用蒙特利尔神经病研究所脑成像中心的流程软件提取和配准皮质表面图像,使用牛津大学的FSL处理弥散张量数据。之后利用白动解剖标签模板把每侧的后顶叶分割为五个部分:顶上小叶、顶下小叶、缘上回、角回和楔前叶。计算出每个分区的皮质厚度、表面积和白质参数,并与行为学数据做相关分析。我们还使用基于纤维束的空间统计方法进行体素为基础的白质相关分析。最后,我们对相关的白质区域做概率纤维追踪,以明确其纤维联系。
     结果:注意的行为学表现和后顶叶皮质以及皮下结构的联系表现在多个水平:首先,我们发现右侧顶下小叶的皮质厚度、白质完整性与定向表现有关。概率纤维追踪揭示连接双侧顶下小叶的白质的完整性介导了注意的定向功能;其次,执行控制得分与右侧缘上回的白质参数存在明显相关;最后,基于纤维束的空间统计发现警觉功能与连接右侧丘脑和辅助运动区的白质区域的各向异性存在显著关联。
     结论:本研究首次利用多模态成像揭示了后顶叶各个分区的灰、白质特征与注意的三个子网络存在关联。这使我们对后顶叶参与视空间注意的神经机制有了更完整的认识。
     第三部分:白质各向异性侧化及其与注意功能的关系
     目的:人脑半球间存在着结构和功能的不对称性。相对于结构磁共振成像,弥散张量成像技术可以获得更多纤维微结构信息,因而被广泛用于白质侧化性研究。然而以往图像分析方法存在着诸多局限性,并且白质侧化与认知功能的关系目前仍然知之甚少。因此本研究的主要目的是利用弥散张量成像分析人脑白质的侧化,并研究其与注意功能的关系。
     材料与方法:我们招募15-19岁健康青少年志愿者59例(男31例,女28例),利用注意网络测试评价其警觉、定向和执行控制能力,并获取他们的脑弥散张量图像。利用FSL软件对图像进行预处理,采用基于纤维束的空间统计方法来研究白质区域侧化,所有受试者经过对称处理后的白质骨架图做左右翻转并与原图像相减,得到骨架侧化差异图。使用FSL随机化程序进行非参数的单样本t检验来分析骨架的侧化性。最后统计检验侧化和注意功能(警觉、定向和执行控制)的关系。结果:许多白质区域存在着明显的侧化,包括左侧化(左>右)的前扣带束、皮质脊髓束和大脑脚,右侧化的内囊、上纵束和后辐射冠,以及同时存在左右侧化的胼胝体和前辐射冠。进一步的研究发现额下区前辐射冠的左侧化与执行控制能力显著负相关;群组概率纤维追踪证实相关的纤维束来自下额枕束。下额枕束连接腹侧注意系统的关键脑区——下额叶和颞枕叶,该区白质损伤与精神分裂症和脑创伤后的执行能力下降有密切关联。我们的研究同时发现警觉和定向功能与白质各向异性侧化没有显著关联。
     结论:我们首次采用基于纤维束的空间统计方法来研究白质侧化,并分析了其与注意各个组分的关系。研究揭示人脑半球白质存在大量的侧化现象,其中额下区前辐射冠的左侧化降低注意的执行控制能力。我们推测认为人脑白质左右对称性有利于高级认知活动的完成,尤其是该认知功能涉及两个大脑半球时。
Attention is a central theme in cognitive science. It refers to both the preparedness for and selection of certain aspects of our physical environment or some ideas in our mind. Because of the limited capacity of the brain to handle information, the appropriate selection of information for processing becomes especially critical in our daily life. With more research tools in neuropsychological and neuroimaging studies becoming available, our understanding of attention is likely to yield innovations in education and cognitive training. Furthermore, the dysfunction of attention has been implicated in a number of neurological and psychiatric disorders, such as deficit/hyperactivity disorder and schizophrenia. Therefore, the studies for the neural basis of attention may bring new insights into the abnormal mechanisms of these diseases.
     Attention has various dimensions and characteristics. The previous lesion and functional neuroimaging studies have indicated that there were three key subsystems of attention, i.e. alerting, orienting, and executive control. These components of attention network have been shown to differ in their functional anatomy and neurochemical pathways. Briefly, alerting is defined as achieving and maintaining a state of high sensitivity; orienting refers to the selection of sensory information; and executive control is involved with the processing of cognitively incongruent stimuli or conflict. However, the brain functional and anatomical substrates of attention function are still highly debated, mainly due to the inconsistency among the attention models and the variations in the utilized imaging modalities. Therefore, it has become important to distinguish the roles of distinct brain cortical and subcortical regions on attention function. In this thesis, we utilized multi-modal imaging techniques, including task-related functional magnetic resonance imaging (fMRI), magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI), to investigate the neural substrates of attention. The findings revealed that the three components of attention were associated with the functional connectivity, cortical thickness and white matter (WM) integrity in distinct brain regions. In conclusion, current research would provide a better understanding for the neural substrates of attention.
     Part1:Effects of Functional Connectivity on Executive Control of Attention
     Objective:Executive control of attention refers to the higher order cognitive processes involved in the self-regulation of behavior, cognition such as memory, language, emotion and motivation. The current study aims to explore the functional connectivity between anterior cingulate cortex (ACC) and other brain regions, such as the dorsolateral prefrontal cortex (DLPFC), during the manipulation of attentional network test (ANT) and its relationship with the behavioral performance.
     Materials and Methods:The fMRI was used in twenty healthy male subjects of17to20years, with ANT as the paradigm. ANT could isolate three different attention components: alerting, orienting and executive control. Data were preprocessed by SPM. Correlation analysis was conducted between ACC-DLPFC functional connectivity and behavioral scores of ANT.
     Results:On average, the accuracy of ANT performance was very high (95.4%), indicating that the participants understood the instruction and were able to response reliably. The correlation between executive control effect and overall mean RT was significant (r=0.58; P<0.01). We found no significant correlations between any two items of the three components of attention. Several regions were activated by executive control, i.e., ACC, middle frontal gyrus, superior frontal gyrus, and thalamus. Significant functional connectivity between the dorsal ACC (dACC) with bilateral DLPFC was found. Furthermore, event-related functional connectivity coefficients between left dACC and left DLPFC were negatively associated with the behavioral scores of executive control (r=-0.627; P<0.01), controlled for age, mean reaction time and correct rate. Whole-brain analysis also revealed other attention-related regions, including bilateral supramarginal gurus, supplementary motor area, insula and subcortical nuclei that show functional connectivity with seed regions (especially the left dACC).
     Conclusion:The behavioral results prove that the alerting, orienting and executive control is independent to each other. Our findings provide new evidence that ACC and DLPFC are functionally connected and such functional connectivity would exhibit an advantageous influence on executive control function of attention, thereby contributing to our understanding of the integrated role of these brain regions in attentional network.
     Part2:Anatomical Substrates of the Attention Components: Focus on the Posterior Parietal Lobe
     Objective:Both neuropsychological and functional neuroimaging studies have identified that the posterior parietal lobe (PPL) is critical for the attention function. Generally, it is proposed that human PPL is involved in three distinguishing cognitive functions:spatial perception, vision-for-action and visuospatial attention. The taxonomy of alerting, orienting and executive control attention encompasses those parietal functions and integrates different attention components into one complete system. Controversy over the anatomical substrates of attention has highlighted the heterogeneity of this core cognitive operation and emphasized the complicated roles of distinct parietal subregions. Therfore, this part aims to investigate the unique role of distinct parietal cortical subregions and their underlying WM on attention by means of MRI and DTI.
     Materials and Methods:In this study, we collected both MRI and DTI data in36(22males) normal young participants. The males and females did not differ in mean age (18.4±0.9vs.17.9±0.9years) and education years (8.6±1.2vs.8.5±1.0years). Then we evaluated their attention performance using ANT. The MR images were first processed with the CIVET MRI analysis pipeline (version1.1.9) developed at Montreal Neurological Institute (MNI) to automatically extract and co-register the cortical surfaces for each subject. The DTI data was processed using FSL (University of Oxford, UK). Cortical thickness, surface area and DTI parameters were extracted from predefined PPL subregions using the automated anatomical labelling (AAL) template and correlated with behavioral performance. The AAL template segmented the PPL in each hemisphere into five partitions:superior parietal lobule, inferior parietal lobule, supramarginal gyrus, angular gyrus and precuneus. Tract-based spatial statistics (TBSS) was used for the voxel-wise statistical analysis. At last we performed Probabilistic diffusion tractography (PDT) to identify the WM pathways.
     Results:Results indicated structure-behavior relationships on multiple levels. First, a link between the cortical thickness and WM integrity of the right inferior parietal regions and orienting performance was observed. Specifically, PDT demonstrated that the integrity of WM connectivity between the bilateral inferior parietal lobules mediated the orienting performance. Second, the scores of executive control were significantly associated with the WM diffusion metrics of the right supramarginal gyrus. Finally, TBSS analysis revealed that alerting performance was significant correlated with the fractional anisotropy of local WM connecting the right thalamus and supplementary motor area. Conclusion:The most significant novelty is the validation of the distinct roles of PPL subregions on the three sub-networks of attention. These findings could yield a more complete understanding of the nature of the PPL contribution to visuospatial attention.
     Part3:The Asymmetries of White Matter and Their Influences on Attention
     Objective:Human brain hemispheres differ in their anatomy and function. Compared with structural MRI measures of WM volume or density, DTI provides more information about WM tissue microstructure and organization. WM asymmetries of the human brain have been well documented using DTI. However, the relationship between WM asymmetry pattern and cognitive performance is poorly understood because of the limitations of the applied techniques. So the main purpose of this study is to assess the effects of DTI asymmetries on individual differences in attention performances.
     Materials and Methods:A total of59healthy young subjects (31males) aged15~19years were included in the study. A version of the ANT was adapted as the cognitive task. DTI was performed for each of the subject and the DTI data was processed using FSL. We then used TBSS to test the asymmetries of fiber tracts. To implement the inter-hemispheric comparison of fibers, the4D DTI symmetric skeleton dataset was left-right flipped, and the voxel-wise difference map between the original and flipped images was created. The nonparametric1-sample t-test for the difference map was performed by Randomise program in the FSL, to determine the WM skeleton regions showing significant asymmetries. Finally we tested the correlations between WM integrity/asymmetries and three distinct components of attention, namely alerting, orienting, and executive control.
     Results:We revealed a number of WM anisotropy asymmetries, including leftward asymmetry of cingulum, corticospinal tract and cerebral peduncle, rightward asymmetry of internal capsule, superior longitudinal fasciculus and posterior corona radiata, as well as heterogeneous asymmetries in anterior corpus callosum and anterior corona radiata (ACR). Moreover, specific correlation was found between asymmetric pattern of inferior frontal ACR and executive control performance. Further tractography from correlated regions generated sagittal fiber paths, which exactly overlapped with inferior fronto-occipital fasciculus (IFOF). The reductions of WM integrity in IFOF are associated with deficits of executive function in patients with first-episode psychosis or chronic trauma. Additionally, current study also proposed that there were no significant relationships of WM anisotropy asymmetries to alerting and orienting functions.
     Conclusion:We used TBSS to investigate WM integrity asymmetries and for the first time to evaluate their relationships to distinct components of attention. There are a number of differences in WM integrity between human brain hemispheres. Specially, the anisotropy asymmetry in inferior frontal ACR plays a crucial role in executive control function. We speculate that WM anisotropy symmetry might be crucial for specific cognitive functions, especially the implement of which employs both hemispheres.
引文
1. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI. The activation of attentional networks. Neuroimage 2005,26(2):471-479.
    2. Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA. Dissociable executive functions in the dynamic control of behavior:inhibition, error detection, and correction. Neuroimage 2002,17(4):1820-1829.
    3. Marklund P, Fransson P, Cabeza R, Larsson A, Ingvar M, Nyberg L. Unity and diversity of tonic and phasic executive control components in episodic and working memory. Neuroimage 2007,36(4):1361-1373.
    4. Garbin G, Sanjuan A, Forn C, Bustamante JC, Rodriguez-Pujadas A, Belloch V, Hernandez M, Costa A, Avila C. Bridging language and attention:Brain basis of the impact of bilingualism on cognitive control. Neuroimage 2010,53(4): 1272-1278.
    5. Pessoa L. How do emotion and motivation direct executive control? Trends Cogn Sci 2009,13(4):160-166.
    6. Mesulam MM, Nobre AC, Kim YH, Parrish TB, Gitelman DR. Heterogeneity of cingulate contributions to spatial attention. Neuroimage 2001,13(6 Pt 1): 1065-1072.
    7. Paus T. Primate anterior cingulate cortex:where motor control, drive and cognition interface. Nat Rev Neurosci 2001,2(6):417-424.
    8. Beckmann M, Johansen-Berg H, Rushworth MFS. Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization. Journal of Neuroscience 2009,29(4):1175-1190.
    9. Friston K. Beyond phrenology:What can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience 2002,25:221-250.
    10. Fan J, Kolster R, Ghajar J, Suh M, Knight RT, Sarkar R, McCandliss BD. Response anticipation and response conflict:an event-related potential and functional magnetic resonance imaging study. J Neurosci 2007,27(9):2272-2282.
    11. Wang K, Fan J, Dong Y, Wang CQ, Lee TM, Posner MI. Selective impairment of attentional networks of orienting and executive control in schizophrenia. SchizophrRes 2005,78(2-3):235-241.
    12. Nestor PG, Kubicki M, Spencer KM, Niznikiewicz M, McCarley RW, Shenton ME. Attentional networks and cingulum bundle in chronic schizophrenia. Schizophr Res 2007,90(1-3):308-315.
    13. Paus T, Castro-Alamancos MA, Petrides M. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. European Journal of Neuroscience 2001, 14(8):1405-1411.
    14. Harrison BJ, Shaw M, Yucel M, Purcell R, Brewer WJ, Strother SC, Egan GF, Olver JS, Nathan PJ, Pantelis C. Functional connectivity during Stroop task performance. Neuroimage 2005,24(1):181-191.
    15. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP. Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 2007,37(2):579-588.
    16. Kelly AM, Di Martino A, Uddin LQ, Shehzad Z, Gee DG, Reiss PT, Margulies DS, Castellanos FX, Milham MP. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cereb Cortex 2009,19(3): 640-657.
    17. Prado J, Carp J, Weissman DH. Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. Neuroimage 2011,54(1):541-549.
    18. Banich MT. Executive Function:The Search for an Integrated Account. Current Directions in Psychological Science 2009,18(2):89-94.
    19. Silton RL, Heller W, Towers DN, Engels AS, Spielberg JM, Edgar JC, Sass SM, Stewart JL, Sutton BP, Banich MT, Miller GA. The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage 2010,50(3):1292-1302.
    20. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002,3(3):201-215.
    21. Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci US A 2008,105(34):12569-12574.
    22. Rees G. Visual attention:the thalamus at the centre? Curr Biol 2009,19(5): R213-214.
    1. Raz A, Buhle J:Typologies of attentional networks. Nat Rev Neurosci 2006, 7(5):367-379.
    2. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI:The activation of attentional networks. Neuroimage 2005,26(2):471-479.
    3. Niogi S, Mukherjee P, Ghajar J, McCandliss BD:Individual Differences in Distinct Components of Attention are Linked to Anatomical Variations in Distinct White Matter Tracts. Front Neuroanat 2010,4:2.
    4. Posner MI, Petersen SE:The attention system of the human brain. Annu Rev Neurosci 1990,13:25-42.
    5. Thiel CM, Zilles K, Fink GR:Cerebral correlates of alerting, orienting and reorienting of visuospatial attention:an event-related fMRI study. Neuroimage 2004,21(1):318-328.
    6. Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stocker T, Shah NJ et al: Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 2010:1-11.
    7. Westlye LT, Grydeland H, Walhovd KB, Fjell AM:Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb Cortex 2011,21(2):345-356.
    8. Posner MI:Measuring alertness. Ann N YAcad Sci 2008,1129:193-199.
    9. Fan J, Byrne J, Worden MS, Guise KG, McCandliss BD, Fossella J, Posner MI: The relation of brain oscillations to attentional networks. J Neurosci 2007, 27(23):6197-6206.
    10. Green AE, Munafo MR, Deyoung CG, Fossella JA, Fan J, Gray JR:Using genetic data in cognitive neuroscience:from growing pains to genuine insights. Nat Rev Neurosci 2008.
    11. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI:Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002,14(3):340-347.
    12. Blankenburg F, Ruff CC, Bestmann S, Bjoertomt O, Josephs O, Deichmann R, Driver J:Studying the role of human parietal cortex in visuospatial attention with concurrent TMS-fMRI. Cereb Cortex 2010,20(11):2702-2711.
    13. Rizzolatti G, Matelli M:Two different streams form the dorsal visual system: anatomy and functions. Exp Brain Res 2003,153(2):146-157.
    14. Saalmann YB, Pigarev IN, Vidyasagar TR:Neural mechanisms of visual attention:how top-down feedback highlights relevant locations. Science 2007, 316(5831):1612-1615.
    15. Buschman TJ, Miller EK:Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007,315(5820):1860-1862.
    16. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL:Voluntary orienting is dissociated from target detection in human posterior parietal cortex (vol 3, pg 292,2000). Nature Neuroscience 2000,3(5):521-521.
    17. Culham J:Dissociations within association cortex. Neuron 2002,33(3):318-320.
    18. Gottlieb J:From thought to action:the parietal cortex as a bridge between perception, action, and cognition. Neuron 2007,53(1):9-16.
    19. Han S, Jiang Y, Gu H, Rao H, Mao L, Cui Y, Zhai R:The role of human parietal cortex in attention networks. Brain 2004,127(Pt 3):650-659.
    20. Lane AR, Smith DT, Schenk T, Ellison A:The involvement of posterior parietal cortex in feature and conjunction visuomotor search. J Cogn Neurosci 2011,23(8):1964-1972.
    21. Bush G:Cingulate, Frontal, and Parietal Cortical Dysfunction in Attention-Deficit/Hyperactivity Disorder. Biol Psychiatry 2011.
    22. Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C:Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 2009,19(3):524-536.
    23. Tamm L, Menon V, Reiss AL:Parietal attentional system aberrations during target detection in adolescents with attention deficit hyperactivity disorder: Event-related fMRI evidence. Am JPsychiat 2006,163(6):1033-1043.
    24. Vance A, Silk TJ, Casey M, Rinehart NJ, Bradshaw JL, Bellgrove MA, Cunnington R:Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type:a functional MRI study. Mol Psychiatr 2007,12(9):826-832.
    25. Gillebert CR, Mantini D, Thijs V, Sunaert S, Dupont P, Vandenberghe R:Lesion evidence for the critical role of the intraparietal sulcus in spatial attention. Brain 2011,134(Pt 6):1694-1709.
    26. Hillis AE, Newhart M, Heidler J, Barker PB, Herskovits EH, Degaonkar M: Anatomy of spatial attention:insights from perfusion imaging and hemispatial neglect in acute stroke. J Neurosci 2005,25(12):3161-3167.
    27. Malhotra P, Coulthard EJ, Husain M:Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 2009,132(Pt 3):645-660.
    28. Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Husain M:The anatomy of visual neglect. Brain 2003,126(Pt 9):1986-1997.
    29. Coull JT, Frith CD, Frackowiak RS, Grasby PM:A fronto-parietal network for rapid visual information processing:a PET study of sustained attention and working memory. Neuropsychologia 1996,34(11):1085-1095.
    30. Pardo JV, Fox PT, Raichle ME:Localization of a human system for sustained attention by positron emission tomography. Nature 1991,349(6304):61-64.
    31. Perin B, Godefroy O, Fall S, de Marco G:Alertness in young healthy subjects: an fMRI study of brain region interactivity enhanced by a warning signal. Brain Cogn 2010,72(2):271-281.
    32. Yanaka HT, Saito DN, Uchiyama Y, Sadato N:Neural substrates of phasic alertness:a functional magnetic resonance imaging study. Neurosci Res 2010, 68(1):51-58.
    33. Baluch F, Itti L:Mechanisms of top-down attention. Trends Neurosci 2011, 34(4):210-224.
    34. Behrmann M, Geng JJ, Shomstein S:Parietal cortex and attention. Curr Opin Neurobiol 2004,14(2):212-217.
    35. Corbetta M, Shulman GL:Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002,3(3):201-215.
    36. Chambers CD, Payne JM, Stokes MG, Mattingley JB:Fast and slow parietal pathways mediate spatial attention. Nat Neurosci 2004,7(3):217-218.
    37. Arcizet F, Mirpour K, Bisley JW:A pure salience response in posterior parietal cortex. Cereb Cortex 2011,21(11):2498-2506.
    38. Szczepanski SM, Konen CS, Kastner S:Mechanisms of spatial attention control in frontal and parietal cortex. JNeurosci 2010,30(1):148-160.
    39. Balslev D, Nielsen FA, Paulson OB, Law I:Right temporoparietal cortex activation during visuo-proprioceptive conflict. Cereb Cortex 2005,15(2):166-169.
    40. Papeo L, Longo MR, Feurra M, Haggard P:The role of the right temporoparietal junction in intersensory conflict:detection or resolution? Exp Brain Res 2010,206(2):129-139.
    41. Schiff S, Bardi L, Basso D, Mapelli D:Timing spatial conflict within the parietal cortex:a TMS study. J Cogn Neurosci 2011,23(12):3998-4007.
    42. Friedman-Hill SR, Robertson LC, Desimone R, Ungerleider LG:Posterior parietal cortex and the filtering of distractors. Proc Natl Acad Sci U S A 2003, 100(7):4263-4268.
    43. Oldfield RC:The assessment and analysis of handedness:the Edinburgh inventory. Neuropsychologia 1971,9(1):97-113.
    44. Yin X, Han Y, Ge H, Xu W, Huang R, Zhang D, Xu J, Fan L, Pang Z, Liu S: Inferior frontal white matter asymmetry correlates with executive control of attention. Hum Brain Mapp 2011.
    45. Fan J, Fossella J, Sommer T, Wu Y, Posner MI:Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci U S A 2003, 100(12):7406-7411.
    46. Eriksen BA, Eriksen CW:Effects of Noise Letters Upon Identification of a Target Letter in a Nonsearch Task. Perception & Psychophysics 1974, 16(1):143-149.
    47. Neuhaus AH, Koehler S, Opgen-Rhein C, Urbanek C, Hahn E, Dettling M: Selective anterior cingulate cortex deficit during conflict solution in schizophrenia:an event-related potential study. J Psychiatr Res 2007, 41(8):635-644.
    48. Urbanek C, Neuhaus AHM, Opgen-Rhein C, Strathmann S, Wieseke N, Schaub RT, Hahn E, Dettling M:Attention Network Test (ANT) Reveals Gender-Specific Alterations of Executive Function in Schizophrenia. Biol Psychiat 2009,65(8):161s-162s.
    49. Wang K, Fan J, Dong Y, Wang CQ, Lee TM, Posner MI:Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophr Res 2005,78(2-3):235-241.
    50. Sled JG, Zijdenbos AP, Evans AC:A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998,17(1):87-97.
    51. Collins DL, Neelin P, Peters TM, Evans AC:Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 1994,18(2):192-205.
    52. Zijdenbos AP, Forghani R, Evans AC:Automatic "pipeline" analysis of 3-D MRI data for clinical trials:application to multiple sclerosis. IEEE Trans Med Imaging 2002,21(10):1280-1291.
    53. Kim JS, Singh V, Lee JK, Lerch J, Ad-Dab'bagh Y, MacDonald D, Lee JM, Kim SI, Evans AC:Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification. Neuroimage 2005,27(1):210-221.
    54. Lyttelton O, Boucher M, Robbins S, Evans A:An unbiased iterative group registration template for cortical surface analysis. Neuroimage 2007, 34(4):1535-1544.
    55. Lerch JP, Evans AC:Cortical thickness analysis examined through power analysis and a population simulation. Neuroimage 2005,24(1):163-173.
    56. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M:Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002,15(1):273-289.
    57. Smith SM:Fast robust automated brain extraction. Hum Brain Mapp 2002, 17(3):143-155.
    58. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE et al: Advances in functional and structural MR image analysis and implementation as FSL Neuroimage 2004,23 Suppl 1:S208-219.
    59. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al: Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31(4):1487-1505.
    60. Kochunov P, Coyle T, Lancaster J, Robin DA, Hardies J, Kochunov V, Bartzokis G, Stanley J, Royall D, Schlosser AE et al: Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage 2010,49(2):1190-1199.
    61. Tamnes CK, Ostby Y, Fjell AM, Westlye LT, Due-Tonnessen P, Walhovd KB: Brain maturation in adolescence and young adulthood:regional age-related changes in cortical thickness and white matter volume and microstructure. Cereb Cortex 2010,20(3):534-548.
    62. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW:Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 2007,34(1):144-155.
    63. Corbetta M, Patel G, Shulman GL:The reorienting system of the human brain: from environment to theory of mind. Neuron 2008,58(3):306-324.
    64. Cieslik EC, Zilles K, Kurth F, Eickhoff SB:Dissociating bottom-up and top-down processes in a manual stimulus-response compatibility task. J Neurophysiol 2010,104(3):1472-1483.
    65. Shulman GL, Pope DL, Astafiev SV, McAvoy MP, Snyder AZ, Corbetta M: Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal frontoparietal network. J Neurosci 2010, 30(10):3640-3651.
    66. Simpson GV, Weber DL, Dale CL, Pantazis D, Bressler SL, Leahy RM, Luks TL: Dynamic activation of frontal, parietal, and sensory regions underlying anticipatory visual spatial attention. J Neurosci 2011,31(39):13880-13889.
    67. Bisley JW, Mirpour K, Arcizet F, Ong WS:The role of the lateral intraparietal area in orienting attention and its implications for visual search. Eur J Neurosci 2011,33(11):1982-1990.
    68. Kinsbourne M:Hemi-neglect and hemisphere rivalry. Adv Nenrol 1977,18:41-49.
    69. Silvanto J, Muggleton N, Lavie N, Walsh V:The perceptual and functional consequences of parietal top-down modulation on the visual cortex. Cereb Cortex 2009,19(2):327-330.
    70. Koch G, Cercignani M, Bonni S, Giacobbe V, Bucchi G, Versace V, Caltagirone C, Bozzali M:Asymmetry of parietal interhemispheric connections in humans. J Neurosci 2011,31(24):8967-8975.
    71. Tamnes CK, Ostby Y, Walhovd KB, Westlye LT, Due-Tonnessen P, Fjell AM: Neuroanatomical correlates of executive functions in children and adolescents:a magnetic resonance imaging (MRI) study of cortical thickness. Neuropsychologia 2010,48(9):2496-2508.
    72. Crespo-Facorro B, Roiz-Santianez R, Perez-Iglesias R, Rodriguez-Sanchez JM, Mata I, Tordesillas-Gutierrez D, Sanchez E, Tabares-Seisdedos R, Andreasen N, Magnotta V et al:Global and regional cortical thinning in first-episode psychosis patients:relationships with clinical and cognitive features. Psychol Med 2011,41(7):1449-1460.
    73. Badre D, Wagner AD:Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron 2004,41(3):473-487.
    74. MacDonald AW,3rd, Cohen JD, Stenger VA, Carter CS:Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000,288(5472):1835-1838.
    75. Walsh BJ, Buonocore MH, Carter CS, Mangun GR:Integrating conflict detection and attentional control mechanisms. J Cogn Neurosci 2011, 23(9):2211-2221.
    76. Hartwigsen G, Baumgaertner A, Price CJ, Koehnke M, Ulmer S, Siebner HR: Phonological decisions require both the left and right supramarginal gyri. Proc Natl Acad Sci U S A 2010,107(38):16494-16499.
    77. Rushworth MF, Behrens TE, Johansen-Berg H:Connection patterns distinguish 3 regions of human parietal cortex. Cereb Cortex 2006,16(10):1418-1430.
    78. Sturm W, Willmes K:On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 2001,14(1 Pt 2):S76-84.
    79. Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ: Brain activity relating to the contingent negative variation:an fMRI investigation. Neuroimage 2004,21(4):1232-1241.
    80. Fimm B, Zahn R, Mull M, Kemeny S, Buchwald F, Block F, Schwarz M: Asymmetries of visual attention after circumscribed subcortical vascular lesions. J Neurol Neurosurg Psychiatry 2001,71(5):652-657.
    81. Mainero C, Caramia F, Pozzilli C, Pisani A, Pestalozza I, Bordello G, Bozzao L, Pantano P:fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 2004,21(3):858-867.
    82. Kinomura S, Larsson J, Gulyas B, Roland PE:Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 1996, 271(5248):512-515.
    83. Michelon P, Vettel JM, Zacks JM:Lateral somatotopic organization during imagined and prepared movements. J Neurophysiol 2006,95(2):811-822.
    84. Picard N, Strick PL:Motor areas of the medial wall:a review of their location and functional activation. Cereb Cortex 1996,6(3):342-353.
    85. Mayo JP:Intrathalamic mechanisms of visual attention. J Neurophysiol 2009, 101(3):1123-1125.
    86. Akkal D, Dum RP, Strick PL:Supplementary motor area and presupplementary motor area:targets of basal ganglia and cerebellar output. JNeurosci 2007,27(40):10659-10673.
    87. McAlonan K, Cavanaugh J, Wurtz RH:Guarding the gateway to cortex with attention in visual thalamus. Nature 2008,456(7220):391-394.
    88. Bermudez P, Lerch JP, Evans AC, Zatorre RJ:Neuroanatomical correlates of musicianship as revealed by cortical thickness and voxel-based morphometry. Cereb Cortex 2009,19(7):1583-1596.
    89. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL et al: Neurodevelopmental trajectories of the human cerebral cortex. JNeurosci 2008,28(14):3586-3594.
    90. Bourgeois JP, Rakic P:Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 1993, 13(7):2801-2820.
    91. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW: Longitudinal mapping of cortical thickness and brain growth in normal children. J Neurosci 2004,24(38):8223-8231.
    92. Chen ZJ, He Y, Rosa-Neto P, Gong G, Evans AC:Age-related alterations in the modular organization of structural cortical network by using cortical thickness from MRI. Neuroimage 2011.
    1. Toga AW, Thompson PM:Mapping brain asymmetry. Nat Rev Neurosci 2003, 4(1):37-48.
    2. Fornito A, Yucel M, Wood S, Stuart GW, Buchanan JA, Proffitt T, Anderson V, Velakoulis D, Pantelis C:Individual differences in anterior cingulate/paracingulate morphology are related to executive functions in healthy males. Cereb Cortex 2004,14(4):424-431.
    3. Fornito A, Wood SJ, Whittle S, Fuller J, Adamson C, Saling MM, Velakoulis D, Pantelis C, Yucel M:Variability of the paracingulate sulcus and morphometry of the medial frontal cortex:associations with cortical thickness, surface area, volume, and sulcal depth. Hum Brain Mapp 2008, 29(2):222-236.
    4. Yan H, Zuo XN, Wang D, Wang J, Zhu C, Milham MP, Zhang D, Zang Y: Hemispheric asymmetry in cognitive division of anterior cingulate cortex:a resting-state functional connectivity study. Neuroimage 2009,47(4):1579-1589.
    5. Koziol JA, Wagner S, Sobel DF, Feng AC, Adams HP:Asymmetries in the spatial distributions of enhancing lesions and black holes in relapsing-remitting MS. J Clin Neurosci 2005,12(8):895-901.
    6. Muhlau M, Gaser C, Wohlschlager AM, Weindl A, Stadtler M, Valet M, Zimmer C, Kassubek J, Peinemann A:Striatal gray matter loss in Huntington's disease is leftward biased. Mov Disord 2001,22(8):1169-1173.
    7. Kawasaki Y, Suzuki M, Takahashi T, Nohara S, McGuire PK, Seto H, Kurachi M: Anomalous cerebral asymmetry in patients with schizophrenia demonstrated by voxel-based morphometry. Biol Psychiatry 2008,63(8):793-800.
    8. Narr K, Thompson P, Sharma T, Moussai J, Zoumalan C, Rayman J, Toga A: Three-dimensional mapping of gyral shape and cortical surface asymmetries in schizophrenia:gender effects. Am J Psychiatry 2001,158(2):244-255.
    9. Takao H, Abe O, Yamasue H, Aoki S, Kasai K, Ohtomo K:Cerebral asymmetry in patients with schizophrenia:a voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) study. J Magn Reson Imaging 2010,31(1):221-226.
    10. Zhou SY, Suzuki M, Hagino H, Takahashi T, Kawasaki Y, Nohara S, Yamashita I, Seto H, Kurachi M:Decreased volume and increased asymmetry of the anterior limb of the internal capsule in patients with schizophrenia. Biol Psychiatry 2003,54(4):427-436.
    11. Reite M, Teale P, Rojas DC, Arciniegas D, Sheeder J:Bipolar disorder: Anomalous brain asymmetry associated with psychosis. Am J Psychiat 1999, 156(8):1159-1163.
    12. Luders E, Narr KL, Zaidel E, Thompson PM, Jancke L, Toga AW:Parasagittal asymmetries of the corpus callosum. Cereb Cortex 2006,16(3):346-354.
    13. Watkins KE, Paus T, Lerch JP, Zijdenbos A, Collins DL, Neelin P, Taylor J, Worsley KJ, Evans AC:Structural asymmetries in the human brain:a voxel-based statistical analysis of 142 MRI scans. Cereb Cortex 2001, 11(9):868-877.
    14. Good CD, Johnsrude I, Ashburner J, Henson RNA, Friston KJ, Frackowiak RSJ: Cerebral asymmetry and the effects of sex and handedness on brain structure:A voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001,14(3):685-700.
    15. Mori S, Zhang J:Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 2006,51(5):527-539.
    16. Huster RJ, Westerhausen R, Kreuder F, Schweiger E, Wittling W:Hemispheric and gender related differences in the midcingulum bundle:a DTI study. Hum Brain Mapp 2009,30(2):383-391.
    17. Ardekani S, Kumar A, Bartzokis G, Sinha U:Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn Reson Imaging 2007,25(2):154-167.
    18. Jahanshad N, Lee AD, Barysheva M, McMahon KL, de Zubicaray GI, Martin NG, Wright MJ, Toga AW, Thompson PM:Genetic influences on brain asymmetry: a DTI study of 374 twins and siblings. Neuroimage 2010,52(2):455-469.
    19. Park HJ, Westin CF, Kubicki M, Maier SE, Niznikiewicz M, Baer A, Frumin M, Kikinis R, Jolesz FA, McCarley RW et al: White matter hemisphere asymmetries in healthy subjects and in schizophrenia:a diffusion tensor MRI study. Neuroimage 2004,23(1):213-223.
    20. Verhoeven JS, Sage CA, Leemans A, Van Hecke W, Callaert D, Peeters R, De Cock P, Lagae L, Sunaert S:Construction of a stereotaxic DTI atlas with full diffusion tensor information for studying white matter maturation from childhood to adolescence using tractography-based segmentations. Hum Brain Mapp 2010,31(3):470-486.
    21. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Matthews PM et al: Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data. Neuroimage 2006, 31(4):1487-1505.
    22. Van Hecke W, Leemans A, De Backer S, Jeurissen B, Parizel PM, Sijbers J: Comparing isotropic and anisotropic smoothing for voxel-based DTI analyses:A simulation study. Hum Brain Mapp 2010,31(1):98-114.
    23. Takao H, Hayashi N, Ohtomo K:Effect of scanner in asymmetry studies using diffusion tensor imaging. Neuroimage 2011,54(2):1053-1062.
    24. Johansen-Berg H, Della-Maggiore V, Behrens TE, Smith SM, Paus T:Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage 2007,36 Suppl 2:T 16-21.
    25. Kochunov P, Coyle T, Lancaster J, Robin DA, Hardies J, Kochunov V, Bartzokis G, Stanley J, Royall D, Schlosser AE et al: Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. Neuroimage 2010,49(2):1190-1199.
    26. Rudebeck SR, Scholz J, Millington R, Rohenkohl G, Johansen-Berg H, Lee AC: Fornix microstructure correlates with recollection but not familiarity memory. J Neurosci 2009,29(47):14987-14992.
    27. Iturria-Medina Y, Fernandez AP, Morris DM, Canales-Rodriguez EJ, Haroon HA, Penton LG, Augath M, Garcia LG, Logothetis N, Parker GJM et al: Brain Hemispheric Structural Efficiency and Interconnectivity Rightward Asymmetry in Human and Nonhuman Primates. Cerebral Cortex 2011, 21(l):56-67.
    28. Kinsbourne M:Asymmetry and the brain. Science 1978,200(4342):651-652.
    29. Malhotra P, Coulthard EJ, Husain M:Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 2009,132(Pt 3):645-660.
    30. Mort DJ, Malhotra P, Mannan SK, Rorden C, Pambakian A, Kennard C, Husain M:The anatomy of visual neglect. Brain 2003,126(Pt 9):1986-1997.
    31. Jansen A, Floel A, Deppe M, van Randenborgh J, Drager B, Kanowski M, Knecht S:Determining the hemispheric dominance of spatial attention:a comparison between fTCD and fMRI. Hum Brain Mapp 2004,23(3):168-180.
    32. Prado J, Carp J, Weissman DH:Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. Neuroimage 2011,54(1):541-549.
    33. Thiebaut de Schotten M, Dell'Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M:A lateralized brain network for visuospatial attention. Nat Neurosci 2011,14(10):1245-1246.
    34. Hiscock M, Kinsbourne M:Attention and the right-ear advantage:what is the connection? Brain Cogn 2011,76(2):263-275.
    35. Catani M, Allin MP, Husain M, Pugliese L, Mesulam MM, Murray RM, Jones DK:Symmetries in human brain language pathways correlate with verbal recall. Proc Natl Acad Sci USA 2007,104(43):17163-17168.
    36. Gannon PJ, Holloway RL, Broadfield DC, Braun AR:Asymmetry of chimpanzee planum temporale:humanlike pattern of Wernicke's brain language area homolog. Science 1998,279(5348):220-222.
    37. Glasser MF, Rilling JK:DTI tractography of the human brain's language pathways. Cereb Cortex 2008,18(11):2471-2482.
    38. Raz A, Buhle J:Typologies of attentional networks. Nat Rev Neurosci 2006, 7(5):367-379.
    39. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI:The activation of attentional networks. Neuroimage 2005,26(2):471-479.
    40. Niogi S, Mukherjee P, Ghajar J, McCandliss BD:Individual Differences in Distinct Components of Attention are Linked to Anatomical Variations in Distinct White Matter Tracts. Front Neuroanat 2010,4:2.
    41. Posner MI, Petersen SE:The attention system of the human brain. Annu Rev Neurosci 1990,13:25-42.
    42. Thiel CM, Zilles K, Fink GR:Cerebral correlates of alerting, orienting and reorienting of visuospatial attention:an event-related fMRI study. Neuroimage 2004,21(1):318-328.
    43. Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stocker T, Shah NJ et al: Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 2010:1-11.
    44. Westlye LT, Grydeland H, Walhovd KB, Fjell AM:Associations between regional cortical thickness and attentional networks as measured by the attention network test. Cereb Cortex 2011,21(2):345-356.
    45. Posner MI:Measuring alertness. Ann N Y Acad Sci 2008,1129:193-199.
    46. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI:Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002,14(3):340-347.
    47. Fan J, Byrne J, Worden MS, Guise KG, McCandliss BD, Fossella J, Posner MI: The relation of brain oscillations to attentional networks. J Neurosci 2007, 27(23):6197-6206.
    48. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J, Herpertz-Dahlmann B, Fink GR:Development of attentional networks:an fMRI study with children and adults. Neuroimage 2005,28(2):429-439.
    49. Adolfsdottir S, Sorensen L, Lundervold AJ:The attention network test:a characteristic pattern of deficits in children with ADHD. Behav Brain Funct 2008,4:9.
    50. Konrad K, Neufang S, Hanisch C, Fink GR, Herpertz-Dahlmann B: Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder:evidence from an event-related functional magnetic resonance imaging study. Biol Psychiatry 2006,59(7):643-651.
    51. Gooding DC, Braun JG, Studer JA:Attentional network task performance in patients with schizophrenia-spectrum disorders:evidence of a specific deficit. Schizophr Res 2006,88(1-3):169-178.
    52. Neuhaus AH, Koehler S, Opgen-Rhein C, Urbanek C, Hahn E, Dettling M: Selective anterior cingulate cortex deficit during conflict solution in schizophrenia:an event-related potential study. J Psychiatr Res 2007, 41(8):635-644.
    53. Opgen-Rhein C, Neuhaus AH, Urbanek C, Hahn E, Sander T, Dettling M: Executive Attention in Schizophrenic Males and the Impact of COMT Val(108/158)Met Genotype on Performance on the Attention Network Test. Schizophrenia Bull 2008,34(6):1231-1239.
    54. Urbanek C, Neuhaus AHM, Opgen-Rhein C, Strathmann S, Wieseke N, Schaub RT, Hahn E, Dettling M:Attention Network Test (ANT) Reveals Gender-Specific Alterations of Executive Function in Schizophrenia. Biol Psychiat 2009,65(8):161s-162s.
    55. Keehn B, Lincoln AJ, Muller RA, Townsend J:Attentional networks in children and adolescents with autism spectrum disorder. J Child Psychol Psychiatry 2010,51(11):1251-1259.
    56. Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Hevelone ND, Rosas HD:Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. Proc Natl Acad Sci U S A 2005,102(34):12212-12217.
    57. Barrick TR, Lawes IN, Mackay CE, Clark CA:White matter pathway asymmetry underlies functional lateralization. Cereb Cortex 2007,17(3):591-598.
    58. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD:Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999, 402(6758):179-181.
    59. Fan J, Kolster R, Ghajar J, Suh M, Knight RT, Sarkar R, McCandliss BD: Response anticipation and response conflict:an event-related potential and functional magnetic resonance imaging study. J Nenrosci 2007,27(9):2272-2282.
    60. MacDonald AW,3rd, Cohen JD, Stenger VA, Carter CS:Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000,288(5472):1835-1838.
    61. Silton RL, Heller W, Towers DN, Engels AS, Spielberg JM, Edgar JC, Sass SM, Stewart JL, Sutton BP, Banich MT et al: The time course of activity in dorsolateral prefrontal cortex and anterior cingulate cortex during top-down attentional control. Neuroimage 2010,50(3):1292-1302.
    62. Mamah D, Conturo TE, Harms MP, Akbudak E, Wang L, McMichael AR, Gado MH, Barch DM, Csernansky JG:Anterior thalamic radiation integrity in schizophrenia:a diffusion-tensor imaging study. Psychiatry Res 2010, 183(2):144-150.
    63. Nestor PG, Kubicki M, Spencer KM, Niznikiewicz M, McCarley RW, Shenton ME:Attentional networks and cingulum bundle in chronic schizophrenia. Schizophr Res 2007,90(1-3):308-315.
    64. Oldfield RC:The assessment and analysis of handedness:the Edinburgh inventory. Neuropsychologia 1971,9(1):97-113.
    65. Carver CS, White TL:Behavioral-Inhibition, Behavioral Activation, and Affective Responses to Impending Reward and Punishment-the Bis Bas Scales. J Pers Soc Psychol 1994,67(2):319-333.
    66. Yu C, Li J, Liu Y, Qin W, Li Y, Shu N, Jiang T, Li K:White matter tract integrity and intelligence in patients with mental retardation and healthy adults. Neuroimage 2008,40(4):1533-1541.
    67. Jenkinson M, Smith S:A global optimisation method for robust affine registration of brain images. Med Image Anal 2001,5(2):143-156.
    68. Smith SM:Fast robust automated brain extraction. Hum Brain Mapp 2002, 17(3):143-155.
    69. Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ: Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. Ieee T Med Imaging 1999,18(1):32-42.
    70. Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW:Probabilistic diffusion tractography with multiple fibre orientations:What can we gain? Neuroimage 2007,34(1):144-155.
    71. Mori S, Wakana S, Van Zijl PCM:MRI atlas of human white matter,1st edn. Amsterdam, The Netherlands; San Diego, CA:Elsevier; 2005.
    72. Raz A, Fan J, Posner MI:Neuroimaging and genetic associations of attentional and hypnotic processes. J Physiol Paris 2006,99(4-6):483-491.
    73. Mahoney JR, Verghese J, Goldin Y, Lipton R, Holtzer R:Alerting, orienting, and executive attention in older adults. J Int Neuropsychol Soc 2010, 16(5):877-889.
    74. Callejas A, Lupianez J, Tudela P:The three attentional networks:on their independence and interactions. Brain Cogn 2004,54(3):225-227.
    75. Matchock RL, Toby Mordkoff J:Chronotype and time-of-day influences on the alerting, orienting, and executive components of attention. Exp Brain Res 2009,192(2):301.
    76. Fuentes LJ, Campoy G:The time course of alerting effect over orienting in the attention network test. Experimental Brain Research 2008,185(4):667-672.
    77. Gamboz N, Zamarian S, Cavallero C:Age-related differences in the attention network test (ANT). Exp Aging Res 2010,36(3):287-305.
    78. Jennings JM, Dagenbach D, Engle CM, Funke LJ:Age-related changes and the attention network task:an examination of alerting, orienting, and executive function. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2007,14(4):353-369.
    79. Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, Brown AB, Bush G, Monuteaux MC, Caviness VS et al: Attention and executive systems abnormalities in adults with childhood ADHD:A DT-MRI study of connections. Cereb Cortex 2008,18(5):1210-1220.
    80. Bogacz R, Wagenmakers EJ, Forstmann BU, Nieuwenhuis S:The neural basis of the speed-accuracy tradeoff. Trends Neurosci 2010,33(1):10-16.
    81. Fan J, Fossella J, Sommer T, Wu Y, Posner MI:Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci U S A 2003, 100(12):7406-7411.
    82. Wang K, Fan J, Dong Y, Wang CQ, Lee TM, Posner MI:Selective impairment of attentional networks of orienting and executive control in schizophrenia. SchizophrRes 2005,78(2-3):235-241.
    83. Bonekamp D, Nagae LM, Degaonkar M, Matson M, Abdalla WM, Barker PB, Mori S, Horska A:Diffusion tensor imaging in children and adolescents: reproducibility, hemispheric, and age-related differences. Neuroimage 2007, 34(2):733-742.
    84. Gong G, Jiang T, Zhu C, Zang Y, Wang F, Xie S, Xiao J, Guo X:Asymmetry analysis of cingulum based on scale-invariant parameterization by diffusion tensor imaging. Hum Brain Mapp 2005,24(2):92-98.
    85. Takao H, Abe O, Yamasue H, Aoki S, Sasaki H, Kasai K, Yoshioka N, Ohtomo K: Gray and white matter asymmetries in healthy individuals aged 21-29 years: A voxel-based morphometry and diffusion tensor imaging study. Hum Brain Mapp 2011,32(10):1762-1773.
    86. Dubois J, Hertz-Pannier L, Cachia A, Mangin JF, Le Bihan D, Dehaene-Lambertz G:Structural asymmetries in the infant language and sensori-motor networks. Cereb Cortex 2009,19(2):414-423.
    87. Thiebaut de Schotten M, Ffytche DH, Bizzi A, Dell'Acqua F, Allin M, Walshe M, Murray R, Williams SC, Murphy DG, Catani M:Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. Neuroimage 2011,54(l):49-59.
    88. Putnam MC, Steven MS, Doron KW, Riggall AC, Gazzaniga MS:Cortical projection topography of the human splenium:hemispheric asymmetry and individual differences. J Cogn Neurosci 2010,22(8):1662-1669.
    89. O'Donnell LJ, Westin CF, Norton I, Whalen S, Rigolo L, Propper R, Golby AJ: The fiber laterality histogram:a new way to measure white matter asymmetry. Med Image Comput Comput Assist Interv 2010,13(Pt 2):225-232.
    90. Oechslin MS, Imfeld A, Loenneker T, Meyer M, Jancke L:The plasticity of the superior longitudinal fasciculus as a function of musical expertise:a diffusion tensor imaging study. Front Hum Neurosci 2009,3:76.
    91. Snook L, Paulson LA, Roy D, Phillips L, Beaulieu C:Diffusion tensor imaging of neurodevelopment in children and young adults. Neuroimage 2005, 26(4):1164-1173.
    92. Wakana S, Jiang H, Nagae-Poetscher LM, van Zijl PC, Mori S:Fiber tract-based atlas of human white matter anatomy. Radiology 2004,230(1):77-87.
    93. Martino J, Brogna C, Robles SG, Vergani F, Duffau H:Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex 2010,46(5):691-699.
    94. Bitan T, Lifshitz A, Breznitz Z, Booth JR.:Bidirectional connectivity between hemispheres occurs at multiple levels in language processing but depends on sex. J Neurosci 2010,30(35):11576-11585.
    95. Marklund P, Fransson P, Cabeza R, Larsson A, Ingvar M, Nyberg L:Unity and diversity of tonic and phasic executive control components in episodic and working memory. Neuroimage 2007,36(4):1361-1373.
    96. Tomita H, Ohbayashi M, Nakahara K, Hasegawa I, Miyashita Y:Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 1999,401(6754):699-703.
    97. Pessoa L:How do emotion and motivation direct executive control? Trends Cogn Sci 2009,13(4):160-166.
    98. Garavan H, Ross TJ, Murphy K, Roche RA, Stein EA:Dissociable executive functions in the dynamic control of behavior:inhibition, error detection, and correction. Neuroimage 2002,17(4):1820-1829.
    99. Corbetta M, Shulman GL:Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002,3(3):201-215.
    100. Umarova RM, Saur D, Schnell S, Kaller CP, Vry MS, Glauche V, Rijntjes M, Hennig J, Kiselev V, Weiller C:Structural connectivity for visuospatial attention:significance of ventral pathways. Cereb Cortex 2010,20(1):121-129.
    101. Perez-Iglesias R, Tordesillas-Gutierrez D, McGuire PK, Barker GJ, Roiz-Santianez R, Mata I, de Lucas EM, Rodriguez-Sanchez JM, Ayesa-Arriola R, Vazquez-Barquero JL et al: White matter integrity and cognitive impairment in first-episode psychosis. Am J Psychiatry 2010,167(4):451-458.
    102. Kraus MF, Susmaras T, Caughlin BP, Walker CJ, Sweeney JA, Little DM:White matter integrity and cognition in chronic traumatic brain injury:a diffusion tensor imaging study. Brain 2007,130(Pt 10):2508-2519.
    103. MacLeod CM:Half a century of research on the Stroop effect:an integrative review. Psychol Bull 1991,109(2):163-203.
    104. Simon JR, Berbaum K:Effect of conflicting cues on information processing: the 'Stroop effect' vs. the 'Simon effect'. Acta Psychol (Amst) 1990,73(2):159-170.
    105. Kemmotsu N, Villalobos ME, Gaffrey MS, Courchesne E, Muller RA:Activity and functional connectivity of inferior frontal cortex associated with response conflict. Brain Res Cogn Brain Res 2005,24(2):335-342.
    106. Madden DJ, Spaniol J, Whiting WL, Bucur B, Provenzale JM, Cabeza R, White LE, Huettel SA:Adult age differences in the functional neuroanatomy of visual attention:a combined fMRI and DTI study. Neurobiol Aging 2007, 28(3):459-476.
    107. Niogi SN, Mukherjee P, Ghajar J, Johnson CE, Kolster R, Lee H, Suh M, Zimmerman RD, Manley GT, McCandliss BD:Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain 2008,131(Pt 12):3209-3221.
    108. Pardo JV, Fox PT, Raichle ME:Localization of a human system for sustained attention by positron emission tomography. Nature 1991,349(6304):61-64.
    109. Aron AR, Robbins TW, Poldrack RA:Inhibition and the right inferior frontal cortex. Trends Cogn Sci 2004,8(4):170-177.
    110. Forstmann BU, Jahfari S, Scholte HS, Wolfensteller U, van den Wildenberg WP, Ridderinkhof KR:Function and structure of the right inferior frontal cortex predict individual differences in response inhibition:a model-based approach. J Neurosci 2008,28(39):9790-9796.
    111. Sridharan D, Levitin DJ, Menon V:A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci U S A 2008,105(34):12569-12574.
    112. Witelson SF:The brain connection:the corpus callosum is larger in left-handers. Science 1985,229(4714):665-668.
    113. Galaburda AM, Rosen GD, Sherman GF:Individual variability in cortical organization:its relationship to brain laterality and implications to function. Neuropsychologia 1990,28(6):529-546.
    114. Haberling IS, Badzakova-Trajkov G, Corballis MC:Callosal tracts and patterns of hemispheric dominance:a combined fMRI and DTI study. Neuroimage 2011,54(2):779-786.
    115. Gazzaniga MS:Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? Brain 2000,123 (Pt 7):1293-1326.
    116. Takao H, Abe O, Yamasue H, Aoki S, Kasai K, Sasaki H, Ohtomo K:Aging effects on cerebral asymmetry:a voxel-based morphometry and diffusion tensor imaging study. Magn Reson Imaging 2010,28(1):65-69.
    117. Tang YY, Ma Y, Wang J, Fan Y, Feng S, Lu Q, Yu Q, Sui D, Rothbart MK, Fan M et al: Short-term meditation training improves attention and self-regulation. Proc Natl Acad Sci USA 2007,104(43):17152-17156.
    118. Tang YY, Lu Q, Geng X, Stein EA, Yang Y, Posner MI:Short-term meditation induces white matter changes in the anterior cingulate. Proc Natl Acad Sci U SA 2010,107(35):15649-15652.
    119. Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI:Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci U S A 2005,102(41):14931-14936.
    1. Raz A, Buhle J:Typologies of attentional networks. Nat Rev Neurosci 2006, 7(5):367-379.
    2. Corbetta M, Shulman GL:Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 2002,3(3):201-215.
    3. Mirsky AF, Anthony BJ, Duncan CC, Ahearn MB, Kellam SG:Analysis of the elements of attention:a neuropsychological approach. Neuropsychol Rev 1991, 2(2):109-145.
    4. Posner MI, Petersen SE:The attention system of the human brain. Annu Rev Neurosci 1990,13:25-42.
    5. Makris N, Buka SL, Biederman J, Papadimitriou GM, Hodge SM, Valera EM, Brown AB, Bush G, Monuteaux MC, Caviness VS et al: Attention and executive systems abnormalities in adults with childhood ADHD:A DT-MRI study of connections. Cereb Cortex 2008,18(5):1210-1220.
    6. Gooding DC, Braun JG, Studer JA:Attentional network task performance in patients with schizophrenia-spectrum disorders:evidence of a specific deficit. SchizophrRes 2006,88(1-3):169-178.
    7. Leskin LP, White PM:Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology 2007,21(3):275-284.
    8. Posner MI, Rothbart MK, Vizueta N, Levy KN, Evans DE, Thomas KM, Clarkin JF:Attentional mechanisms of borderline personality disorder. Proc Natl Acad Sci USA 2002,99(25):16366-16370.
    9. Couette M, Bachoud-Levi AC, Brugieres P, Sieroff E, Bartolomeo P:Orienting of spatial attention in Huntington's Disease. Neuropsychologia 2008, 46(5):1391-1400.
    10. Fernandez-Duque D, Black SE:Attentional networks in normal aging and Alzheimer's disease. Neuropsychology 2006,20(2):133-143.
    11. Yanaka HT, Saito DN, Uchiyama Y, Sadato N:Neural substrates of phasic alertness:a functional magnetic resonance imaging study. Neurosci Res 2010, 68(1):51-58.
    12. Klein RM:Inhibition of return. Trends Cogn Sci 2000,4(4):138-147.
    13. Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL:Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat Neurosci 2000,3(3):292-297.
    14. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI:Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002,14(3):340-347.
    15. Sturm W, Willmes K:On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 2001,14(1 Pt 2):S76-84.
    16. Perin B, Godefroy O, Fall S, de Marco G:Alertness in young healthy subjects: an fMRI study of brain region interactivity enhanced by a warning signal. Brain Cogn 2010,72(2):271-281.
    17. Fimm B, Heber IA, Coenen VA, Fromm C, Noth J, Kronenbuerger M:Deep brain stimulation of the subthalamic nucleus improves intrinsic alertness in Parkinson's disease. Mov Disord 2009,24(11):1613-1620.
    18. Nagai Y, Critchley HD, Featherstone E, Fenwick PB, Trimble MR, Dolan RJ: Brain activity relating to the contingent negative variation:an fMRI investigation. Neuroimage 2004,21(4):1232-1241.
    19. Pardo JV, Fox PT, Raichle ME:Localization of a human system for sustained attention by positron emission tomography. Nature 1991,349(6304):61-64.
    20. Coull JT, Frith CD, Frackowiak RS, Grasby PM:A fronto-parietal network for rapid visual information processing:a PET study of sustained attention and working memory. Neuropsychologia 1996,34(11):1085-1095.
    21. Kinomura S, Larsson J, Gulyas B, Roland PE:Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science 1996, 271(5248):512-515.
    22. Herrmann MJ, Woidich E, Schreppel T, Pauli P, Fallgatter AJ:Brain activation for alertness measured with functional near infrared spectroscopy (fNIRS). Psychophysiology 2008,45(3):480-486.
    23. Umarova RM, Saur D, Schnell S, Kaller CP, Vry MS, Glauche V, Rijntjes M, Hennig J, Kiselev V, Weiller C:Structural connectivity for visuospatial attention:significance of ventral pathways. Cereb Cortex 2010,20(1):121-129.
    24. Beck DM, Kastner S:Stimulus context modulates competition in human extrastriate cortex. Nat Neurosci 2005,8(8):1110-1116.
    25. Buschman TJ, Miller EK:Top-down versus bottom-up control of attention in the prefrontal and posterior parietal cortices. Science 2007,315(5820):1860-1862.
    26. Asplund CL, Todd JJ, Snyder AP, Marois R:A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nat Neurosci 2010,13(4):507-512.
    27. Carter CS, Botvinick MM, Cohen JD:The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci 1999, 10(1):49-57.
    28. Tanji J, Hoshi E:Role of the lateral prefrontal cortex in executive behavioral control. Physiol Rev 2008,88(1):37-57.
    29. Fan J, Kolster R, Ghajar J, Suh M, Knight RT, Sarkar R, McCandliss BD: Response anticipation and response conflict:an event-related potential and functional magnetic resonance imaging study. J Neurosci 2007,27(9):2272-2282.
    30. Margulies DS, Kelly AM, Uddin LQ, Biswal BB, Castellanos FX, Milham MP: Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 2007,37(2):579-588.
    31. Beckmann M, Johansen-Berg H, Rushworth MFS:Connectivity-Based Parcellation of Human Cingulate Cortex and Its Relation to Functional Specialization. Journal of Neuroscience 2009,29(4):1175-1190.
    32. Fan J, Hof PR, Guise KG, Fossella JA, Posner MI:The functional integration of the anterior cingulate cortex during conflict processing. Cereb Cortex 2008, 18(4):796-805.
    33. MacDonald AW,3rd, Cohen JD, Stenger VA, Carter CS:Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 2000,288(5472):1835-1838.
    34. Banich MT:Executive Function:The Search for an Integrated Account. Curr Dir Psychol Sci 2009,18(2):89-94.
    35. Callejas A, Lupianez J, Tudela P:The three attentional networks:on their independence and interactions. Brain Cogn 2004,54(3):225-227.
    36. Fan J, McCandliss BD, Fossella J, Flombaum JI, Posner MI:The activation of attentional networks. Neuroimage 2005,26(2):471-479.
    37. Tomasi D, Wang RL, Telang F, Boronikolas V, Jayne MC, Wang GJ, Fowler JS, Volkow ND:Impairment of attentional networks after 1 night of sleep deprivation. Cereb Cortex 2009,19(1):233-240.
    38. Myles-Worsley M, Coon H:Genetic and developmental factors in spontaneous selective attention:a study of normal twins. Psychiatry Res 1997,71(3):163-174.
    39. Cannon TD, Huttunen MO, Lonnqvist J, Tuulio-Henriksson A, Pirkola T, Glahn D, Finkelstein J, Hietanen M, Kaprio J, Koskenvuo M:The inheritance of neuropsychological dysfunction in twins discordant for schizophrenia. Am J Hum Genet 2000,67(2):369-382.
    40. Pardo PJ, Knesevich MA, Vogler GP, Pardo JV, Towne B, Cloninger CR, Posner MI:Genetic and state variables of neurocognitive dysfunction in schizophrenia:a twin study. Schizophr Bull 2000,26(2):459-477.
    41. Smith EE, Jonides J:Storage and executive processes in the frontal lobes. Science 1999,283(5408):1657-1661.
    42. Blokland GA, McMahon KL, Hoffman J, Zhu G, Meredith M, Martin NG, Thompson PM, de Zubicaray GI, Wright MJ:Quantifying the heritability of task-related brain activation and performance during the N-back working memory task:a twin fMRI study. Biol Psychol 2008,79(1):70-79.
    43. Koten JW, Jr., Wood G, Hagoort P, Goebel R, Propping P, Willmes K, Boomsma DI:Genetic contribution to variation in cognitive function:an FMRI study in twins. Science 2009,323(5922):1737-1740.
    44. Fan J, Wu Y, Fossella JA, Posner MI:Assessing the heritability of attentional networks. BMC Neurosci 2001,2:14.
    45. Peper JS, Brouwer RM, Boomsma DI, Kahn RS, Hulshoff Pol HE:Genetic influences on human brain structure:a review of brain imaging studies in twins. Hum Brain Mapp 2007,28(6):464-473.
    46. Thompson PM, Cannon TD, Narr KL, van Erp T, Poutanen VP, Huttunen M, Lonnqvist J, Standertskjold-Nordenstam CG, Kaprio J, Khaledy M et al: Genetic influences on brain structure. Nat Neurosci 2001,4(12):1253-1258.
    47. Fossella J, Sommer T, Fan J, Wu Y, Swanson JM, Pfaff DW, Posner MI: Assessing the molecular genetics of attention networks. BMC Neurosci 2002, 3:14.
    48. Fan J, Fossella J, Sommer T, Wu Y, Posner MI:Mapping the genetic variation of executive attention onto brain activity. Proc Natl Acad Sci U S A 2003, 100(12):7406-7411.
    49. Fossella J, Green AE, Fan J:Evaluation of a structural polymorphism in the ankyrin repeat and kinase domain containing 1 (ANKK1) gene and the activation of executive attention networks. Cogn Affect Behav Neurosci 2006, 6(l):71-78.
    50. Thimm M, Kircher T, Kellermann T, Markov V, Krach S, Jansen A, Zerres K, Eggermann T, Stocker T, Shah NJ et al: Effects of a CACNA1C genotype on attention networks in healthy individuals. Psychol Med 2010:1-11.
    51. Rueda MR, Fan J, McCandliss BD, Halparin JD, Gruber DB, Lercari LP, Posner MI:Development of attentional networks in childhood. Neuropsychologia 2004,42(8):1029-1040.
    52. Rueda MR, Rothbart MK, McCandliss BD, Saccomanno L, Posner MI:Training, maturation, and genetic influences on the development of executive attention. Proc Natl Acad Sci U S A 2005,102(41):14931-14936.
    53. Konrad K, Neufang S, Thiel CM, Specht K, Hanisch C, Fan J, Herpertz-Dahlmann B, Fink GR:Development of attentional networks:an fMRI study with children and adults. Neuroimage 2005,28(2):429-439.
    54. Morton JB, Bosma R, Ansari D:Age-related changes in brain activation associated with dimensional shifts of attention:an fMRI study. Neuroimage 2009,46(1):249-256.
    55. Jennings JM, Dagenbach D, Engle CM, Funke LJ:Age-related changes and the attention network task:an examination of alerting, orienting, and executive function. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 2007,14(4):353-
    56. Gamboz N, Zamarian S, Cavallero C:Age-related differences in the attention network test (ANT). Exp Aging Res 2010,36(3):287-305.
    57. Mahoney JR, Verghese J, Goldin Y, Lipton R, Holtzer R:Alerting, orienting, and executive attention in older adults. J Int Neuropsychol Soc 2010, 16(5):877-889.
    58. Bertsch K, Hagemann D, Hermes M, Walter C, Khan R, Naumann E:Resting cerebral blood flow, attention, and aging. Brain Res 2009,1267:77-88.
    59. Madden DJ, Spaniol J, Whiting WL, Bucur B, Provenzale JM, Cabeza R, White LE, Huettel SA:Adult age differences in the functional neuroanatomy of visual attention:a combined fMRI and DTI study. Neurobiol Aging 2007, 28(3):459-476.
    60. Madden DJ, Costello MC, Dennis NA, Davis SW, Shepler AM, Spaniol J, Bucur B, Cabeza R:Adult age differences in functional connectivity during executive control. Neuroimage 2010,52(2):643-657.
    61. Voineskos AN, Rajji TK, Lobaugh NJ, Miranda D, Shenton ME, Kennedy JL, Pollock BG, Mulsant BH:Age-related decline in white matter tract integrity and cognitive performance:A DTI tractography and structural equation modeling study. Neurobiol Aging 2010.
    62. Fusar-Poli P, Perez J, Broome M, Borgwardt S, Placentino A, Caverzasi E, Cortesi M, Veggiotti P, Politi P, Barale F et al: Neurofunctional correlates of vulnerability to psychosis:a systematic review and meta-analysis. Neurosci Biobehav Rev 2007,31(4):465-484.
    63. Biederman J, Faraone SV:Attention-deficit hyperactivity disorder. Lancet 2005,366(9481):237-248.
    64. Makris N, Biederman J, Valera EM, Bush G, Kaiser J, Kennedy DN, Caviness VS, Faraone SV, Seidman LJ:Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex 2007,17(6):1364-1375.
    65. Konrad K, Neufang S, Hanisch C, Fink GR, Herpertz-Dahlmann B: Dysfunctional attentional networks in children with attention deficit/hyperactivity disorder:evidence from an event-related functional magnetic resonance imaging study. Biol Psychiatry 2006,59(7):643-651.
    66. Adolfsdottir S, Sorensen L, Lundervold AJ:The attention network test:a characteristic pattern of deficits in children with ADHD. Behav Brain Funct 2008,4:9.
    67. Johnson KA, Robertson IH, Barry E, Mulligan A, Daibhis A, Daly M, Watchorn A, Gill M, Bellgrove MA:Impaired conflict resolution and alerting in children with ADHD:evidence from the Attention Network Task (ANT). J Child Psychol Psychiatry 2008,49(12):1339-1347.
    68. Mullane JC, Corkum PV, Klein RM, McLaughlin EN, Lawrence MA:Alerting, Orienting, and Executive Attention in Children With ADHD. J Atten Disord 2010.
    69. Larisch R, Sitte W, Antke C, Nikolaus S, Franz M, Tress W, Muller HW:Striatal dopamine transporter density in drug naive patients with attention-deficit/hyperactivity disorder. Nucl Med Commun 2006,27(3):267-270.
    70. Volkow ND, Wang GJ, Fowler JS, Gatley SJ, Logan J, Ding YS, Hitzemann R, Pappas N:Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry 1998, 155(10):1325-1331.
    71. Seidman LJ, Valera EM, Makris N, Monuteaux MC, Boriel DL, Kelkar K, Kennedy DN, Caviness VS, Bush G, Aleardi M et al: Dorsolateral prefrontal and anterior cingulate cortex volumetric abnormalities in adults with attention-deficit/hyperactivity disorder identified by magnetic resonance imaging. Biol Psychiatry 2006,60(10):1071-1080.
    72. Hamilton LS, Levitt JG, O'Neill J, Alger JR, Luders E, Phillips OR, Caplan R, Toga AW, McCracken J, Narr KL:Reduced white matter integrity in attention-deficit hyperactivity disorder. Neuroreport 2008,19(17):1705-1708.
    73. Konrad A, Dielentheis TF, El Masri D, Bayerl M, Fehr C, Gesierich T, Vucurevic G, Stoeter P, Winterer G:Disturbed structural connectivity is related to inattention and impulsivity in adult attention deficit hyperactivity disorder. Eur J Neurosci 2010,31(5):912-919.
    74. Colla M, Ende G, Alm B, Deuschle M, Heuser I, Kronenberg G:Cognitive MR spectroscopy of anterior cingulate cortex in ADHD:elevated choline signal correlates with slowed hit reaction times. JPsychiatr Res 2008,42(7):587-595.
    75. Saha S, Chant D, Welham J, McGrath J:A systematic review of the prevalence of schizophrenia. PLoS Med 2005,2(5):e141.
    76. Sawa A, Snyder SH:Schizophrenia:diverse approaches to a complex disease. Science 2002,296(5568):692-695.
    77. Sullivan PF, Kendler KS, Neale MC:Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 2003, 60(12):1187-1192.
    78. van Os J, Rutten BP, Poulton R:Gene-environment interactions in schizophrenia:review of epidemiological findings and future directions. Schizophr Bull 2008,34(6):1066-1082.
    79. Nestor PG, Kubicki M, Spencer KM, Niznikiewicz M, McCarley RW, Shenton ME:Attentional networks and cingulum bundle in chronic schizophrenia. Schizophr Res 2007,90(1-3):308-315.
    80. Wang K, Fan J, Dong Y, Wang CQ, Lee TM, Posner MI:Selective impairment of attentional networks of orienting and executive control in schizophrenia. Schizophr Res 2005,78(2-3):235-241.
    81. Neuhaus AH, Koehler S, Opgen-Rhein C, Urbanek C, Hahn E, Dettling M: Selective anterior cingulate cortex deficit during conflict solution in schizophrenia:an event-related potential study. J Psychiatr Res 2007, 41(8):635-644.
    82. Blasi G, Taurisano P, Papazacharias A, Caforio G, Romano R, Lobianco L, Fazio L, Di Giorgio A, Latorre V, Sambataro F et al: Nonlinear response of the anterior cingulate and prefrontal cortex in schizophrenia as a function of variable attentional control. Cereb Cortex 2010,20(4):837-845.
    83. Keedy SK, Rosen C, Khine T, Rajarethinam R, Janicak PG, Sweeney JA:An fMRI study of visual attention and sensorimotor function before and after antipsychotic treatment in first-episode schizophrenia. Psychiatry Res 2009, 172(1):16-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700