用户名: 密码: 验证码:
无先兆偏头痛患者大脑结构与功能异常的磁共振影像学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种主要的头痛疾病,偏头痛会导致患者和社会巨大的负担。频繁的偏头痛发作可以引起疼痛、敏感和失能,甚至可能增加患精神疾病例如抑郁的风险。现代神经影像学技术已经被用来研究偏头痛患者大脑的结构和功能改变。在本文中主要关注无先兆偏头痛患者大脑静息状态功能异常和白质结构异常,以及无先兆偏头痛患者中的抑郁症状对其的影响。主要工作如下:
     1、之前的研究已经发现了无先兆偏头痛患者大脑结构和任务相关功能的异常。然而,很少有研究关注无先兆偏头痛患者静息状态下的异常。我们使用一种数据驱动的方法,局部一致性,来分析无先兆偏头痛患者大脑静息状态自发波动信号的异常。和健康被试比较,无先兆偏头痛患者在包括右侧喙部前扣带皮质、前额皮质、眶额叶皮层和辅助运动区表现出明显降低的局部一致性值。另外,相关分析结果表明在右侧前额皮质和喙部前扣带皮质的平均局部一致性值和无先兆偏头痛患者的病程之间存在明显的负相关。这些结果说明这些大脑区域的静息态异常可能和无先兆偏头痛患者疼痛处理的功能损伤有关系。
     2、多种弥散张量成像参数的基于纤维束的空间统计方法(TBSS)分析(分数各向异性、平均弥散率、轴向弥散系数和径向弥散系数可以帮助推断无先兆偏头痛患者白质变化的病理生理类型并且提供更加明确的生物学标记。和健康被试相比,无先兆偏头痛患者在多个脑区表现出明显降低的分数各向异性、平均弥散率和轴向弥散系数。另外,这些脑区的平均弥散参数和无先兆偏头痛患者的病程和发作频率存在明显相关性。我们的研究发现降低的轴向弥散系数,可能意味着在无先兆偏头痛患者大脑白质中出现了轴突损失。
     3、之前的研究已经发现了在偏头痛和抑郁之间存在着双向的联系。然而很少有研究关注无先兆偏头痛患者大脑白质完整性如何受到抑郁状态的影响。四十名无先兆偏头痛患者按照他们的自评抑郁量表(SDS)评分被分为两组,包括高抑郁症状(SDS+)组(自评抑郁量表评分SDS>49)和低抑郁症状(SDS)组(自评抑郁量表评分SDS≤49)。多种弥散张量成像参数的基于纤维束的空间统计方法(TBSS)分析被用来研究在整个无先兆偏头痛组,高抑郁症状(SDS+)组,低抑郁症状(SDS)组和健康被试之间的白质差异。和健康被试比较,降低的轴向弥散系数在整个无先兆偏头痛组,高抑郁症状(SDS+)组和低抑郁症状(SDS)组的多个白质脑区被发现。另外和低抑郁症状(SDS)组相比,高抑郁症状(SDS+)组在多个白质脑区表现出降低的分数各向异性和增加的平均弥散率、径向弥散系数,这和之前抑郁研究的发现相似。另外,这些脑区的平均分数各向异性和径向弥散系数和自评抑郁量表(SDS)评分表现出明显的相关关系。这说明无先兆偏头痛患者大脑白质可能被偏头痛(和轴向弥散系数更敏感)和抑郁症状(和径向弥散系数更敏感)同时影响。这可能作为无先兆偏头痛患者抑郁症状严重程度的一个生物学标记。
     4、基于和上述相似的假设,无先兆偏头痛患者大脑静息态异常如何受到抑郁状态的影响也被考察了。和之前的实验设计相似,发现和健康被试比较,无先兆偏头痛组,高抑郁症状(SDS+)组和低抑郁症状(SDS-)组的几个相似的脑区都表现出了降低的局部一致性值。值得注意的是尾状核在低抑郁症状(SDS-)组和健康被试比较时表现出了升高的局部一致性值,而当高抑郁症状(SDS+)组和低抑郁症状(SDS-)组比较时表现出了降低的局部一致性值。另外尾状核平均局部一致性值和自评抑郁量表(SDS)评分存在负相关而和病程存在正相关。这说明无先兆偏头痛患者大脑静息态局部一致性可能被偏头痛和抑郁症状同时影响,而尾状核局部一致性可能作为无先兆偏头痛患者抑郁症状严重程度的一个生物学标记。
     综上所述,无先兆偏头痛患者大脑的静息态局部一致性和白质完整性改变能够为偏头痛的病理生理学研究提供更多依据,并可能作为生物学标记来反映偏头痛的疾病进程或者伴随抑郁症状的严重程度。我们希望我们的发现能够为提升对偏头痛病理生理学机制的研究提供更多帮助。
As a primary headache disorder, migraine causes a significant individual and socialburden. Frequent migraine attacks may produce pain, sensitivities and productivity loss,and even increase the risk of psychiatric disorders with a variety of psychologicalcharacteristics such as depressive symptoms. Advanced neuroimaging approaches havebeen employed to investigate structural and functional brain changes in migrainepatients. This dissertation is mainly concerned with the abnormalities during the restingstate or in the white matter of migraine patients without aura (MWoA) and the influenceaffected by depressive symptoms. The author’s major contributions are outlined asfollows:
     1. Previous studies provided evidence of structural and task-related functionalchanges in the brain of migraine patients without aura. However, few studies focused onthe resting state abnormalities in migraine patients without aura. We employed adata-driven method, regional homogeneity (ReHo), to analyze the local features ofspontaneous brain activity in migraine patients without aura during the resting state.Compared with healthy controls, migraine patients without aura showed a significantdecrease in ReHo values in the right rostral anterior cingulate cortex (rACC), theprefrontal cortex (PFC), the orbitofrontal cortex (OFC) and the supplementary motorarea (SMA). Additionally, we found that ReHo values were negatively correlated withduration of disease in the right rACC and PFC. Our results suggested that the restingstate abnormalities of these regions may be associated with functional impairments inpain processing in migraine patients without aura.
     2. Tract-based spatial statistics (TBSS) with multiple diffusion tensor imaging(DTI) derived indices, including fractional anisotropy (FA), mean diffusivity (MD),radial diffusivity (RD) and axial diffusivity (AD), may help to deduce thepathophysiological type of white matter (WM) changes and provide more specificbiomarkers of WM neuropathology in the whole brain of MWoA. Compared withhealthy controls, MWoA showed significantly lower FA, MD and AD in multiple brainregions, while no difference in RD was observed. Additionally, some of the WMfindings were significantly correlated with duration and headache frequency inMWoA.Given that decreased AD may suggest axonal loss, our findings may revealaxonal loss in MWoA.
     3. Previous studies proved that migraine and depression are bidirectionally linked.However, few studies investigated WM integrity affected by depressive symptoms in MWoA. Forty MWoA were divided into two groups according to their self-ratingdepression scale (SDS) score in the present study, including20in the SDS (+)(SDS>49) group and20in the SDS (-)(SDS≤49) group. TBSS analyses with multipleDTI-derived indices (FA, MD, RD, AD) were employed collectively to investigated theWM integrity among all MWoA, SDS (-) group, SDS (+) group and healthy controls.Compared with healthy controls, decreased AD was similarly shown in several WMtracts of the whole MWoA group, SDS (-) group and SDS (+) group. In addition,compared with the SDS (-) group, the SDS (+) group showed decreased FA andincreased MD and RD with conserved AD in multiple WM tracts, which were similarwith previous findings in depression disorder. Furthermore, mean FA and RD in theseWM tracts in the SDS (+) group were significantly correlated with SDS scores. Ourresults might suggest that white matter integrity might be affected by both depressionsymptoms (more sensitive as RD) and migraine (more sensitive as AD). The findingsmay serve as a sensitive biomarker to reflect depression severity in MWoA.
     4. Based on similar hypothesis as above mentioned, the resting state abnormalitiesaffected by depressive symptoms in MWoA were investigated. Through similar desion,compared with healthy controls, decreased ReHo in similar regions were shown in theMWoA group and subgroups. It is noteworthy that the caudate showed increased ReHoin the SDS (-) group compared with healthy controls, and decreased ReHo in the SDS(+) group compared with the SDS (-) group. Moreover, the average ReHo values of thecaudate were significantly negatively correlated with the SDS scores and positivelycorrelated with duration. Our results suggested that ReHo patterns in migraine patientsmay be affected by depressive symptoms and serve as a biomarker to reflect depressionseverity in MWoA.
     In summary, ReHo changes and WM changes in MwoA may provide morescientific evidence for the role in the pathology of migraine, which may serve as asensitive biomarker to reflect disease progression and depression severity of migrainewithout aura. We hope that our results could improve the understanding of migrainepathophysiology.
引文
[1] HeadacheClassificationSubcommitteeoftheInternationalHeadacheSociety. TheInternational Classification of Headache Disorders,2nd. Cephalalgia.2004,24(Suppl1):1-160.
    [2] Ferrari MD. Headache: the changing migraine brain. The Lancet neurology.2013,12(1),6-8.
    [3] Tietjen GE. Stroke and migraine linked by silent lesions. The Lancet neurology.2004,3(5),267.
    [4] Palm-Meinders IH, Koppen H, Terwindt GM, et al. Structural Brain Changes inMigraineStructural Brain Changes in Migraine. JAMA: The Journal of theAmerican Medical Association.2012,308(18),1889-1896.
    [5] Stovner LJ, Zwart JA, Hagen K, et al. Epidemiology of headache in Europe. EurJ Neurol.2006,13(4),333-345.
    [6] Stewart WF, Lipton RB, Dowson AJ, et al. Development and testing of theMigraine Disability Assessment (MIDAS) Questionnaire to assessheadache-related disability. Neurology.2001,56(suppl1), S20-S28.
    [7] Menken M, Munsat TL, Toole JF. The global burden of disease study:implications for neurology. Arch Neurol.2000,57(3),418-420.
    [8] Luo N, Fang Y, Tan F, et al. Prevalence and Burden of Headache Disorders: AComparative Regional Study in China. Headache.2010.
    [9] Wang SJ. Epidemiology of migraine and other types of headache in Asia.Current Neurology and Neuroscience Reports.2003,3(2),104-108.
    [10] Stewart W, Wood C, Reed M, et al. Cumulative lifetime migraine incidence inwomen and men. Cephalalgia.2008,28(11),1170-1178.
    [11] Goldberg LD. The cost of migraine and its treatment. The American journal ofmanaged care.2005,11(2Suppl), S62-7.
    [12] Olesen J, Gustavsson A, Svensson M, et al. The economic cost of brain disordersin Europe. Eur J Neurol.2012,19(1),155-162.
    [13] Yu S, Liu R, Zhao G, et al. The Prevalence and Burden of Primary Headaches inChina: A Population-Based Door-to-Door Survey. Headache.2012,52(4),582-591.
    [14] Borsook D, Maleki N, Becerra L, et al. Understanding Migraine through theLens of Maladaptive Stress Responses: A Model Disease of Allostatic Load.Neuron.2012,73(2),219-234.
    [15] Breslau N, Lipton R, Stewart W, et al. Comorbidity of migraine and depression.Neurology.2003,60(8),1308-1312.
    [16] Breslau N, Schultz L, Stewart W, et al. Headache and major depression.Neurology.2000,54(2),308-308.
    [17] Kwong KK, Belliveau JW, Chesler DA, et al. Dynamic magnetic resonanceimaging of human brain activity during primary sensory stimulation. Proc NatlAcad Sci USA.1992,89(12),5675-5679.
    [18] Schwedt TJ, Dodick DW. Advanced neuroimaging of migraine. The LancetNeurology.2009,8(6),560-568.
    [19] May A. New insights into headache: an update on functional and structuralimaging findings. Nature Reviews Neurology.2009,5(4),199-209.
    [20] May A. A review of diagnostic and functional imaging in headache. The journalof headache and pain.2006,7(4),174-184.
    [21] May A. Morphing voxels: the hype around structural imaging of headachepatients. Brain.2009,132(6),1419-1425.
    [22] Jin C, Yuan K, Zhao L, et al. Structural and functional abnormalities in migrainepatients without aura. NMR Biomed.2013,26(1),58-64.
    [23] Xue T, Yuan K, Cheng P, et al. Alterations of regional spontaneous neuronalactivity and corresponding brain circuit changes during resting state in migrainewithout aura. NMR Biomed.2013,26(9),1051-1058.
    [24] Mainero C, Boshyan J, Hadjikhani N. Altered functional magnetic resonanceimaging resting‐state connectivity in periaqueductal gray networks in migraine.Ann Neurol.2011,70(5),838-845.
    [25] Russo A, Tessitore A, Giordano A, et al. Executive resting-state networkconnectivity in migraine without aura. Cephalalgia.2012,32(14),1041-1048.
    [26] SzabóN, Kincses ZT, Párdutz á, et al. White matter microstructural alterationsin migraine: A diffusion-weighted MRI study. Pain.2012,153(3),651-656.
    [27] Yu D, Yuan K, Qin W, et al. Axonal loss of white matter in migraine withoutaura: A tract-based spatial statistics study. Cephalalgia.2013,33(1),34-42.
    [28] Wacogne C, Lacoste J, Guillibert E, et al. Stress, anxiety, depression andmigraine. Cephalalgia.2003,23(6),451-455.
    [29] Yu D, Yuan K, Zhao L, et al. White matter integrity affected by depressivesymptoms in migraine without aura: a tract-based spatial statistics study. NMRBiomed.2013, in press.
    [30] Aderjan D, Stankewitz A, May A. Neuronal mechanisms during repetitivetrigemino-nociceptive stimulation in migraine patients. Pain.2010,151(1),97-103.
    [31] Moulton E, Becerra L, Maleki N, et al. Painful Heat Reveals Hyperexcitabilityof the Temporal Pole in Interictal and Ictal Migraine States. Cereb Cortex.2011,21(2),435-448.
    [32] Eck J, Richter M, Straube T, et al. Affective brain regions are activated duringthe processing of pain-related words in migraine patients. Pain.2011,152(5),1104-1113.
    [33] Damoiseaux J, Rombouts S, Barkhof F, et al. Consistent resting-state networksacross healthy subjects. Proc Natl Acad Sci USA.2006,103(37),13848-13853.
    [34] Fox MD, Snyder AZ, Vincent JL, et al. Intrinsic fluctuations within corticalsystems account for intertrial variability in human behavior. Neuron.2007,56(1),171-184.
    [35] Hesselmann G, Kell CA, Eger E, et al. Spontaneous local variations in ongoingneural activity bias perceptual decisions. Proc Natl Acad Sci USA.2008,105(31),10984-10989.
    [36] Seeley WW, Menon V, Schatzberg AF, et al. Dissociable intrinsic connectivitynetworks for salience processing and executive control. The Journal ofneuroscience.2007,27(9),2349-2356.
    [37] Yu D, Yuan K, Zhao L, et al. Regional homogeneity abnormalities in patientswith interictal migraine without aura: a resting‐state study. NMR Biomed.2012,25(5),806-812.
    [38] Yuan K, Qin W, Liu P, et al. Reduced Fractional Anisotropy of Corpus CallosumModulates Inter-Hemispheric Resting State Functional Connectivity in MigrainePatients without Aura. PloS one.2012,7(9), e45476.
    [39] Xue T, Yuan K, Zhao L, et al. Intrinsic Brain Network Abnormalities inMigraines without Aura Revealed in Resting-State fMRI. PloS one.2012,7(12),e52927.
    [40] Rocca MA, Ceccarelli A, Falini A, et al. Brain gray matter changes in migrainepatients with T2-visible lesions: a3-T MRI study. Stroke.2006,37(7),1765-1770.
    [41] ValfrèW, Rainero I, Bergui M, et al. Voxel-Based Morphometry Reveals GrayMatter Abnormalities in Migraine. Headache.2008,48(1),109-117.
    [42] Kim J, Suh S, Seol H, et al. Regional grey matter changes in patients withmigraine: a voxel-based morphometry study. Cephalalgia.2008,28(6),598-604.
    [43] Schmidt-Wilcke T, G n bauer S, Neuner T, et al. Subtle grey matter changesbetween migraine patients and healthy controls. Cephalalgia.2008,28(1),1-4.
    [44] Schmitz N, Admiraal-Behloul F, Arkink EB, et al. Attack frequency and diseaseduration as indicators for brain damage in migraine. Headache.2008,48(7),1044-1055.
    [45] Granziera C, DaSilva A, Snyder J, et al. Anatomical alterations of the visualmotion processing network in migraine with and without aura. PLoS Med.2006,3(10), e402.
    [46] DaSilva AFM, Granziera C, Snyder J, et al. Thickening in the somatosensorycortex of patients with migraine. Neurology.2007,69(21),1990-1995.
    [47] Kruit MC, van Buchem MA, Hofman PAM, et al. Migraine as a risk factor forsubclinical brain lesions. JAMA: the journal of the American MedicalAssociation.2004,291(4),427-434.
    [48] Rocca MA, Colombo B, Pagani E, et al. Evidence for cortical functionalchanges in patients with migraine and white matter abnormalities onconventional and diffusion tensor magnetic resonance imaging. Stroke.2003,34(3),665-670.
    [49] Rocca M, Pagani E, Colombo B, et al. Selective diffusion changes of the visualpathways in patients with migraine: a3-T tractography study. Cephalalgia.2008,28(10),1061-1068.
    [50] Granziera C, DaSilva AFM, Snyder J, et al. Anatomical alterations of the visualmotion processing network in migraine with and without aura. PLoS medicine.2006,3(10), e402.
    [51] Li XL, Fang YN, Gao QC, et al. A Diffusion Tensor Magnetic ResonanceImaging Study of Corpus Callosum From Adult Patients With MigraineComplicated With Depressive/Anxious Disorder. Headache.2011,51(2),237-245.
    [52] Maleki N, Becerra L, Upadhyay J, et al. Direct optic nerve pulvinar connectionsdefined by diffusion MR tractography in humans: implications for photophobia.Hum Brain Mapp.2012,33(1),75-88.
    [53] Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics:voxelwise analysis of multi-subject diffusion data. Neuroimage.2006,31(4),1487-1505.
    [54] DaSilva AFM, Granziera C, Tuch DS, et al. Interictal alterations of thetrigeminal somatosensory pathway and periaqueductal gray matter in migraine.Neuroreport.2007,18(4),301-305.
    [55] Yu D, Yuan K, Zhao L, et al. White matter integrity affected by depressivesymptoms in migraine without aura: a tract-based spatial statistics study. NMRBiomed.2013, DOI:10.1002/nbm.2924,2013, in press.
    [56] Wu QZ, Li DM, Kuang WH, et al. Abnormal regional spontaneous neuralactivity in treatment-refractory depression revealed by resting-state fMRI. HumBrain Mapp.2011,32(8),1290-1299.
    [57] Bloch F, Hansen W, Packard M. Nuclear induction. Physical review.1946,70(7-8),460-474.
    [58] Purcell EM, Torrey H, Pound RV. Resonance absorption by nuclear magneticmoments in a solid. Physical review.1946,69(1-2),37-38.
    [59] Arnold J, Dharmatti S, Packard M. Chemical effects on nuclear induction signalsfrom organic compounds. The Journal of Chemical Physics.1951,19(4),507-507.
    [60] Damadian R. Tumor detection by nuclear magnetic resonance. Science.1971,171(976),1151-1153.
    [61] Lauterbur PC. Image formation by induced local interactions: examplesemploying nuclear magnetic resonance. Nature.1973,242(5394),190-191.
    [62] Aue W, Bartholdi E, Ernst RR. Two‐dimensional spectroscopy. Application tonuclear magnetic resonance. The Journal of Chemical Physics.1976,64,2229.
    [63] Kramer D, Schneider J, Rudin A, et al. True three-dimensional nuclear magneticresonance zeugmatographic images of a human brain. Neuroradiology.1981,21(5),239-244.
    [64] Raichle ME, Mintun MA. Brain work and brain imaging. Annu Rev Neurosci.2006,29,449-476.
    [65] Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed withfunctional magnetic resonance imaging. Nat Rev Neurosci.2007,8(9),700-711.
    [66] Shulman GL, Corbetta M, Buckner RL, et al. Common blood flow changesacross visual tasks: I. Increases in subcortical structures and cerebellum but notin nonvisual cortex. J Cogn Neurosci.1997,9(5),624-647.
    [67] Shulman GL, Fiez JA, Corbetta M, et al. Common blood flow changes acrossvisual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci.1997,9(5),648-663.
    [68] Binder JR, Frost JA, Hammeke TA, et al. Conceptual processing during theconscious resting state: A functional MRI study. J Cogn Neurosci.1999,11(1),80-93.
    [69] Greicius MD, Krasnow B, Reiss AL, et al. Functional connectivity in the restingbrain: a network analysis of the default mode hypothesis. Proc Natl Acad SciUSA.2003,100(1),253-258.
    [70] Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally relatedregions of brain with functional connectivity MR imaging. American journal ofneuroradiology.2000,21(9),1636-1644.
    [71] Hampson M, Peterson BS, Skudlarski P, et al. Detection of functionalconnectivity using temporal correlations in MR images. Hum Brain Mapp.2002,15(4),247-262.
    [72] Lowe M, Mock B, Sorenson J. Functional connectivity in single and multisliceechoplanar imaging using resting-state fluctuations. Neuroimage.1998,7(2),119-132.
    [73] Hampson M, Olson IR, Leung H-C, et al. Changes in functional connectivity ofhuman MT/V5with visual motion input. Neuroreport.2004,15(8),1315-1319.
    [74] Beckmann CF, DeLuca M, Devlin JT, et al. Investigations into resting-stateconnectivity using independent component analysis. Philosophical Transactionsof the Royal Society B: Biological Sciences.2005,360(1457),1001-1013.
    [75] De Luca M, Beckmann C, De Stefano N, et al. fMRI resting state networksdefine distinct modes of long-distance interactions in the human brain.Neuroimage.2006,29(4),1359-1367.
    [76] Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsicallyorganized into dynamic, anticorrelated functional networks. Proc Natl Acad SciU S A.2005,102(27),9673-9678.
    [77] Raichle ME, MacLeod AM, Snyder AZ, et al. A default mode of brain function.Proc Natl Acad Sci USA.2001,98(2),676-682.
    [78] Biswal B, Zerrin Yetkin F, Haughton VM, et al. Functional connectivity in themotor cortex of resting human brain using echo‐planar mri. Magn Reson Med.1995,34(4),537-541.
    [79] Calhoun V, Adali T, Pearlson G, et al. A method for making group inferencesfrom functional MRI data using independent component analysis. Hum BrainMapp.2001,14(3),140-151.
    [80] Liu H, Liu Z, Liang M, et al. Decreased regional homogeneity in schizophrenia:a resting state functional magnetic resonance imaging study. Neuroreport.2006,17(1),19-22.
    [81] He Y, Wang L, Zang Y, et al. Regional coherence changes in the early stages ofAlzheimer's disease: a combined structural and resting-state functional MRIstudy. Neuroimage.2007,35(2),488-500.
    [82] Wu T, Long X, Zang Y, et al. Regional homogeneity changes in patients withParkinson's disease. Hum Brain Mapp.2009,30(5),1502-1510.
    [83] Damoiseaux J, Rombouts S, Barkhof F, et al. Consistent resting-state networksacross healthy subjects. Proc Natl Acad Sci USA.2006,103(37),13848-13853.
    [84] Yuan K, Qin W, Dong M, et al. Combining spatial and temporal information toexplore resting-state networks changes in abstinent heroin-dependent individuals.Neurosci Lett.2010,475(1),20-24.
    [85] Yuan K, Qin W, Liu J, et al. Altered small-world brain functional networks andduration of heroin use in male abstinent heroin-dependent individuals. NeurosciLett.2010,477(1),37-42.
    [86] Yuan K, Qin W, Dong M, et al. Gray matter deficits and resting-stateabnormalities in abstinent heroin-dependent individuals. Neurosci Lett.2010,482(2),101-105.
    [87] Zhang D, Raichle ME. Disease and the brain's dark energy. Nature ReviewsNeurology.2010,6(1),15-28.
    [88] Biswal B, Yetkin FZ, Haughton VM, et al. Functional connectivity in the motorcortex of resting human brain using echo-planar MRI. Magn Reson Med.1995,34(4),537-541.
    [89] Zang Y, Jiang T, Lu Y, et al. Regional homogeneity approach to fMRI dataanalysis. Neuroimage.2004,22(1),394-400.
    [90] Kendall MG, Gibbons JD. Rank correlation methods: Oxford Univ. Press,Oxford.;1990.
    [91] Yu-Feng Z, Yong H, Chao-Zhe Z, et al. Altered baseline brain activity inchildren with ADHD revealed by resting-state functional MRI. Brain Dev.2007,29(2),83-91.
    [92] Hoptman MJ, Zuo X-N, Butler PD, et al. Amplitude of low-frequencyoscillations in schizophrenia: a resting state fMRI study. Schizophr Res.2010,117(1),13-20.
    [93] Han Y, Wang J, Zhao Z, et al. Frequency-dependent changes in the amplitude oflow-frequency fluctuations in amnestic mild cognitive impairment: aresting-state fMRI study. Neuroimage.2011,55(1),287-295.
    [94] Zhang Z, Lu G, Zhong Y, et al. fMRI study of mesial temporal lobe epilepsyusing amplitude of low‐frequency fluctuation analysis. Hum Brain Mapp.2010,31(12),1851-1861.
    [95] Büchel C, Friston K. Modulation of connectivity in visual pathways by attention:cortical interactions evaluated with structural equation modelling and fMRI.Cereb Cortex.1997,7(8),768-778.
    [96] Sporns O, Chialvo DR, Kaiser M, et al. Organization, development and functionof complex brain networks. Trends in cognitive sciences.2004,8(9),418-425.
    [97] Jiao Q, Lu G, Zhang Z, et al. Granger causal influence predicts BOLD activitylevels in the default mode network. Hum Brain Mapp.2011,32(1),154-161.
    [98] Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy andimaging. Biophys J.1994,66(1),259-267.
    [99] Bihan DL. Molecular diffusion, tissue microdynamics and microstructure. NMRBiomed.1995,8(7),375-386.
    [100] Moseley M, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging ofanisotropic water diffusion in cat central nervous system. Radiology.1990,176(2),439-445.
    [101] Pierpaoli C, Jezzard P, Basser PJ, et al. Diffusion tensor MR imaging of thehuman brain. Radiology.1996,201(3),637-648.
    [102] Alexander AL, Lee JE, Lazar M, et al. Diffusion tensor imaging of the brain.Neurotherapeutics.2007,4(3),316-329.
    [103] Harsan LA, Poulet P, Guignard B, et al. Brain dysmyelination and recoveryassessment by noninvasive in vivo diffusion tensor magnetic resonance imaging.J Neurosci Res.2006,83(3),392-402.
    [104] Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed throughMRI as increased radial (but unchanged axial) diffusion of water. Neuroimage.2002,17(3),1429-1436.
    [105] Benedetti F, Yeh PH, Bellani M, et al. Disruption of white matter integrity inbipolar depression as a possible structural marker of illness. Biol Psychiatry.2011,69(4),309-317.
    [106] Shu N, Wang Z, Qi Z, et al. Multiple Diffusion Indices Reveals White MatterDegeneration in Alzheimer's Disease and Mild Cognitive Impairment: ATract-Based Spatial Statistics Study. Journal of Alzheimer's Disease.2011,26,275-285.
    [107] Swartz RH, Kern RZ. Migraine is associated with magnetic resonance imagingwhite matter abnormalities: a meta-analysis. Arch Neurol.2004,61(9),1366-1368.
    [108] Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses topain. A review and meta-analysis. Neurophysiologie Clinique/ClinicalNeurophysiology.2000,30(5),263-288.
    [109] Lipton RB, Pan J. Is migraine a progressive brain disease? JAMA: the journal ofthe American Medical Association.2004,291(4),493-494.
    [110] Paakki JJ, Rahko J, Long X, et al. Alterations in regional homogeneity ofresting-state brain activity in autism spectrum disorders. Brain Res.2010,1321,169-179.
    [111] Yuan Y, Zhang Z, Bai F, et al. Abnormal neural activity in the patients withremitted geriatric depression: a resting-state functional magnetic resonanceimaging study. J Affect Disord.2008,111(2-3),145-152.
    [112] Seeley WW, Crawford RK, Zhou J, et al. Neurodegenerative diseases targetlarge-scale human brain networks. Neuron.2009,62(1),42-52.
    [113] May A. Neuroimaging: visualising the brain in pain. Neurological Sciences.2007,28,101-107.
    [114] Mechias ML, Etkin A, Kalisch R. A meta-analysis of instructed fear studies:implications for conscious appraisal of threat. Neuroimage.2010,49(2),1760-1768.
    [115] Drabant EM, Kuo JR, Ramel W, et al. Experiential, autonomic, and neuralresponses during threat anticipation vary as a function of threat intensity andneuroticism. Neuroimage.2011,55(1),401-410.
    [116] Tracey I, Mantyh PW. The cerebral signature for pain perception and itsmodulation. Neuron.2007,55(3),377-391.
    [117] Vogt BA. Pain and emotion interactions in subregions of the cingulate gyrus. NatRev Neurosci.2005,6(7),533-544.
    [118] Shackman AJ, Salomons TV, Slagter HA, et al. The integration of negative affect,pain and cognitive control in the cingulate cortex. Nat Rev Neurosci.2011,12(3),154-167.
    [119] Petrovic P, Kalso E, Petersson KM, et al. Placebo and opioid analgesia--imaginga shared neuronal network. Science.2002,295(5560),1737-1740.
    [120] Wager TD, Rilling JK, Smith EE, et al. Placebo-induced changes in FMRI in theanticipation and experience of pain. Science.2004,303(5661),1162-1167.
    [121] Kupers RC, Gybels JM, Gjedde A. Positron emission tomography study of achronic pain patient successfully treated with somatosensory thalamicstimulation. Pain.2000,87(3),295-302.
    [122] Lieberman MD, Jarcho JM, Berman S, et al. The neural correlates of placeboeffects: a disruption account. Neuroimage.2004,22(1),447-455.
    [123] Wiech K, Ploner M, Tracey I. Neurocognitive aspects of pain perception. Trendsin cognitive sciences.2008,12(8),306-313.
    [124] Rolls ET. The orbitofrontal cortex and reward. Cereb Cortex.2000,10(3),284-294.
    [125] Kringelbach ML. The human orbitofrontal cortex: linking reward to hedonicexperience. Nat Rev Neurosci.2005,6(9),691-702.
    [126] Bechara A, Damasio AR, Damasio H, et al. Insensitivity to future consequencesfollowing damage to human prefrontal cortex. Cognition.1994,50(1-3),7-15.
    [127] Kringelbach ML, Rolls ET. The functional neuroanatomy of the humanorbitofrontal cortex: evidence from neuroimaging and neuropsychology. ProgNeurobiol.2004,72(5),341-372.
    [128] Phillips ML, Drevets WC, Rauch SL, et al. Neurobiology of emotion perceptionI: The neural basis of normal emotion perception. Biol Psychiatry.2003,54(5),504-514.
    [129] Leknes S, Tracey I. A common neurobiology for pain and pleasure. Nat RevNeurosci.2008,9(4),314-320.
    [130] Vincent M, Pedra E, Mour o-Miranda J, et al. Enhanced interictalresponsiveness of the migraineous visual cortex to incongruent bar stimulation:a functional MRI visual activation study. Cephalalgia.2003,23(9),860-868.
    [131] Dalgleish T. The emotional brain. Nat Rev Neurosci.2004,5(7),583-589.
    [132] Elliott R, Dolan RJ, Frith CD. Dissociable functions in the medial and lateralorbitofrontal cortex: evidence from human neuroimaging studies. Cereb Cortex.2000,10(3),308-317.
    [133] Picard N, Strick PL. Motor areas of the medial wall: a review of their locationand functional activation. Cereb Cortex.1996,6(3),342-353.
    [134] Schall JD, Stuphorn V, Brown JW. Monitoring and control of action by thefrontal lobes. Neuron.2002,36(2),309-322.
    [135] Rushworth M, Walton M, Kennerley S, et al. Action sets and decisions in themedial frontal cortex. Trends in cognitive sciences.2004,8(9),410-417.
    [136] Nachev P, Rees G, Parton A, et al. Volition and conflict in human medial frontalcortex. Curr Biol.2005,15(2),122-128.
    [137] Ray Li C, Huang C, Constable RT, et al. Imaging response inhibition in astop-signal task: neural correlates independent of signal monitoring andpost-response processing. The Journal of neuroscience.2006,26(1),186-192.
    [138] Curtis CE, Cole MW, Rao VY, et al. Canceling planned action: an fMRI study ofcountermanding saccades. Cereb Cortex.2005,15(9),1281-1289.
    [139] Aron AR, Poldrack RA. Cortical and subcortical contributions to stop signalresponse inhibition: role of the subthalamic nucleus. The Journal ofneuroscience.2006,26(9),2424-2433.
    [140] Ploghaus A, Tracey I, Gati JS, et al. Dissociating pain from its anticipation in thehuman brain. Science.1999,284(5422),1979-1981.
    [141] Koyama T, McHaffie JG, Laurienti PJ, et al. The subjective experience of pain:where expectations become reality. Proc Natl Acad Sci U S A.2005,102(36),12950-12955.
    [142] Roy M, PichéM, Chen JI, et al. Cerebral and spinal modulation of pain byemotions. Proc Natl Acad Sci USA.2009,106(49),20900-20905.
    [143] Rainville P, Duncan GH, Price DD, et al. Pain affect encoded in human anteriorcingulate but not somatosensory cortex. Science.1997,277(5328),968-971.
    [144] Apkarian AV, Bushnell MC, Treede RD, et al. Human brain mechanisms of painperception and regulation in health and disease. European Journal of Pain.2005,9(4),463-484.
    [145] Geha PY, Baliki MN, Harden RN, et al. The brain in chronic CRPS pain:abnormal gray-white matter interactions in emotional and autonomic regions.Neuron.2008,60(4),570-581.
    [146] Nachev P, Kennard C, Husain M. Functional role of the supplementary andpre-supplementary motor areas. Nat Rev Neurosci.2008,9(11),856-869.
    [147] Isoda M, Hikosaka O. Switching from automatic to controlled action by monkeymedial frontal cortex. Nat Neurosci.2007,10(2),240-248.
    [148] Craig A. How do you feel now? The anterior insula and human awareness. NatRev Neurosci.2009,10(1),59-70.
    [149] Hsieh JC, Hannerz J, Ingvar M. Right-lateralised central processing for pain ofnitroglycer-induced cluster headache. Pain.1996,67(1),59-68.
    [150] Balaban CD, Jacob RG, Furman JM. Neurologic bases for comorbidity ofbalance disorders, anxiety disorders and migraine: neurotherapeutic implications.Expert Review of Neurotherapeutics.2011,11(3),379-394.
    [151] Craig A. Forebrain emotional asymmetry: a neuroanatomical basis? Trends incognitive sciences.2005,9(12),566-571.
    [152] Pietrobon D, Striessnig J. Neurobiology of migraine. Nat Rev Neurosci.2003,4(5),386-398.
    [153] Yuan K, Qin W, Wang G, et al. Microstructure Abnormalities in Adolescentswith Internet Addiction Disorder. PloS one.2011,6(6), e20708.
    [154] Thomason M, Thompson P. Diffusion Tensor Imaging, White Matter, andPsychopathology. Annual review of clinical psychology.2011,7,63-85.
    [155] Oldfield RC. The assessment and analysis of handedness: the Edinburghinventory. Neuropsychologia.1971,9(1),97-113.
    [156] Hofer S, Frahm J. Topography of the human corpus callosumrevisited--comprehensive fiber tractography using diffusion tensor magneticresonance imaging. Neuroimage.2006,32(3),989-994.
    [157] Caminiti R, Ghaziri H, Galuske R, et al. Evolution amplified processing withtemporally dispersed slow neuronal connectivity in primates. Proc Natl Acad SciUSA.2009,106(46),19551-19556.
    [158] Axer H, Keyserlingk DG. Mapping of fiber orientation in human internal capsuleby means of polarized light and confocal scanning laser microscopy. J NeurosciMethods.2000,94(2),165-175.
    [159] Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber Tract–based Atlas ofHuman White Matter Anatomy1. Radiology.2004,230(1),77-87.
    [160] Deligianni CI, Vikelis M, Mitsikostas DD. Depression in headaches:chronification. Curr Opin Neurol.2012,25(3),277-283.
    [161] Ball H, Samaan Z, Brewster S, et al. Depression, migraine with aura andmigraine without aura: their familiality and interrelatedness. Cephalalgia.2009,29(8),848-854.
    [162] Beaulieu C. The basis of anisotropic water diffusion in the nervous system–atechnical review. NMR Biomed.2002,15(7-8),435-455.
    [163] Korgaonkar MS, Grieve SM, Koslow SH, et al. Loss of white matter integrity inmajor depressive disorder: Evidence using tract‐based spatial statisticalanalysis of diffusion tensor imaging. Hum Brain Mapp.2011,32(12),2161-2171.
    [164] Bae JN, MacFall JR, Krishnan KRR, et al. Dorsolateral prefrontal cortex andanterior cingulate cortex white matter alterations in late-life depression. BiolPsychiatry.2006,60(12),1356-1363.
    [165] Zhang A, Leow A, Ajilore O, et al. Quantitative Tract-Specific Measures ofUncinate and Cingulum in Major Depression Using Diffusion Tensor Imaging.Neuropsychopharmacology.2011,37(4),959-967.
    [166] Mettenburg JM, Benzinger TLS, Shimony JS, et al. Diminished performance onneuropsychological testing in late life depression is correlated withmicrostructural white matter abnormalities. Neuroimage.2012,60(4),2182-2190.
    [167] Li L, Ma N, Li Z, et al. Prefrontal white matter abnormalities in young adultwith major depressive disorder: a diffusion tensor imaging study. Brain Res.2007,1168,124-128.
    [168] Kiesepp T, Eerola M, M ntyl R, et al. Major depressive disorder and whitematter abnormalities: a diffusion tensor imaging study with tract-based spatialstatistics. J Affect Disord.2010,120(1),240-244.
    [169] Shimony JS, Sheline YI, D'Angelo G, et al. Diffuse microstructuralabnormalities of normal-appearing white matter in late life depression: adiffusion tensor imaging study. Biol Psychiatry.2009,66(3),245-252.
    [170] Taylor WD, MacFall JR, Payne ME, et al. Late-life depression andmicrostructural abnormalities in dorsolateral prefrontal cortex white matter. AJ Psychiatry.2004,161(7),1293-1296.
    [171] Nobuhara K, Okugawa G, Sugimoto T, et al. Frontal white matter anisotropy andsymptom severity of late-life depression: a magnetic resonance diffusion tensorimaging study. J Neurol Neurosurg Psychiatry.2006,77(1),120-122.
    [172] Zou K, Huang X, Li T, et al. Alterations of white matter integrity in adults withmajor depressive disorder: a magnetic resonance imaging study. Journal ofpsychiatry&neuroscience: JPN.2008,33(6),525-530.
    [173] Ma N, Li L, Shu N, et al. White matter abnormalities in first-episode,treatment-naive young adults with major depressive disorder. A J Psychiatry.2007,164(5),823-826.
    [174] ZUNG WWK. A Self-Rating Depression Scale. Arch Gen Psychiatry.1965,12(1),63-70.
    [175] Barrett J, Hurst MW, DiScala C, et al. Prevalence of depression over a12-monthperiod in a nonpatient population. Arch Gen Psychiatry.1978,35(6),741-744.
    [176] Smith SM. Fast robust automated brain extraction. Hum Brain Mapp.2002,17(3),143-155.
    [177] Mori S, Wakana S, Van Zijl PCM, et al. MRI atlas of human white matter: AmSoc Neuroradiology;2005.
    [178] Lafer B, Renshaw PF, Sachs GS. Major depression and the basal ganglia.Psychiatr Clin North Am.1997,20(4),885-896.
    [179] Cyprien F, Courtet P, Malafosse A, et al. Suicidal Behavior Is Associated withReduced Corpus Callosum Area. Biol Psychiatry.2011,70(4),320-326.
    [180] Lyoo IK, Kwon JS, Lee SJ, et al. Decrease in genu of the corpus callosum inmedication-naive, early-onset dysthymia and depressive personality disorder.Biol Psychiatry.2002,52(12),1134-1143.
    [181] Huang H, Fan X, Williamson DE, et al. White matter changes in healthyadolescents at familial risk for unipolar depression: a diffusion tensor imagingstudy. Neuropsychopharmacology.2010,36(3),684-691.
    [182] Cole J, Chaddock CA, Farmer AE, et al. White matter abnormalities and illnessseverity in major depressive disorder. The British Journal of Psychiatry.2012.
    [183] Pizzagalli DA, Holmes AJ, Dillon DG, et al. Reduced caudate and nucleusaccumbens response to rewards in unmedicated subjects with major depressivedisorder. The American journal of psychiatry.2009,166(6),702-710.
    [184] Makris N, Kennedy DN, McInerney S, et al. Segmentation of subcomponentswithin the superior longitudinal fascicle in humans: a quantitative, in vivo,DT-MRI study. Cereb Cortex.2005,15(6),854-869.
    [185] Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalitiesin mood disorders: implications for neurocircuitry models of depression. BrainStructure and Function.2008,213(1),93-118.
    [186] Blood AJ, Iosifescu DV, Makris N, et al. Microstructural abnormalities insubcortical reward circuitry of subjects with major depressive disorder. PloS one.2010,5(11), e13945.
    [187] Koenigs M, Grafman J. The functional neuroanatomy of depression: distinctroles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res.2009,201(2),239-243.
    [188] Vasic N, Walter H, Sambataro F, et al. Aberrant functional connectivity ofdorsolateral prefrontal and cingulate networks in patients with major depressionduring working memory processing. Psychol Med.2009,39(06),977-987.
    [189] Guo W, Liu F, Chen J, et al. Altered white matter integrity of forebrain intreatment-resistant depression: A diffusion tensor imaging study with tract-basedspatial statistics. Prog Neuropsychopharmacology Biological Psychiatry.201238(2),201-206.
    [190] Minnerop M, Weber B, Schoene-Bake JC, et al. The brain in myotonicdystrophy1and2: evidence for a predominant white matter disease. Brain.2011,134(12),3527-3543.
    [191] Adler CM, Adams J, DelBello MP, et al. Evidence of white matter pathology inbipolar disorder adolescents experiencing their first episode of mania: adiffusion tensor imaging study. A J Psychiatry.2006,163(2),322-324.
    [192] Beyer JL, Taylor WD, MacFall JR, et al. Cortical white matter microstructuralabnormalities in bipolar disorder. Neuropsychopharmacology.2005,30(12),2225-2229.
    [193] Versace A, Almeida JRC, Hassel S, et al. Elevated left and reduced rightorbitomedial prefrontal fractional anisotropy in adults with bipolar disorderrevealed by tract-based spatial statistics. Arch Gen Psychiatry.2008,65(9),1041-1052.
    [194] Pavuluri MN, Yang S, Kamineni K, et al. Diffusion tensor imaging study ofwhite matter fiber tracts in pediatric bipolar disorder andattention-deficit/hyperactivity disorder. Biol Psychiatry.2009,65(7),586-593.
    [195] Wakana S, Jiang H, Nagae-Poetscher LM, et al. Fiber Tract–based Atlas ofHuman White Matter Anatomy1. Radiology.2004,230(1),77-87.
    [196] Lazar M, Weinstein DM, Tsuruda JS, et al. White matter tractography usingdiffusion tensor deflection. Hum Brain Mapp.2003,18(4),306-321.
    [197] Rich BA, Vinton DT, Roberson-Nay R, et al. Limbic hyperactivation duringprocessing of neutral facial expressions in children with bipolar disorder. ProcNatl Acad Sci USA.2006,103(23),8900-8905.
    [198] Pavuluri MN, O'Connor MM, Harral EM, et al. An fMRI study of the interfacebetween affective and cognitive neural circuitry in pediatric bipolar disorder.Psychiatry Research: Neuroimaging.2008,162(3),244-255.
    [199] Soriano-Mas C, Hernández-Ribas R, Pujol J, et al. Cross-sectional andlongitudinal assessment of structural brain alterations in melancholic depression.Biol Psychiatry.2011,69(4),318-325.
    [200] Fu CHY, Williams SCR, Cleare AJ, et al. Attenuation of the neural response tosad faces in major depression by antidepressant treatment: a prospective,event-related functional magnetic resonance imaging study. Arch Gen Psychiatry.2004,61(9),877-889.
    [201] Jackson JL, Shimeall W, Sessums L, et al. Tricyclic antidepressants andheadaches: systematic review and meta-analysis. BMJ: British Medical Journal.2010,341.
    [202] March J, Silva S, Petrycki S, et al. Treatment for Adolescents With DepressionStudy (TADS) Team. Fluoxetine, cognitive-behavioral therapy, and theircombination for adolescents with depression: Treatment for Adolescents WithDepression Study (TADS) randomized controlled trial. JAMA.2004,292(7),807-820.
    [203] Yao Z, Wang L, Lu Q, et al. Regional homogeneity in depression and itsrelationship with separate depressive symptom clusters: a resting-state fMRIstudy. J Affect Disord.2009,115(3),430-438.
    [204] Wu QZ, Li DM, Kuang WH, et al. Abnormal regional spontaneous neuralactivity in treatment‐refractory depression revealed by resting‐state fMRI.Hum Brain Mapp.2011,32(8),1290-1299.
    [205] Liu Z, Xu C, Xu Y, et al. Decreased regional homogeneity in insula andcerebellum: a resting-state fMRI study in patients with major depression andsubjects at high risk for major depression. Psychiatry Research: Neuroimaging.2010,182(3),211-215.
    [206] Peng D, Jiang K, Fang Y, et al. Decreased regional homogeneity in majordepression as revealed by resting-state functional magnetic resonance imaging.Chinese Medical Journal-Beijing.2011,124(3),369.
    [207] Guo W, Sun X, Liu L, et al. Disrupted regional homogeneity intreatment-resistant depression: A resting-state fMRI study. ProgNeuropsychopharmacol Biol Psychiatry.2011,35(5),1297-1302.
    [208] Guo W, Liu F, Xue Z, et al. Abnormal neural activities in first-episode,treatment-naīve, short-illness-duration, and treatment-response patients withmajor depressive disorder: A resting-state fMRI study. J Affect Disord.2011,135(1-3),326-331.
    [209] Lai CH, Wu YT. Frontal regional homogeneity increased and temporal regionalhomogeneity decreased after remission of first-episode drug-na ve majordepressive disorder with panic disorder patients under duloxetine therapy for6weeks. J Affect Disord.2011,136(3),453-458.
    [210] Dong M, Qin W, Zhao L, et al. Expertise modulates local regional homogeneityof spontaneous brain activity in the resting brain: an fMRI study using the modelof skilled acupuncturists. Hum Brain Mapp.2013.
    [211] Yu D, Yuan K, Qin W, et al. Axonal loss of white matter in migraine withoutaura: A tract-based spatial statistics study. Cephalalgia.2013,33(1),34-42.
    [212] Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study inspontaneous migraine. Arch Neurol.2005,62(8),1270-1275.
    [213] Afridi S, Matharu M, Lee L, et al. A PET study exploring the laterality ofbrainstem activation in migraine using glyceryl trinitrate. Brain.2005,128(4),932-939.
    [214] Nagy A, E rdegh G, Paróczy Z, et al. Multisensory integration in the basalganglia. Eur J Neurosci.2006,24(3),917-924.
    [215] Chudler EH, Dong WK. The role of the basal ganglia in nociception and pain.Pain.1995,60(1),3-38.
    [216] Maleki N, Becerra L, Nutile L, et al. Migraine attacks the basal ganglia. MolPain.2011,7,71.
    [217] Kobari M, Meyer JS, Ichijo M, et al. Hyperperfusion of cerebral cortex,thalamus and basal ganglia during spontaneously occurring migraine headaches.Headache.1989,29(5),282-289.
    [218] Schmidt-Wilcke T, Luerding R, Weigand T, et al. Striatal grey matter increase inpatients suffering from fibromyalgia-A voxel-based morphometry study. Pain.2007,132, S109-S116.
    [219] Schmidt-Wilcke T, Leinisch E, G nssbauer S, et al. Affective components andintensity of pain correlate with structural differences in gray matter in chronicback pain patients. Pain.2006,125(1),89-97.
    [220] Schweinhardt P, Kuchinad A, Pukall C, et al. Increased gray matter density inyoung women with chronic vulvar pain. Pain.2008,140(3),411-419.
    [221] Davis K, Pope G, Crawley A, et al. Neural correlates of prickle sensation: apercept-related fMRI study. Nat Neurosci.2002,5(11),1121-1122.
    [222] Tracey I, Becerra L, Chang I, et al. Noxious hot and cold stimulation producecommon patterns of brain activation in humans: a functional magnetic resonanceimaging study. Neurosci Lett.2000,288(2),159-162.
    [223] Becerra L, Schwartzman R, Kiefer R, et al. CNS Measures of Pain ResponsesPre‐and Post‐Anesthetic Ketamine in a Patient with Complex Regional PainSyndrome. Pain Medicine.2009.
    [224] Lebel A, Becerra L, Wallin D, et al. fMRI reveals distinct CNS processingduring symptomatic and recovered complex regional pain syndrome in children.Brain.2008,131(7),1854-1879.
    [225] Freund W, Klug R, Weber F, et al. Perception and suppression of thermallyinduced pain: a fMRI study. Somatosens Mot Res.2009,26(1),1-10.
    [226] Koolschijn P, Van Haren NEM, Lensvelt‐Mulders GJLM, et al. Brain volumeabnormalities in major depressive disorder: A meta‐analysis of magneticresonance imaging studies. Hum Brain Mapp.2009,30(11),3719-3735.
    [227] Gabbay V, Hess DA, Liu S, et al. Lateralized caudate metabolic abnormalities inadolescent major depressive disorder: a proton MR spectroscopy study. TheAmerican journal of psychiatry.2007,164(12),1881-1889.
    [228] Delaveau P, Jabourian M, Lemogne C, et al. Brain effects of antidepressants inmajor depression: a meta-analysis of emotional processing studies. J AffectDisord.2011,130(1-2),66-74.
    [229] Vataja R, Lepp vuori A, Pohjasvaara T, et al. Poststroke depression and lesionlocation revisited. The Journal of neuropsychiatry and clinical neurosciences.2004,16(2),156-162.
    [230] Slaughter J, Martens M, Slaughter K. Depression and Huntington's disease:prevalence, clinical manifestations, etiology, and treatment. CNS spectrums.2001,6(4),306-326.
    [231] Slaughter JR, Slaughter KA, Nichols D, et al. Prevalence, clinical manifestations,etiology, and treatment of depression in Parkinson's disease. The Journal ofneuropsychiatry and clinical neurosciences.2001,13(2),187-196.
    [232] Lehrer J. Neuroscience: Making connections. Nature.2009,457(7229),524.
    [233] Lichtman JW, Livet J, Sanes JR. A technicolour approach to the connectome.Nat Rev Neurosci.2008,9(6),417-422.
    [234] Sporns O, Tononi G, K tter R. The human connectome: a structural descriptionof the human brain. PLoS computational biology.2005,1(4), e42.
    [235] Biswal BB, Mennes M, Zuo X-N, et al. Toward discovery science of humanbrain function. Proc Natl Acad Sci USA.2010,107(10),4734-4739.
    [236] Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brainconnectome. Annual review of clinical psychology.2011,7,113-140.
    [237] X. Liang JHW, Y. He. Human connectome: Structural and functional brainnetworks (in Chinese). Chinese Sci Bull (Chinese Ver).2010,55(16),1565-1583.
    [238] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis ofstructural and functional systems. Nat Rev Neurosci.2009,10(3),186-198.
    [239] Liu J, Qin W, Nan J, et al. Gender-related differences in the dysfunctional restingnetworks of migraine suffers. PloS one.2011,6(11), e27049.
    [240] Liu J, Zhao L, Li G, et al. Hierarchical Alteration of Brain Structural andFunctional Networks in Female Migraine Sufferers. PloS one.2012,7(12),e51250.
    [241] Merikangas KR, Stevens DE. Comorbidity of migraine and psychiatric disorders.Neurol Clin.1997,15(1),115-123.
    [242] Breslau N, Lipton R, Stewart W, et al. Comorbidity of migraine and depressioninvestigating potential etiology and prognosis. Neurology.2003,60(8),1308-1312.
    [243] Breslau N, Schultz L, Stewart W, et al. Headache and major depression Is theassociation specific to migraine? Neurology.2000,54(2),308-308.
    [244] Greicius MD, Supekar K, Menon V, et al. Resting-state functional connectivityreflects structural connectivity in the default mode network. Cereb Cortex.2009,19(1),72-78.
    [245] van den Heuvel MP, Mandl RC, Kahn RS, et al. Functionally linked resting‐state networks reflect the underlying structural connectivity architecture of thehuman brain. Hum Brain Mapp.2009,30(10),3127-3141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700