用户名: 密码: 验证码:
激光推进热力冲击破坏机理和防护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光推进是利用高能激光与工质相互作用产生的反作用力推动飞行器前进的新概念推进技术。激光引起的工质等离子体温度可达10000K以上,远高于传统火箭的工作温度和所有材料的熔点,因此,抗热、力冲击破坏将是激光推进研究中的必须克服的重大关键问题之一。
     激光推进器热力冲击破坏问题涉及光辐射,高温等离子体流场和推进器结构的相互作用,热和力的相互耦合,本构模型和破坏准则,瞬态脉冲作用和长时间积累等一系列基础性理论难题,这一难题的突破可以为激光推进器抗热/力冲击设计和技术攻关提供基础,具有重要的应用价值。
     本文的工作主要围绕大气模式激光推进中的热力冲击破坏机理和防护开展研究:①通过数值模拟研究了非定常激光等离子体流场的分布和演化规律,分析了影响推进性能的因素,为热力冲击破坏机理研究提供热力载荷数据;②从机理分析、实验研究以及数值模拟三个方面对激光推进中的热力冲击破坏问题进行了系统的探讨;③针对产生激光推力器结构热力冲击破坏的原因,对相应的防护方法进行了初步的研究。得到的主要结果和新的认识有:
     建立了激光推力器推进性能和结构动态响应数值模拟平台,该平台既可用于激光推力器流场和推进性能计算,又可进行推力器结构的热力冲击破坏计算。
     对激光等离子体流场进行全过程数值模拟表明:流场演变可以分为三个阶段:主推阶段、止推阶段和“呼吸”振荡阶段,其中止推阶段和“呼吸”振荡阶段对推进性能的影响很大。
     讨论了激光脉冲能量、脉宽以及重复频率对推进性能的影响:①冲量耦合系数随能量的增大而增大,但趋势变缓;②短脉宽有利于改善推力器的推进性能,可以在很大程度上提高冲量耦合系数;③冲量耦合系数随脉冲数的增多而减小,冲量耦合系数随频率的增大而减小,原因一是飞行器运动引起的空气阻力,二是后期流场的作用。计算结果与实验符合的较好。
     提出激光推力器壁面存在四种界面热载荷:①壁面对入射激光的吸收;②壁面对内流场中高溫等离子体热辐射的吸收;③壁面对透过激光等离子体区透射激光的吸收;④高温气体与壁面之间的运流换热。
     对点聚焦拋物型推力器和环聚焦推力器两种构型分别进行了单、多脉冲热力冲击数值模拟,分析了热力冲击破坏的主控因素。结果表明:①对于点聚焦拋物面型推力器,温升主控因素是入射吸收,其次是热辐射,热力破坏的预测与实验结果符合较好。②对于环聚焦推力器,温升主控因素是透射吸收,其次是热辐射,高温气体与壁面间的运流换热的贡献较小可以忽略。100个脉冲的计算表明,第65个脉冲时由于材料强度降低,部分单元发生拉仲破坏,91个脉冲时部分单元达到热破坏阈值,出现熔化。力破坏早于热破坏,最终推力器的破坏将以断裂解体的形式出现,局部区域熔化严重,热力破坏是耦合作用的,计算结果很好的解释了实验现象。这是第一次对激光推进中热力冲击破坏作用的主要因素,破坏过程、规律和方式有了较清晰的认识。
     在此基础上,设计出自聚焦和外部聚焦两种拋物面型推力器模型,并使温升的次要因素一热辐射作用大大减小,甚至可忽略,这样一来,两种模型的主要温升均由单因素控制:自聚焦型是入射吸收,外部聚焦型,是透射吸收。
     针对这两种模型展开了热防护方法的研究,①建立了平均温升估算方法,得到多脉冲推进推力器的最终平衡温度,自聚焦模型为1700K,外部聚焦模型为2800K,都超过了目前大多数材料的使用温度。②提出激光推进热防护方案:对于自聚焦模型,采用传热传质热防护方法;对于外部聚焦模型,采用吸热式热防护方法与传热传质热防护方法相结合的防护方法,其中选取陶瓷材料作为基底实现吸热式热防护。通过计算验证了方案的可行性。
     针对激光推进力冲击破坏提出了防护方案:选取高温下可以保证较高抗拉强度的高温结构材料作为推力器的基底材料抵御力的冲击破坏。以氮化硅陶瓷为例进行了计算,结果表明,高温下推力器不会发生力的破坏。
Laser propulsion, which works on the counterforce generated during the interaction between high-power laser and propellant, is a new concept technique for propulsion. The plasma temperature of working fluid caused by laser can reach above 10000K which is much higher than the working temperature of tranditional rockets and the melting point of all materials, so, the resistance of thermal-mechanical shock and damage will be the great problem for reseach of laser propulsion.
     The problem of thermal-mechanical shock and damage for laser propulsion involve: light radiation, interaction between high-temperature plasma flow fluid and structure of the thruster, thermal-mechanical coupling, constitutive model and failure criterion, transient pulse effect and long-time accumulation etc. The breakthrough of this problem can provide basis for the design and technical tackling of the resistance of thermal-mechanical shock, which have important value.
     This dissertation is to study mechanism of thermal-mechanical shock and investigation of protection for laser propulsion: (l)research the evolution law of the unsteady-laser plasma flow fluid, analyse the factor for propulsive performance, provide the thermal-mechanical loads for the mechanism research of thermal-mechanical shock;(2) study the problem of thermal-mechanical shock and damage through themechanism analysis, experimental study and numerical simulation;(3) Develop the preliminary study for protection. Obtains the main result and the new understanding include:
     Established the numerical simulation platform of propulsion performance and the structure dynamic response, this platform may use in the propulsion performance computation and thermal-mechanical shock and damage computation.
     Numerical simulation for plasma flow fluid indicates that there are three stages: the main propell stage, anti-thrust stage and breathing- oscillation stage.
     Discussed the effects on propulsion performance: (1) the C_m (momentum coupling coefficien) increases along with the energy increases ; (2)the short pulse width is advantageous in improves propulsion performance;(3)the C_m increases along with the pulse number reduces, the C_m increases along with the frequency reduces.
     There are four interface-thermal loads in the wall of laser thruster :( 1) the wall-absorption of incident laser;( 2) the wall-absorption of thermal radiation caused by the high-temperature plasma;(3) the wall-absorption of transmission of laser which transmitted the plasma region;(4) convection heat transfer between the wall and the high-temperature gas.
     Numerical simulation for thermal-mechanical shock according to self-focusing model and annular-focusing model considering both single-pulse and multi-pulses was carried out to analyse the main controlling factors. The results indicate: (1) the main controlling factor of the temperature-rise is absorption of incident laser for self-focusing model, and the next is thermal radiation, the prediction of thermal-mechanical damage fits the experiment well; (2) the main controlling factor of the temperature-rise is absorption of transmission of laser for annular-focusing model, and the next is thermal radiation; convection heat transfer between the wall and the high-temperature gas can be ignored. The simulation of 100 pulses indicates that in the 65~(th) pulse, partial unit occure tension failure because of the material strength reduces, and in the 91~(th) pulse, partial unit reach the threshold of thermal damage. The mechanical damage appears earlier than thermal damage, the thruster will damage with the fracture and disintegration, partial region melt seriously, the thermal and mechanical damage are coupling, the computation explains the experiment's phenomena well.It's the first time to have clear understanding of the main factor of thermal-mechanical shock and damage, damage process,the rule and the way.
     Design the parabola thruster considering self-focusing and external-focusing, the thermal radiation can be ignored through designs, then, the main temperature rise of the two models can be control by the single factor: absorption of incident laser for self-focusing model and the absorption of transmission of laser for external-focusing model.
     Research for thermal-protection method is developed for the two models: (1) establishes the estimation method for average temperature rise and Compute the balance temperature: 1700K for self-focusing model and 2800K for external-focusing model;(2) propose the protection plans for the two model: Mass and heat transfer thermal protection method for self-focusing model; coupled the Thermal sinking method and the Mass and heat transfer thermal protection method for external-focusing model. The plan is feasible through simulation.
     Propose the protection plans for mechanical protection: using the high temperature structural material. The plan is feasible through simulation.
引文
[1].A.R.Kantrowitz.The Relevance of Space.Aeronautics & Astronautics,1971,9(3),p.34-35.
    [2].A.R.Kantrowitz.Propulsion to orbit by ground based lasers.Aeronautics & Astronautics,1972,10(5),p.74-76.
    [3].A.N.Pirri,R.F.Weiss.Laser propulsion.AIAA Paper 72-719,Boston,Mass,1972,p.2-9.
    [4].V.P.Ageev,A.I.Barchukov,F.V.Bunkin,et al.Experimental and theoretical modeling of laser propulsion.Acta Astronautica,Vol.7,1980,p.79-90.
    [5].M.A.Antonison,W.L.Smith,L.N.Myrabo.The Apollo Lightcraft Project.AIAA-4486,1988,p.1-6.
    [6].L.N.Myrabo.Lightcraft Technology Demonstrator.Final Technical Report,Rensselaer Polytechnic Institute,prepared under Contract No.2073803 for Lawrence Livermore National Laboratory and the SDIO Laser Propulsion Program,30 Jun 89.
    [7].L.N.Myrabo,D.G.Messitt,F.B.Mead,Jr,et al.Ground and flight tests of a laser propelled vehicle.AIAA 1001,1998,p.1-10.
    [8].F.B.Mead,Jr,L.N.Myrabo,D.G.Messitt.Flight and ground tests of a laser-booted vehicle.AIAA-3735,1998,p.1-10.
    [9].L.N.Myrabo.World record flights of beam-riding rocket lightcraft-Demonstration of disruptive propulsion technology[J].AIAA-3798,2001,p.1-15.
    [10].W.O.Schall,W.L.Bohn,H.-A.Eckel,et al.Lightccraft Experiments in Germany,High-Power Laser Ablation Ⅲ,Proc.of SPIE,Vol.4065,2000,p.472-481.
    [11].辜建辉,徐启阳,李再光,等。激光推进原理与技术.推进技术,1995(2):80-84.
    [12].许德胜,郭振华,S.Messaoud,等。论光动力飞行器.激光技术,1999,23(2):86-90.
    [13].吴刚,张育林,程谋森。微型卫星激光推进发射及其关键技术.上海航天,2002(2):47-52.
    [14].王军,武文远。利用激光实现飞行器推进的概念和关键技术的分析.解放军理工大学学报,2003,4(3):72-75.
    [15].柯常军,万重怡。激光推进飞行器技术扁功率激光,2003,40(8):18-21.
    [16].何少六,李波,龙华,等。激光推进技术的现状及发展.高功率激光,2003,40(10):1-4.
    [17].王骐,李琦,尚铁梁。激光推进原理与发展状况.激光与红外,2003,33(1):3-7.
    [18].李立毅,罗光耀,李小鹏。新型推进技术的基本原理及其应用前景.电子技术杂志,2003(4):39-43.
    [19].李修乾,洪延姬,何国强,等。激光推进器概念设计研究现状及发展趋势.强激光与粒子束,2005,17(3):363-368.
    [20].孙承纬,激光驱动空间飞行器的原理分析.激光的热和力学效应学术会议论文集,广西,北海,2000,1-8.
    [21].唐志平等。用激光推进轻型飞行器的初步实验探索.激光的热和力学效应学术会议论文集,四川,绵阳,2001:120-124.
    [22].程祖海,王又青,朱晓,等。激光推进机理及实验研究.2002年深空探测技术与应用科学国际会议,山东,青岛,2002:322-327.
    [23].李俊美,洪延姬,文明,等。激光推进中一种光船结构的设计.装备指挥技术学院学报,2002,13(6):97-100.
    [24].洪延姬,崔村燕,王鹏,等。吸气式激光推进环聚焦光船设计方法.装备指挥技术学院学报,2003,14(2):102-104.
    [25].文明,洪延姬,李倩。激光光船聚焦性能研究.装备指挥技术学院学报,2003,14(3):93-97.
    [26].龚平,唐志平。大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击,2003,23(6):501-508.
    [27].龚平,唐志平。大气模式激光推进的实验研究和数值模拟.爆炸与冲击,2003,增刊:315-316.
    [28].龚平.大气呼吸模式激光推进的研究:[博士].合肥:中国科学技术大学,2004.
    [29].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Performance modeling of an experimental laser propelled lightcraft.AIAA 2347,2000,p.1-11.
    [30].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.AIAA 0648,2001,p.1-11.
    [31].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.Vol.18,No.6,November-December 2002,p.1129-1138.
    [32].F.B.Mead,C.W.Larson.Laser-powered,vertical flight experiments at the High Energy Laser System Test Facility.AIAA-3661,2001,p.1-8.
    [33].G.P.萨顿,O.比布拉兹.《火箭发动机基础》.科学出版社,2003.
    [34].文明,洪延姬,王军,等。激光推力器喷管热防护实验研究.强激光与粒子束,2006,18(12):1959-1963.
    [35].范绪箕.《气动加热与热防护系统》.科学出版社,2004.
    [36].卞荫贵.《气动热力学》.中国科学技术大学出版社,1997.
    [37].郑义军,谭荣清,王东蕾,等.激光脉冲重复频率对冲量耦合系数的影响.强激光与粒子束,2005,17(7):979-982.
    [38].张庆红.激光推力器的设计及研究:[硕士].合肥:中国科学技术大学,2007.
    [39].蔡建,胡晓军,唐志平.烧蚀模式激光推进的实验研究.推进技术(已录用).
    [1].V.P.Ageev,A.I.Barchukov,F.V.Bunkin,et al.Experimental and theoretical modeling of laser propulsion.Acta Astronautica,Vol.7,1980,p.79-90.
    [2].龚平,唐志平。大气呼吸模式激光推进的机理分析及数值模拟.爆炸与冲击,2003,23(6):501-508.
    [3].龚平,唐志平。大气模式激光推进的实验研究和数值模拟.爆炸与冲击,2003,增刊:315-316.
    [4].龚平.大气呼吸模式激光推进的研究:[博士].合肥:中国科学技术大学,2004.
    [5].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Performance modeling of an experimental laser propelled lightcraft.[J].AIAA 2347,2000.
    [6].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.[J].AIAA 0648,2001.
    [7].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.[J].Journal of propulsion and power.Vol.18,No.6,November-December 2002.
    [8].曹正蕊,洪延姬,李倩,等。单脉冲能量对光船推进性能的影响.热科学与技术,2005,4(2):183-188.
    [9].F.B.Mead,C.W.Larson.Laser-powered,vertical flight experiments at the High Energy Laser System Test Facility.AIAA-3661,2001,p.1-8.
    [10].W.O.Schall,W.L.Bohn,H.-A.Eckel,et al.Lightccraft Experiments in Germany,High-Power Laser Ablation Ⅲ,Proc.of SPIE,Vol.4065,2000,p.472-481.
    [11].周毓麟.《一维非定常流体力学》.科学出版社,1998.
    [12].泽尔道维奇,莱依捷尔.《激波和高温流体动力学现象物理学》.科学出版社,1980.
    [13].姚宏林,陈健华,洪延姬,等。高温空气状态方程计算方法.装备指挥技术学院学报,2003,14(6):101-105.
    [14].陆明万,罗学富。《弹性理论基础》.清华大学出版社,1997.
    [15].丁升,王建国,王玉恒,等。激光辐照热力耦合问题的相似性.强激光与粒子束,2005,17(9):1331-1334.
    [16].FLUENT Inc.
    [17].ABAQUS Documentation.
    [1].龚平.大气呼吸模式激光推进的研究:[博士].合肥:中国科学技术大学,2004.
    [2].V.P.Ageev,A.I.Barchukov,F.V.Bunkin,et al.Experimental and theoretical modeling of laser propulsion.Acta Astronautica,Vol.7,1980,p.79-90.
    [3].W.O.Schall,H.-A.Eckel,W.Riede.Laser propulsion experiments with a high-power pulsed CO2 laser.International Symposium on Gas Flow,Chemical Lasers,and High-Power Lasers,Proceedings of SPIE.Vol.5120,2003,p.618-622.
    [4].胡春波,程翔,何国强,等。空气压强对激光推进器冲量耦合系数影响.固体火箭技术,2007,30(2):90-93。
    [5].文明,洪延姬,杨健,等。气压对吸气式激光推进冲量耦合系数的影响.强激光与粒子束,2007,19(7):1077-1080.
    [6].W.O.Schall,W.L.Bohn,H.-A.Eckel,et al.Lightccraft Experiments in Germany,High-Power Laser Ablation Ⅲ,Proc.of SPIE,Vol.4065,2000,p.472-481.
    [7].郑义军,谭荣清,王东蕾,等.激光脉冲重复频率对冲量耦合系数的影响.强激光与粒子束,2005,17(7):979-982.
    [8].F.B.Mead,C.W.Larson.Laser-powered,vertical flight experiments at the High Energy Laser System Test Facility.AIAA-3661,2001,p.1-8.
    [9].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Performance modeling of an experimental laser propelled lightcraft.AIAA 2347,2000,p.1-11.
    [10].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.AIAA 0648,2001,p.1-11.
    [11].Ten-See Wang,Yen-Sen Chen,Jiwen Liu,et al.Advanced performance modeling of experimental laser Lightcrafts.Vol.18,No.6,November-December 2002,p.1129-1138.
    [12].张庆红.激光推力器的设计及研究:[硕士].合肥:中国科学技术大学,2007.
    [13].曹正蕊,洪延姬,李倩,等。单脉冲能量对光船推进性能的影响.热科学与技术,2005,4(2):183-188.
    [14].庄礼贤,尹协远,马晖扬.《流体力学》.中国科学技术大学出版社,1997.
    [15].F.B.Mead,Jr,L.N.Myrabo,D.G.Messitt.Flight and ground tests of a laser-booted vehicle.AIAA-3735,1998,p.1-13.
    [16].Ten-see Wang.F.B.Mead,Jr,C.W.Larson.Analysis of the effect of pulse width on Laser Lightcraft performance.AIAA-3664,2001,p.1-8.
    [1].卞荫贵.《气动热力学》.中国科学技术大学出版社,1997.
    [2].孙承玮.《激光辐照效应》.国防工业出版社,2002.
    [3].蔡建,胡晓军,唐志平。烧蚀模式激光推进的实验研究.推进技术,(已录用)。
    [4].L.N.Myrabo.World record flights of beam-riding rocket lightcraft-Demonstration of disruptive propulsion technology[J].AIAA-3798,2001,p.1-15.
    [5].王祝堂,田荣璋主编。《铝合金及其加工手册(第二版)》.中南大学出版社,2005.
    [6].泽尔道维奇,莱依捷尔。《激波和高温流体动力学现象物理学》.科学出版社,1980.
    [7].L.N.Myrabo,D.G.Messitt,F.B.Mead,Jr,et al.Ground and flight tests of a laser propelled vehicle.AIAA 1001,1998,p.1-10.
    [8].奚梅成。《数值分析方法》.中国科学技术大学出版社,1995.
    [9].龚平,唐志平。大气模式激光推进的机理分析及数值模拟.爆炸与冲击,2003,23(6):501-508.
    [10].许仁萍,唐志平。大气模式下多脉冲激光推进的数值模拟.强激光与粒子束,2007,19(3):369-372.
    [1].C.R.Phipps,J.P.Reilly,et al.Laser launching a 5-kg object into low Earth orbit.High-Power Laser Ablation Ⅲ,Proceedings of SPIE,Vol.4065(2000),p.502-510.
    [2].王祝堂,田荣璋主编。《铝合金及其加工手册(第二版)》.中南大学出版社,2005.
    [3].倪红芳,凌祥,涂善东。多道焊三维残余应力场有限元模拟。机械强度,2004,26(2):218-222.
    [4].Graham S.Arnold,Absorptivity of several metals at 10.6μm:empirical expressions for the temperature dependence computed from Drude theory.APPLIED OPTICS,1984,23(9):1434-1436.
    [5].周瑞发,韩雅芳,李树索.《高温结构材料》.国防工业出版社,2006.
    [6].洪长青,张幸红,韩杰才,等。热防护用发汗冷却技术的研究进展(I)冷却方式分类、发汗冷却材料及其基本理论模型.宇航材料科技,2005(6):7-12.
    [7].B.K.科什金等.《航天和火箭技术的传热原理》.科学出版社,1963.
    [8].杜少军,陆启生,赵伊君,等。表面对流冷却下非稳定腔激光窗口温升分布的计算.强激光与粒子束,2000,12(1):23-26.
    [9].陶毓伽,淮秀兰,李志刚,等。大功率固体激光器冷却技术进展.激光杂志,2007,28(2):11-12.
    [10].周乐平,唐大伟,杜小泽,等。大功率激光武器及其冷却系统.激光武器,2007,44(8):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700