用户名: 密码: 验证码:
大鼠丘脑前核参与学习记忆的分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:学习记忆是人类和动物生存不可缺少的重要功能。学习(learning)是获得新信息和新知识的神经过程,而记忆(memory)则是对所获取信息的编码、巩固、保存和读出的神经过程。大脑具有多重记忆系统,如记忆可分为陈述性记忆(declarative memory)和非陈述性记忆(non-declarative memory)等,不同类型的记忆在不同的脑区中贮存,海马、丘脑、杏仁核、前额叶皮层及基底神经节等都与学习记忆有关。近年来研究发现丘脑前核在空间学习记忆中发挥重要作用。
     1973年Bliss和lomo首次在兔海马观察到突触传递的长时程增强(Long term potentiation LTP)现象,长时程增强很可能是学习与记忆的神经生理基础,而长时程增强现象的发生及维持过程与突触前膜释放谷氨酸的增加有关。本实验室前期通过胶体金免疫电镜等技术发现丘脑前核与边缘皮质学习记忆环路间存在的兴奋性神经递质是谷氨酸,但丘脑前核内是否存在NMDA受体研究较少。
     越来越多的研究证实,MAPK/ERK信号通路与脑内长时程增强的形成以及学习记忆功能有重要的联系。如经水迷宫训练后的大鼠,海马CA1/CA1区ERK被激活,使用PD098059抑制MAPK/ERK级联反应则p-ERK蛋白含量降低,并且长期空间记忆的形成受损。丘脑前核在学习记忆过程中,ERK通路是否参与胞内信号的转导目前仍不清楚。
     即早基因(Immediate early genes IEGs)被认为是核内的第三信使,如大鼠海马内注射c-Fos的反义寡核苷酸后发现大鼠的长时记忆巩固过程障碍。丘脑前核在空间学习记忆即早基因是否参与仍不清楚。
     突触可塑性包括两个方面,长时程增强(Long-term potentiation LTP)和长时程抑制(Long-term depression LTD), LTP和LTD对一个完整的学习记忆神经网络均不可缺少,LTD在学习记忆中发挥着不断纠正错误的作用。γ-氨基丁酸(γ-Amino butyric acid, GABA)是中枢神经系统内主要的抑制性神经递质,GABA与LTD有关。目前丘脑前核内GABA及其受体的表达仍不明确。
     本实验目的是在前期发现丘脑前核内存在谷氨酸神经递质基础上,探讨丘脑前核内NMDA受体表达,Morris水迷宫训练后ERK1/2的变化以及c-Fos和c-Jun的表达。并探讨抑制性神经递质GABAA受体在丘脑前核的表达。
     方法
     1.通过原位杂交观察大鼠丘脑前核内NR1,NR2A及NR2BmRNA的表达及分布特点。
     2.成年雄性SD大鼠31只,分为3组:PD组:侧脑室内注射5ul PD098059溶液(PD098059 3ug/只);PD对照组:侧脑室内注射5ulDMSO溶剂;正常组:未进行侧脑室注射。在Morris水迷宫中,定位航行训练后,行侧脑室内注射,24小时后空间探索实验。免疫组化检测p-ERK的变化。
     3.成年雄性SD大鼠分为3组,正常组:未经Morris水迷宫训练;训练组:通过Morris水迷宫训练;假训练组:撤掉平台,每天游泳次数和游泳时间与训练组相同。训练后一半免疫组化检测c-Fos和c-Jun的表达。另一部分行Westwern-Blot检测c-Fos和c-Jun蛋白的表达。
     4.原位杂交观察丘脑前核内GABAAR-alpha 1和GABAAR-beta2受体mRNA的表达。
     结果
     1.NR2A,NR2B及NR1mRNA在丘脑前核都有表达,阳性神经元分布较密集,细胞形态较一致,整体分布尚均匀。NR2AmRNA及NR2BmRNA在丘脑前背侧核和腹侧核的分布前者稍显密集,胞体略大。同时在海马CA1,CA3及DG和扣带后回也观察到NR2A,NR2B及NR1 mRNA的表达。空白对照切片为阴性。
     2.在空间探索实验中PD组寻找平台次数与对照组及正常对照组相比明显减少(P<0.01)。PD组在靶象限停留时间与对照组及正常组相比明显减少(P<0.01)。正常组在靶象限停留时间和穿越平台次数与对照组相比没有显著差异,p>0.05。
     p-ERK阳性表达神经元呈棕黄色,为圆形或椭圆形,PD对照组与PD组与正常对照组比较,在丘脑前核p-ERK组表达明显增强,光密度分析有显著性差异(P<0.01),PD组与正常对照组比较,在丘脑前核p-ERK无显著差别。在PD对照组,丘脑前背侧核(AD)的p-ERK免疫反应阳性产物与丘脑前腹侧核(AV)相比,表达显著增强,光密度分析有显著性差异(P<0.05)。空白对照切片为阴性,未见p-ERK表达阳性神经元。
     3.c-Fos免疫组化阳性表达位于细胞核内,呈褐色的圆形或椭圆形。训练组c-Fos阳性细胞在AD和AV均有表达,但AD与AV相比表达显著增强,经图像平均光密度有显著差异(P<0.05)。训练组丘脑前核c-Fos阳性细胞表达与正常对照组和假训练组比较明显增强,经图像平均光密度分析明显增强(P<0.05)。c-Jun免疫组化阳性表达位于细胞核内,呈褐色的圆形或椭圆形。训练组c-Jun阳性细胞在AD和AV均有表达,AD与AV相比染色略强,细胞稍显密集,形态略大。正常对照组和假训练组AD和AV的c-Jun阳性细胞都有弱的表达;但训练组与正常对照组和假训练组比较染色明显增强,经图像分析平均光密度明显增强(P<0.05)。
     4.原位杂交:GABAAR-alphal和GABAAR-beta2 mRNA原位杂交阳性反应产物为棕黄色,主要分布在神经元胞浆中。在AD和AV,阳性神经元分布较密集,细胞形态较一致,在AD和AV的分布前者稍显密集。同时大脑其他学习记忆脑区如海马CA1,CA3及DG和扣带后回也观察到GABAAR-alpha 1和GABAAR-beta2mRNA的表达。
     结论
     1.大鼠丘脑前核内存在NR1,NR2A.NR2BmRNA的表达。提示丘脑前核在空间学习记忆信号转导中细胞膜受体可能以NR1-NR2A, NR1-NR2B或NR1-NR2A-NR2B形式存在。
     2.大鼠通过Morris水迷宫训练及应用PD098059后,大鼠空间参考记忆受损,p-ERK表达减弱,提示丘脑前核空间参考记忆细胞内信号转导可能与MAPK途经有关。在PD对照组,Morris水迷宫训练后p-ERK在丘脑前背侧核表达较丘脑前腹侧核表达显著增强(P<0.001)。
     3.Morris水迷宫训练后大鼠丘脑前核内c-Fos和c-Jun蛋白表达显著增加,提示核内第三信使可能以Fos-Jun异源二聚体的形式,作用于靶基因AP1结合位点,启动靶基因进一步转录。水迷宫训练后丘脑前背侧核c-Fos表达与丘脑前腹侧核显著增强,但丘脑前背侧核与前腹侧核在学习记忆中的具体作用有待进一步探讨。
     4.丘脑前核内存在GABAAR-alpha 1和GABAAR-beta2表达,提示在学习记忆中丘脑前核可能受到抑制性氨基酸的调控
Background and purpose:Learning and memory are indispensable function of survival to human and animals. Study is to obtain new information and new knowledge of neural processes. Memory is the access to information while encoding,consolidation, storage and reading out the neural process. The brain has multiple memory systems, such as declarative memory and non-declarative memory, etc. Different types of memories are stored in different brain regions, Hippocampus, thalamus, amygdala, prefrontal cortex and basal ganglia are all related to learning and memory. Recent studies have found that anterior thalamic nucleus(ATN) played an important role in spatial learning and memory.
     It was not until 1973 that long-term potentiation (LTP)of synaptic efficacy was originally described in the hippocampus of rabbits by Bliss and lomo. LTP is likely to be neurophysiological basis of learning and memory, the maintenance of LTP is related to an increased release of glutamate of presynaptic membrane.In our laboratory by immunogold electron microscopy techniques showed that the excitatory neurotransmitter is glutamate between learning and memory neural circuits of the ATN and limbic cortex. However, it is not clear if the ATN expresses NMDA receptors.
     A growing body of evidence has recently been accumulating that MAPK/ERK1/2 pathway activity is involved in LTP and the formation of memory. The present study found that ERK is activated in hippocampal CA1 after water maze training in rats, PD098059 inhibited p-ERK1/2 to affect the ERK1/2 pathway activity and impaired long-term spatial memory. It is not clear if ERK pathway is involved in the process of learning and memory of ATN.
     Immediate early genes (IEGs) are considered the nucleus of third messenger. After injecting c-fos antisense oligonucleotide into the hippocampus of rats, long-term memory consolidation in rats was impaired after Morris water maze training. During spatial learning and memory, it is not clear whether IEGs express in ATN.
     Synaptic plasticity consists of LTPand long-term depression(LTD). LTP and LTD are essential to a complete neural network of learning and memory, y-aminobutyric acid (GABA) is major inhibitory neurotransmitter, GABA is related to LTD. The expression of GABA and its receptor in the ATN are not clear.
     The aim of this study is to explore the expression of NMDA receptors and GABAA receptor expression in the ATN; And to explore that MAPK/ERK signal transduction and IEGs are related to spatial lerning and memory in the ATN.
     Methods:1.To observe the expression and distribution of NR1, NR2A and NR2BmRNA in the ATN of rats by in situ hybridization.2. The rats were divided into 3 groups:①PD group:Rats were injected intraventricularly with PD098059(3μg/5ul) after Place navigation training.②PD control group:intraventricular injection of 5ul DMSO solvent;③Normal group:no intraventricular injection. After 24 hours to do space exploration training. p-ERK was detected by means of immunohistochemistry.3. Adult male SD rats were divided into 3 groups:①Control group:without the Morris water maze training;②Training group:Morris water maze training;③Sham training group:removed platform, swim times and time with the same as training group. After training, half of the rats to detect the expression of c-Fos and c-Jun by means of immunohistochemistry. Another half to detect the expression of c-Fos and c-Jun by means of Westwen-Blot.
     4. GABAAR-alphal and GABAAR-beta2 receptor mRNA expression were determined through situ hybridization in the ATN.
     Results:
     1. The mRNA of NMDA receptor subunits NR1, NR2A and NR2B distributed in the intensively and homogeneously in the ATN. The mRNA of NMDA receptor subunits NR1, NR2A and NR2B were also visible in the hippocampus and retrosplenial granular cortex. Control sections were negative for the expression of mRNA of NMDA receptor subunits NR1, NR2A and NR2B.
     2. In the probe trial performance, the platform crossings in PD group were significantly reduced compared to the PD control group and normal control group (P<0.01). The percentage of time of PD group spent in the correct quadrant decreased significantly compared to the PD control group and the normal group (P<0.01).The platform crossings and the percentage of time of spent in the correct quadrant in PD control group showed no significantly different compared to normal control group (P> 0.05). p-ERK positive neurons were brown, round or oval. p-ERK expression in ATN of PD control group was significantly increased compared to PD group and the normal control group (P<0.01). p-ERK showed no significant difference between PD group and the normal control group. In the PD control group, p-ERK in the anterior dorsal nucleus (AD)was stronger than in anterior ventral nucleus(AV) (P<0.05).No expression of p-ERK-positive neurons was found in negative control sections.
     3. After Morris water maze training,The expression of c-Fos was distributed in the AD and AV. But AD was significantly enhanced compared to AV(P<0.05). The expression of c-Fos of the training group in the ATN was dramatically stronger compared to the normal control group and the sham training group (P<0.05). The expression of c-Jun was visible in the AD and AV. The expression of c-Jun protein in the AD was stained slightly stronger than in the AV. In the normal control group and sham training group. The expression of c-Jun protein was weak. The expression of c-Jun in the training group significantly increased compared to the control group and the sham training group(P<0.05).
     4. In situ hybridization:GABAAR-alpha1 and GABAAR-beta2 mRNA in situ hybridization-positive brown reaction products, mainly in the cytoplasm of neurons.In AD and AV, positive neurons were more intensive, more consistant morphology, the distribution in the AD and AV former slightly intensive. while such as the hippocampus and retrosplenial granular cortex the expressions of GABAAR-alphal and GABAAR-beta2 mRNA were also observed in the other parts of brain related to learning and memory.such as hippocampus and retrosplenial granular cortex.
     Conclusions
     1. The results suggest that the neurons of ATN are capable of producing NMDA receptors subunits of NR1,NR2A and NR2B.During signal transduction of learning and memory in the ATN, the cell membrane receptors are likely to be NR1-NR2A,NR1-NR2B,or NR1-NR2A-NR2B patterns.
     2. Post-training application ERK cascade inhibitors (PD098059) in rats, the spatial reference memory was impaired, and the expression of p-ERK was decreased. Suggesting a likely crucial role of MAPK/ERK signalling passway in spatial reference memory process of ATN. After Morris water maze training in the PD control group, the expression of p-ERK in the AD was significantly increased compared to AV.
     3. After Morris water maze training, the expression c-Fos and c-Jun in the ATN were increased dramatically, which indicates Fos form heterodimeric complexes with Jun to constitute the AP-1, which further regulates gene expression. After Morris water maze training, the expression of c-Fos in the AD was significantly increased compared to the AV, but the functions of AD and AV respectively in learning and memory are still further studied.
     4. GABAAR-alphal and GABAAR-beta2 mRNA were expressed in the ATN, suggesting that learning and memory process in the ATN was likely regulated by GABA.
引文
1. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia:dissociation of knowing how and knowing wthat[J]. Science,1980; 210:207-210.
    2. Spiers,H.J.,Maguire,E.A.,Burgess,N. Hippocampal amnesia[J]. Neurocase,2001; 7357-382.
    3. Mair,R.G..On the role of thalamic pathology in diencephalic amnesia[J]. Reviews in Neuroscience,1994,5,105-140.
    4. Henry J.,Petrides M.,St-Laurent M.,er al. Spatial conditional associative learning:Effects of thalamo-hippocampal disconnection in rats[J]. NeuroReport, 2004,15:2427-2431.
    5. Aggleton,J.P.,& Brown,M.W.Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. [J] Behav Brain Sci,1999;22(3):425-444.
    6. ArmstrongR, E. Enlarged limbic structures in the human brain:The anterior thalamus and medial mamillary body[J]. Brain Res,1986,362:394-397,
    7. Nauta WJ.An experimental study of the fornix system in the rat[J]. J Comp Neurol,1956,104:247-271.
    8. Aggleton J P.Desimone R and Mishikin M.The origin,course,and termination of the hippocampothalamic projections in the macaque[J]. J Comp Neurol,1986, 243:409-421.
    9. van Groen T, Wyss JM. Connections of the retrospenial dysgranular cortex in the rat[J]. J Comp Neurol.1992 Jan 8;315(2):200-16.
    10. Jenkins TA, Dias R, Amin E, et al. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats [J]. J Neurosci,2002,22:5230-5236.
    11. Gaffan,D..What is a memory system? Horel's critique revisited[J]. Behav Brain Res 2001;127(1-2):5-11.
    12. Cruce JA. An autoradiographic study of the projections of the mammillothalamic tract in the rat[J]. Brain Res.1975 Feb 28;85(2):211-9.
    13. Harding,A.,Halliday,G.,Caine,D.,et al. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia[J]. Brain,2000,123:141-154.
    14. Pitel AL, Beaunieux H, Witkowski T,et al.Episodic and working memory deficits in alcoholic Korsakoff patients:the continuity theory revisited[J].Alcohol Clin Exp Res.2008 Jul;32(7):1229-41.
    15. Gold JJ, Squire LR.The anatomy of amnesia:neurohistological analysis of three new cases[J].Learn Mem.2006 Nov-Dec;13(6):699-710.
    16. Mark VH, Barry H, McLardy T, et al. The destruction of both anterior thalamic nuclei in a patient with intractable agitated depression[J]. J Nerv Ment Dis.,1970 Apr;150(4):266-72.
    17. Clarke,S., Assal,G.,Bogousslavsky,J., Regli, F., Townsend, D. W., Leenders, K. L.Blecic, S. Journal of Neurology, Neurosurgery and Psychiatry,1994; 57:27-34.
    18. Aggleton JP,Mishkin M. Memory impairments following restricted medial thalamic lesions in monkeys[J]. Experimental Brain Research,1983;52:199-209,
    19. Byatt G, Dalrymple-Alford JC. Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats[J].Behavioral Neuroscience,1996;110: 1335-1348.
    20. JohnP.Aggleton,GuillaumeL.Poirier,Hugh S,et al. Lesions of. the Fornix and Anterior Thalamic Nuclei Dissociate Different Aspects of Hippocampal-Dependent Spatial Learning:Implications for the Neural Basis of Scene Learning[J], Behavioral Neuroscience,2009;Vol.123,No.3:504-519.
    21. Mizumori, S. J. Y.,Williams, J. D.Directionally sensitive mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus in rats[J].Journal of Neuroscience 1993; 13:4015-28.
    22. Mizumori SJ, Miya DY, Ward KE.Reversible inactivation of the lateral dorsal thalamus disrupts hippocampal place representation and impairs spatial learning[J]. Brain Research,1994;644:168-74.
    23. Henry J, Petrides M, St-Laurent M,et al. Spatial conditional associative learning: effects of thalamo-hippocampal disconnection in rats[J]. Neuroreport,2004 Oct 25;15(15):2427-31.
    24. E.Clea Warburton, JohnP.Aggleton. Differential deficits in the Morris water maze following cytotoxic Lesions of the anterior thalamus and fornix transection[J]. Behavioural Brain Research,1999;98:27-38.
    25. Warburton EC, Baird A, Morgan A, et al.The Conjoint Importance of the Hippocampus and Anterior Thalamic Nuclei for Allocentric Spatial Learning: Evidence from a Disconnection Study in the Rat[J]. The Journal of Neuroscience, 2001,September 15,21 (18):7323-7330.
    26. Van Groen T, Kadish 1, Michael Wyss J.Role of the anterodorsal and
    anteroventral nuclei of the thalamus In spatial memory in the rat[J]. Behav Brain Res.2002 Apr 15;132(1):19-28..
    27. Robertson RT, Kaitz SS. Thalamic connections with limbic cortex. I. Thalamocortical projections[J]. J Comp Neurol,1981,195:501-525.
    28. Saunders,R.C.,Mishkin,M., Aggleton,J.P. Projections from the entorhinal cortex,perirhinal cortex,presubiculum,and parasubiculum to the medialthala-musin macaque monkeys:Identifying different pathways using disconnection techniques[J]. Experimental Brain Research,2005,167(1):1-16.
    29. Edelstyn,N.M.,Hunter, B., Ellis, S. J. Bilateral dorsolateral thalamic lesions disrupts conscious recollection[J]. Neuropsychologia,2006,44(6):931-938
    30. L.Cipolotti,M.Husain,J.Crinion et al The role of the thalamus in amnesia:A tractography,high-resolution MRI and neuropsychological study[J]. Neuropsy-chologia,2008,46:2745-2758.
    31. Gibb SJ, Wolff M, Dalrymple-Alford JC. Odour-place paired-associate learning and limbic thalamus:comparison of anterior, lateral and medial thalamic lesions[J]. Behav Brain Res,2006,Sep 15; 172(1):155-68
    32. Van Groen T, Kadish I, Wyss JM.Role of the laterodorsal nucleus of the thalamus in spatial learning and memory in the rat[J].Behav Brain Res,2002, Nov 15,136(2):329-37.
    33. Mizumori SJ, Williams JD. Directionally selective mnemonic properties of neurons in the lateral dorsal nucleus of the thalamus of rats[J]. J Neurosci, 1993,13:4015-4028.
    34. Beracochea DJ, Jaffard R, Jarrard LE. Effects of anterior or dorsomedial thalamic ibotenic lesions on learning and memory in rats. Behav Neural Biol., 1989, May;51(3):364-76.
    35. AGGLETON JP and MISHKIN M. Memory impairments following restricted medial thalamic lesions in monkeys[J]. Experimental Brain Research,1983,52: 199-209,
    36. Parker A, Eacott MJ and Gaffan D. The recognition memory deficit caused by mediodorsal thalamic lesion in non-human primates:A comparison with rhinal cortex lesion[J]. European Journal of Neuroscience,1997,9,2423-2431.
    37. Gaffan D and Parker A. Mediodorsal thalamic function in scene memory in rhesus monkeys[J]. Brain,2000,123:816-827,
    38. Floresco SB, Braaksma DN and Phillips AG. Thalamic-cortical-striatal circuitry subserves working memory during delayed responding on a radial arm maze (J) Journal of Neuroscience,1999,19:11061-11071.
    39. Levasseur, M., Baron, J. C., Sette, G., et al.Brain energy metabolism in bilateral paramedian thalamic infarcts (J). Brain,1992;115:795-807.
    40. Mitchell AS, Dalrymple-Alford JC.Lateral and anterior thalamic lesions impair independent memory systems (J). Learn Mem,2006 May-Jun;13(3):388-96.
    41. Coleen M. Atkinsl, Joel C. Selcherl, Joseph J,et al. The MAPK cascade is required for mammalian associative learning[J].Nature Neuroscience,1998, volumelNo 7.Nov:602-09.
    42. Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE. Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase (J). Learn Mem,1999 Mar-Apr;6(2):97-110.
    43. Schafe GE, Atkins CM, Swank MW, et al. Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of pavlovian fear conditioning[J].J Neurosci,2000 Nov 1;20(21):8177-87.
    44. Walz R, Roesler R, Barros DM, et al.Effects of post-training infusions of a mitogen-activated protein kinase inhibitor into the hippocampus or entorhinal cortex on short-and long-term retention of inhibitory avoidance (J).Behav Pharmacol.1999 Dec;(10)8:723-30.
    45. English Jd,Seatt J DD. Arequirment for the mitogen activity Protein kinase cadein in hippocampal onlong term potentiation (J).Biol Chem 1997;272(310):19103-19106.
    46. Thomas KL, Laroche S, Errington ML, et al. Spatial and temporal changes in signal transduction pathways during LTP[J]..Neuron,1994 Sep;13(3):737-45.
    47. English Jd,Seatt J D D. Arequirment for the mitogen activity Protein kinase cadein in hippocampal onlong term potentiation (J).Biol Chem,1997, 272(310):19103-19106.
    48. Selcher J C,Weeber E J,Chdreth G E,Sweatt J D.A role for ERK MAPK kinase in physiologic temporal integration in hippocampal area CA1 (J).Learn Mem, 2003,10(1):26-39.
    1. Cohen NJ, Squire LR. Preserved learning and retention of pattern-analyzing skill in amnesia:dissociation of knowing how and knowing that. Science,1980; 210,207-210.
    2. Spiers, H.J., Maguire, E.A.,& Burgess, N. Hippocampal amnesia. Neurocase,2001; 7357-382.
    3. Mair, R.G.. On the role of thalamic pathology in diencephalic amnesia. Reviews in Neuroscience,1994;5,105-140.
    4. Henry J., Petrides, M.St-Laurent, M.& Sziklas,V. Spatial conditional associative learning:Effects of thalamo-hippocampal disconnectionin rats. NeuroReport,2004; 15,2427-2431.
    5. Nauta WJ. An experimental study of the fornix system in the rat. J Comp Neurol,1956; 104:247-271.
    6. Aggleton J P, Desimone R, Mishikin M. The origin,course,and termination of the hippocampothalamic projections in the macaque. J Comp Neurol,1986; 243:409-421.
    7. van Groen T, Wyss JM. Connections of the retrospenial dysgranular cortex in the rat. J Comp Neurol,1992 Jan 8;315(2):200-16.
    8. Jenkins TA, Dias R, Amin E, et al. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats [J]. J Neurosci,2002,22:5230-5236.
    9. Harding, A., Halliday, G., Caine,D., Kril,J. Degeneration of anterior thalamic nuclei differentiates alcoholics with amnesia. Brain,2000;123,141-154.
    10. Makk.V..H.. Bakry.H.. Mclakuy. T. and Ekvin. F. R. The destruction of both anterior thalamic nuclei in a patient with intractable agitated depression. J. New. Ment. Dis,1970; 150,266-272,
    11.Byatt G, Dalrymple-Alford JC. Both anteromedial and anteroventral thalamic lesions impair radial-maze learning in rats. Behavioral Neuroscience,1996; 110: 1335-1348.
    12. E.Clea, Warburton, Alison Baird.et al. The Conjoint Importance of the Hippocampus and Anterior Thalamic Nuclei for Allocentric Spatial Learning: Evidence from a Disconnection Study in the Rat. The Journal of Neuroscience, 2001 September 15,21(18):7323-7330.
    13.Henry,J., Petrides,M.,St-Laurent,M.,et al.Spatial conditional associative learning: Effects of thalamo-hippocampal disconnectionin rats. NeuroReport,2004;15, 2427-2431.
    14. Bliss, T.V.P., Gardner-Medwin, A.R.. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaesthetized rabbit following stimulation of the perforant path. Journal of Physiology,1973;232,331-356.
    15.Lomo, T. Potentiation of monosynaptic EPSPs in the perforant path-dentate granule cell synapse. Experimental Brain Research,1971;12,46-63.
    16. Kanterewicz BI, et al.The extracellular signal regulated kinase cascade is required for NMDA receptor independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci,2000; 20:30572-3066.
    1. Jenkins TA, Dias R, Amin E, et al. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats [J]. J Neurosci,2002,22:5230-5236.
    2. Aggleton,J.P., Brown,M.W. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999; 22(3),425-444.
    3. Gaffan, D.. What is a memory system? Horel's critique revisited. Behav Brain Res 1999; 127(1-2),5-11.
    4. Mitchell AS, Dalrymple-Alford JC, Christie MA. Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus[J]. J Neurosci 2002; 22(5):1922-8.
    5. Mitchell AS, Dalrymple-Alford JC. Lateral and anterior thalamic lesions impair independent memory systems[J]. Learn Mem 2006; 13(3):388-96.
    6. Kim MH, Choi J, Yang J, et al. Enhanced NMDA receptor-mediated synaptic transmission enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53[J]. J Neurosci.2009 Feb; 4,29(5):1586-95.
    7. Wang B, A Gonzalo-Ruiz, Sanz JM, et al. Glutamatergic components of the retrosplenial granular cortex in the rat[J]. J Neurocytol 2001; 30(5):427-441.
    8. Wang B, A Gonzalo-Ruiz, L Morte, et al. Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thala-mocortical projection neurons in the anterior thalamus of the rat[J]. Brain Research Bulletin 1999,; 50(1):63-76.
    9. Kumar A, Zou L, Yuan X, et al. N-methyl-D-aspartate receptors: transient of NR1/NR2A/NR2B subunits after traumatic brain injury in a rodent model[J]. J Neurosci Res 2002; 67(6):781-6.
    10. Sabina Hrabetova, Peter Serrano, Nancy Blace, et al. Distinct NMDA receptor subpopulations contribute to long term potentiation and long term depression induction[J]. J Neurosci 2000; 20 RC:81-6.
    11.韩太真,吴馥梅.学习与记忆的神经生物学[M].北京:北京医科大学与中国协和医科大学联合出版社,1997.302-304.
    12. Pamela Maher, Tatsuhiro Akaishi, Kazuho Abe. Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory[J]. Proc Natl Acad Sci U S A 2006; 103(44):16568-73.
    13. Del-Olmo N, Miguens M, Higuera-Matas A, et al. Enhancement of hippocampal long-term potentiation induced by cocaine self-administration is maintained during the extinction of this behavior[J]. Brain Res 2006; 1116(1):120-126.
    14. Stephenson FA. Subunit Characterization of NMDA receptors [J].CurrDrug Targets.2001; 2(3):233-9.
    15. Jonathan L. Brigman, Michael Feyder, et al. Impaired discrimination learning in mice lacking the NMDA receptor NR2A subunit[J]. Learning and memory 2008; 15:50-54.
    16. Tang YP, Shimizu E, Dube GR. Genetic enhancement of learning and memory in mice [J]. Nature 1999; 401 (6748):63-69.
    17. Warburton, E. C., Aggleton, J. P.& Muir, J. L. Comparing the effects of selective cingulate cortex and cingulum bundle lesions on a spatial navigation task. European Journal of Neuroscience 1998; 10:622-34.[arJPA]
    18. Parker, A. and Gaffan, D. The effect of anterior thalamic and cingulated cortex lesions on object-in-place memory in monkeys. Neuropsychologia 1997; 35, 1093-1102.
    1. Sweatt JD. Motigen-activated p rotein kinases in synaptic plasticity and memory[J]. Curr Opin Neurobiol.2004 Jun;14(3):311-7. Review.
    2. Mariana F. Beatriz D, Alejandr OD, et al. Phosphorylation of extra-nuclear ERK /MAPK is required for long-term memory consolidation in the crab Chasmagnathus[J]. Behavioural Brain Res 2005; 158 (2):251-261.
    3. Coleen M,Atkins, Joel C, Selcher, Et al. The MAPK cascade is required for mammalian associative learning[J]. nature neuroscience 1998; volume INo 7: 602-609.
    4. Hebert AE, Dash PK. Extracellular signal-regulated kinase activity in the entorhinal cortex is necessary for long-term spatial memory [J]. Learn Mem. 2002 Jul-Aug;9(4):156-66.
    5. Richard Morris. Developments of a water-maze procedure for studying spatial learning in the rat.Journal of Neuroscience Methods[J].1984;Volume 11, Issue 1, May, P:47-60.Clarke S, Assal G, Bogousslavsky J, et al.Pure amnesia after unilateral left polar thalamic infarct:. topographic and sequential neuropsychological and metabolic (PET) correlations [J]. J Neurol Neurosurg Psychiatry.1994 Jan;57(1):27-34.
    7. Van Groen T, Kadish I, Michael Wyss J.Role of the anterodorsal and anteroventral nuclei of the thalamus In spatial memory in the rat. Behav Brain Res.2002 Apr 15;132(1):19-28..
    8. Kelleher RJ 3rd, Govindarajan A, Jung HY,et,al.Translational control by MAPK signaling in long-term synaptic plasticity and memory[J]. Cell 2004 Feb 6;116(3):467-79.
    9. Kato A, Fukazawa Y, Ozawa F, et al. Activation of ERK cascade promotes accumulation of Vesl-1S/Homer-la immunoreactivity at synapses [J]. Brain Res Mol Brain Res,2003; 118,133-44.
    10. Vanhoose AM, Emery M, J imenez L, et al. ERK activation G-protein-coupled receptors in mouse brain is receptor identity-specific[J]. J Biol Chem 2002; 277 (11):9049-53.
    11. Shibata, H. Topographic organization of subcortical projections to the anterior thalamic nuclei in the rat[J]. Journal of Comparative.Neurology.1992;323:117-27.
    12. Cruce, J. A. F. An autoradiographic study of the projections of the mammill-othalamic tract in the rat[J]. Brain Research,1975;85:211-19.
    13. Thomas van Groem, Inga kadish, J.Michael Wyss. Role of the anterdorsal and anterventral nuclei of the thalamus in spatial memory in the rat[J]. Behavioural Brain Research,2002; 132:19-28.
    14. Aggleton, J. P., Hunt, P. R., Nagle, S., Neave, N. The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat[J]. Behavioural Brain Research 1996; 81:189-98.
    1. Nauta WJ.An experimental study of the fornix system in the rat. J Comp Neurol 1956; 104:247-271.
    2. Aggleton J P, Desimone R and Mishikin M. The origin, course, and termination of the hippocampothalamic projections in the macaque. J Comp Neurol 1986; 243:409-421.
    3. Jenkins TA, Dias R, Amin E, et al. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats [J]. J Neurosci,2002;22:5230-5236.
    4. Aggleton, J.P., Brown,M.W.. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999; 22(3),425-444.
    5. Gaffan.D. What is a memory system? Horel's critique revisited. Behav Brain Res 2001; 127(1-2),5-11.
    6. Thomas van Groen a, Inga Kadish a, J.Michael Wyss. Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat. Behavioural Brain Research 2002;132,19-28.
    7. Guzowski JF. Insights into immediately gene function in hippocampal memory consolidation using antisense oligonucleotide and flurescent imaging approaches. Hippocampus.2002; 12(1)86-104.
    8. Alexander, Fleischmann, Oivind Hvalby, et al. Impaired Long-Term Memory and NR2A-Type NMDA Receptor-Dependent Synaptic Plasticity in Mice Lacking c-Fos in the CNS. The Journal of Neuroscience 2003; 23(27):9116-9122
    9. Stephenson FA.Subunit characterization of NMDA receptors [J]. Curr Drug Targets.2001; 2(3):233-9.
    10.付元山,王滨,马晓凯,范凯.N-甲基-D-天冬氨酸2A/B受体亚型在大鼠丘脑前核和扣带后回的表达.中国组织工程研究与临床康复.2007;Vol11.No.13:2507-09.
    11. Wang B, A Gonzalo-Ruiz, Sanz JM, et al. Glutamatergic components of the retrosplenial granular cortex in the rat[J]. J Neurocytol 2001; 30(5):427-441.
    12. Wang B, A Gonzalo-Ruiz, L Morte, et al. Immunoelectron microscopic study of glutamate inputs from the retrosplenial granular cortex to identified thalamocortical projection neurons in the anterior thalamus of the rat[J]. Brain Research Bulletin 1999; 50(1):63-76.
    13.马晓凯,王滨,范凯,付元山.大鼠丘脑前核内海马下托复合体谷氨酸能传入终末与皮质投射神经元的突触联系.解剖学报2007;Vol 38,No2,139-143.
    14.Cruce JA. An autoradiographic study of the projections of the mammillothalamic tract in the rat. Brain Res.1975 Feb; 28,85(2):211-9.
    15.Aggleton, J. P., Hunt, P. R., Nagle, S.et al. The effects of selective lesions within the anterior thalamic nuclei on spatial memory in the rat.Behavioural Brain Research 1996; 81:189-98.
    16. Beracochea, D. Jaffard, R. Effects of anterior thalamic lesions on spatial memory in mice.Neuroreport 1995; 5:917-20.
    1. van Groen AH, Kadish AI, Wyss JM. Role of the anterodorsal and anteroventral nuclei of the thalamus in spatial memory in the rat [J]. Behav Brain Res,2002, 132:19-28.
    2. Henry J, Petrides M, St-Laurent M,et al. Spatial conditional associative learning: effcts of thalamo-hippocampal disconnection in rats [J]. Neuroreport,2004,15: 2427-2431.
    3. Jenkins TA, Dias R, Amin E, et al. Fos imaging reveals that lesions of the anterior thalamic nuclei produce widespread limbic hypoactivity in rats [J]. J Neurosci,2002,22:5230-5236.
    4. Mitchell AS, Dalrymple-Alford JC, Christie MA.Spatial working memory and the brainstem cholinergic innervation to the anterior thalamus [J]. J Neurosci, 2002,22:1922-1928.
    5. Mitchell AS, Dalrymple-Alford JC. Lateral and anterior thalamic lesions impair independent memory systems [J].Learn Mem,2006,13:388-396.
    6. Kim MH, Choi J, Yang J, et al. Enhanced NMDA receptor-mediated synaptic transmission enhanced long-term potentiation, and impaired learning and memory in mice lacking IRSp53 [J]. J Neurosci,2009,4,29:1586-1595.
    7. Castellano C, Introini-Collison IB, McGaugh JL. Interaction of betaendorphin and GABAergic drugs in the regulation of memory storage [J]. Behav Neural Biol,1993,60:123-128.
    8. Berlau DJ, McGaugh JL. Enhancement of extinction memory consolidation:the role of the noradrenergic and GABAergic systems within the basolateral amygdale [J]. Neurobiol Neurobiol Learn Mem,2006,86:123-132.
    9. Farr SA, Uezu W, Creonte TA, et al. Modulation of memory processing in the cingulate cortex ofmice [J]. Pharmacol Biochem Behav,2000,65:363-368.
    10. Tretter V,EIlya N.Fuchs K,et al.Stoichiometry and Assembly of A Recombinant GABAARceptor Subtype[J].J.Neuresci,1997,17:2728-2737.
    11. Shahidi S, Komaki A, Mahmoodi,M, et al. The role of GABAergic transmission in the dentate gyrus on acquisition, consolidation and retrieval of an inhibitory avoidance learning and memory task in the rat [J]. Brain Res,2008,1204:87-93.
    12. Nagahara,A.H.,McGaugh,J.L.,1992.Muscimol infused into the Medial septal are a impairs long-term memory but not short-term Memory in inhibitory avoidance,water maze place learning and Rewarded alternation tasks.Brain Res.18,591(1),54-61.
    13. Komaki, A., Shahidi, S., ashgari,R., et al. Effects of GABAergic inhibition on neocortical long-term potentiation in the chronically prepared rat 2007, Neurosci.Lett.422,181-186.
    14. Gonzalo-Ruiz A, Lieberman AR. GABAergic projections from the thalamic reticular nucleus to the anteroventral and anterodorsal thalamic nuclei of the rat [J]. J Chen Neuroanat,1995,9:165-174.
    15. Poirier GL, Aggleton JP. Post-surgical interval and lesion location within the limbic thalamus determine extent of retrosplenial cortex immediate-early gene hypoactivity [J]. Neuroscience,2009,160:452-469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700