用户名: 密码: 验证码:
癫痫突触机制中发动蛋白、突触融合蛋白、突触囊泡膜蛋白及相关蛋白研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:耐药性癫痫患者突触囊泡相关蛋白研究
     目的:在本课题组既往耐药性癫痫患者和癫痫模型脑组织基因芯片研究基础上,检测耐药性癫痫患者脑组织中突触囊泡功能相关蛋白的差异表达,探索突触囊泡功能相关蛋白在耐药性癫痫突触机制中的作用。
     方法:收集耐药性癫痫患者手术后的脑组织,按病程不同分为短病程和长病程两组,采用RT-PCR、免疫组化、免疫荧光、western blot分别对突触囊泡相关蛋白Dnm1,Stx1和Syt1的表达部位和表达量进行测定,通过与对照组的比较,探讨其在耐药性癫痫发病机制中的作用。
     结果:我们的结果发现Dnm1,Stx1和Syt1主要在神经元胞膜和胞浆中表达。其中,Dnm1在长病程和短病程的耐药性癫痫患者中表达较对照组显著增强(P<0.05),而在长短病程组间无显著差异(P>0.05);Stx1和Syt1在长病程的耐药性癫痫患者中表达较短病程组和对照组显著增强(P<0.05), Stx1和Syt1的表达在短病程和对照组间无显著差异(P>0.05)。
     结论:研究提示耐药性癫痫患者脑组织中存在突触囊泡相关蛋白的差异表达,这些改变在耐药性癫痫的发病及维持中可能起一定作用。其中,Dnm1主要参与网格蛋白介导的突触囊泡的内吞过程,其高表达提示在癫痫患者病程早期就存在囊泡内吞功能的加强;Stx 1主要与胞吐过程中囊泡与胞膜的融合有关,Syt 1作为钙感受器调节囊泡的胞吐过程,同时也与其他蛋白协同,促进网格蛋白包被的形成,调节囊泡的内吞,所以在耐药性癫痫的后期,突触囊泡的内吞和胞吐功能均增强,提示囊泡循环的增强在耐药性癫痫的发生及发展中有重要作用。
     第二部分:耐药性癫痫患者血液、脑脊液中Dnm1、talin2及κ-IgLC,λ-IgLC蛋白的检测
     目的:本课题组在前期耐药性癫痫患者脑脊液蛋白质组学研究中发现,talin 2蛋白出现在癫痫患者脑脊液中,在对照组没有表达。talin 2是一种细胞粘附因子,存在于突触部位,可能与突触功能相关。基于此,我们设计了本研究,以进一步了解血液、脑脊液中突触相关蛋白Dnm 1和talin 2的差异表达和κ-IgLC,λ-IgLC的变化,为临床寻找新的药物治疗靶点和生物标记物提供实验依据。
     方法:将患者分为四组:病毒性脑炎组(AE),病毒性脑炎合并癫痫发作组(AESS),治疗有效脑炎后癫痫(EPEE)及难治性脑炎后癫痫组(RPEE),分别采集血清、脑脊液。运用酶联免疫吸附试验(ELISA)定量测定血清、脑脊液中的talin2,Dnm1、κ-IgLC,λ-IgLC的浓度,并与对照组进行比较。
     结果:共62例患者纳入AE组(n=16),AESS(n=16),EPEE(n=15)及RPEE(n=15)。结果发现在AE、AESS、PEE及RPEE组脑脊液中的Dnm1浓度与血清中没有显著差异;RPEE组脑脊液中talin2的表达显著高于其他组,而血清中talin2低于其他组;脑脊液中κ-IgLC,λ-IgLC和相应IgLCκ/λ比值的变化在各组中无显著差异,而血清中κ-IgLC,λ-IgLC和IgLCκ/λ比值在各组间有显著差异:在RPEE中,血清κ-IgLC浓度较其他三组显著增高;在RPEE中,血清λ-IgLC浓度较其他三组显著降低,而EPEE和AESS的血清λ-IgLC浓度较AE患者显著降低;血清IgLCκ/λ比值在RPEE中显著高于其他三组,而EPEE和AESS的血清IgLCκ/λ比值较AE患者显著增高。
     结论: talin 2在RPEE患者脑脊液、血清中的表达显著增高,提示耐药性癫痫的形成可能与talin2参与的突触囊泡回收功能障碍有关;血清而非脑脊液中的κ-IgLC,λ-IgLC和相应IgLCκ/λ比值的改变,特别是RPEE中超高水平的血清IgLCκ/λ比值似乎提示其可以作为一个耐药性癫痫预后判断指标,RPEE可能是IVIg治疗的适合人群。Dnm 1在各组中无显著差异,与脑组织中的变化不同表明脑脊液和脑组织间在此方面存在组织学差异。
PART ONE: EXPRESSIONS OF SYNAPTIC VESICLE RELATED PROTEINS IN THE BRAIN TISSUE OF REFRACTORY EPILEPTIC PATIENTS
     Objective Based on the previous study of gene chips in refractory patients and kindling models, we detected the expression of genes and proteins related to synaptic vesicle recycling in the brains of refractory epileptic patients, to further explore the synapse function in human intractable epilepsy.
     Methods the temporal brain tissue from refractory epilepsy patients and head trauma patients were obtained. The refractory epilepsy patients were divided into two groups: the long illness duration and short illness duration groups, and the head trauma patients were used as control. RT-PCR, western blot, Immunohistochemistryand immunofluorescence were used to examine the mRNA expressions and protein expression of Dnm 1, Stx 1 and Syt 1.
     Results Dnm 1, Stx 1 and Syt 1 maily confined to the cytoplasm and cytomembrane. As compared with the control group, there appeared significant increased mRNA and protein level of Dnm 1 in long and short illness duration RE patients; there was no significant difference between 2 groups of RE. As to Stx 1 and Syt 1, the expressions were significantly up-regulated in long illness duration RE patients when compared with those in short illness duration RE and control., and there were no difference between hort illness duration RE and control.
     Conclusion The altered expressions of genes and proteins related to synaptic vesicle indicated that the synaptic visicle recycling was changed in the brains of RE. Dnm 1 is involved in the endocytosis of synaptic vesicle high levels of neuronal activity, our results suggested that Dyn 1 might be involved in the epileptogenesis of RE in the early stage through modulating endocytosis of neurotransmitter; Stx 1A is involved in vesicle fusion step and plays a key role in exocytosis and Syt 1 is involved in both exocytosis and endocytosis of synaptic vesicle. Our present results suggested that in the later stage of RE, both the exocytosis and endocytosis of synaptic vesicle were strengthened in refractory epileptic patients. Thus , the enhanced synaptic vesicle circulation may play an important role in the RE.
     PART TWO: THE CSF AND SERUM CONCENTRATION OF DNM 1, TALIN 2,Κ-IGLC,λ-IGLC IN POSTENCEPHALITIC EPILEPSY PATIENTS
     Aim: A previous proteomics study found that talin 2 presented in the cerebrospinal fluid (CSF) of epileptic patients only but not in healthy controls . Talin 2 is found in focal cell adhesion and synapse and play role at those place.
     Methods: A total of 62 patients agreed to participate in the study. Dnm 1, Talin 2 were detected in the CSF and serum of and drug-effective post-encephalitic epilepsy(EPEE), drug-refractory post-encephalitic epilepsy( PEE), acute encephalitis with secondary seizures (AESS) acute encephalitis without secondary seizures (AE) patients using sandwich enzyme-linked immunosorbent assays.
     Results: A total of 62 patients agreed to participate in the study. The Dnm 1 concentrations of CSF and serum in AE, AESS,EPSS and RPEE had no significant difference(P>0.05);RPEE CSF talin 2 concentrations were greater when compared to AE, EPEE and AESS (p <0.05), While the serum talin 2 concentrations were significantly decreased in RPEE when compared with other 3 groups(p <0.05); the changes in CSFκ-IgLC,λ-IgLC and IgLCκ/λratio had no statistical difference among RPEE, EPEE, AESS and AE groups, but the changes in serumκ-IgLC,λ-IgLC and IgLCκ/λratio had extraordinary statistical difference: the serumκ-IgLC concentrations were significantly increased in RPEE; The serumλ-IgLC is significantly lower in RPEE when compared with other 3 groups and the concentrations in EPEE and AESS were significantly lower than that in AE; The serum IgLCκ/λratios in RPEE was significantly higher than other 3 groups and the ratios in EPEE and AESS were significantly higher than that in AE.
     Conclusions: We suggest that the differential concentration of CSF and serum talin 2 in RPEE is an intractability-related phenomenon but not a seizure-related phenomenon. The striking change of serumλ-IgLC andΚ/λratio in RPEE might be used as a diagnostic or prognostic parameter for RPEE and RPEE patients might be a target for immunoglobulin therapy.
引文
[1]王学峰,肖波,孙红斌.主编.难治性癫痫[M].上海:上海科技出版社,2002:27~30.
    [2] Sisodiya SM, Lin WR, Harding BN, et al. Drug resistance in Epilepsy Expression of drug-resistance proteins in common causes of refractory Epilepsy [J]. Brain. 2002, 125:22~31.
    [3] Hosaka M, Hammer RE, Südhof TC, et al. A phospho-switch controls the dynamic association of synapsins with synaptic vesicles [J]. Neuron. 1999, 24(2):377~387
    [4] Yamagata Y. New aspects of neurotransmitter release and exocytosis: dynamic and differential regulation of synapsin I phosphorylation by acute neuronal excitation in vivo [J]. J Pharmacol Sci. 2003, 93(1): 22~29
    [5] Cataldo AM, Peterhoff CM, Troncoso JC, et al. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations [J]. Am J Pathol. 2000, 157:277~286.
    [6] Vanoni C, Massari S, Losa M, et al. Increased internalisation and degradation of GLT-1 glial glutamate transporter in a cell model for familial amyotrophic lateral sclerosis (ALS) [J]. J Cell Sci. 2004 117(Pt 22):5417~5426.
    [7] Nixon RA. Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases [J]. Neurobiol Aging. 2005, 26(3):373~382.
    [8]文世全,王学峰,晏勇.基因芯片检测耐PHT点燃鼠脑突触可塑性基因的表达[J].重庆医科大学学报. 2002, 27(03): 276~279
    [9].龚云,王学峰,汪建华,等.难治性癫痛突触囊泡回收相关蛋白的表达及基因研究[J].中华神经科杂志2006,3:155~158
    [10] Richard J, Charles L, Anatol, et al. Sleep states differentiate single neuro activity recorded from human epileptic hippocampus, entorhinal cortex, and subiculum [J]. The Journal of Neuroscience, 2002, 22(13): 5694-5704.
    [11]Hessler NA, Shirke AM, Malinow R. The probability of transmitter release at a mammalian central synapse [J]. Nature. 1991, 366:569-572.
    [12]Cousin MA, Robinson PJ. Mechanism of synaptic vesicle recycling illuminated byfluorescent dyes [J]. J Neurochem. 1999, 173(2):227-239
    [13] Haucke V, De Camilli P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs [J]. Science. 1999, 285(1): 268-271
    [14] Robinson PJ. How to fill a synapse. Science [J]. 2007, 316(5824):551-553
    [15] Bauerfeind R, David C, Grabs D, et al. Recycling of synaptic vesicles [J]. Adv. Pharmacol. 1998, 42:253-257
    [16] Girard M, Allaire PD, McPherson PS, et al. Non-stoichiometric relationship between clathrin heavy and light chains revealed by quantitative comparative proteomics of clathrin-coated vesicles from brain and liver [J]. Mol cell proteomics. 2005, 4:1145-1154
    [17] Marsh M, Mcmahon HT. The structural era of endocytosis[J]. Science. 1999, 285: 215-220
    [18] Augustine GJ, Morgan JR, Villalba-Galea CA, et al. Clathrin and synaptic vesicle endocytosis: studies at the squid giant synapse [J]. Biochem Soc Trans. 2006, 34:68-72
    [19] Praefcke, GJ, McMahon, HT. The dynamin superfamily: universal membrane tubulation and fission molecules? [J]. Nat Rev Mol Cell Biol. 2004, 5: 133–147
    [20] Kruchten AE, McNiven MA. Dynamin as a mover and pincher during cell migration and invasion [J]. Cell Sci. 2006, 119: 1683–1690
    [21] Koenig JH, Ikeda K. Disappearance and reformation of synaptic vesicle membrane upon transmitter release observed under reversible blockage of membrane retrieval [J]. Neurosci. 1989, 9: 3844–3860
    [22] van der Bliek AM, Meyerowitz EM. Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic [J]. Nature. 1991, 351: 411– 414
    [23] Damke H, Baba T, Warnock DE, et al. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation [J]. J Cell Biol. 1994, 127: 915–934
    [24] Clark SG, Shurland DL, Meyerowitz EM, et al. A dynamin GTPase mutation causes a rapid and reversible temperature-inducible locomotion defect in C.elegans [J]. Proc. Natl. Acad. Sci. U.S.A. 1997, 94: 10438–10443
    [25] Shpetner HS, Vallee RB. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules [J]. Cell. 1989,59: 421–432
    [26] Obar RA, Collins CA, Hammarback JA, et al. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins [J]. Nature. 1990, 347: 256–261
    [27] Shpetner HS, Vallee RB. Dynamin is a GTPase stimulated to high levels of activity by microtubules [J]. Nature. 1992, 355: 733–735
    [28] Herskovits JS, Burgess CC, Obar RA, et al. Effects of mutant rat dynamin on endocytosis [J]. J Cell Biol. 1993, 122: 565–578
    [29] van der Bliek AM, Redelmeier TE, Damke H, et al. Mutations in human dynamin block an intermediate stage in coated vesicle formation [J]. J Cell Biol. 1993, 122: 553–563
    [30] Ferguson SM, Brasnjo G, Hayashi M, et al. A Selective Activity-Dependent Requirement for Dynamin 1 in Synaptic Vesicle Endocytosis [J]. Science. 2007, 316: 570-574
    [31] Fütterer CD, Maurer MH, Schmitt A, et al. Alterations in Rat Brain Proteins after Desflurane Anesthesia[J]. Anesthesiology. 2004, 100(2): 302-308
    [32] Kalenka A, Hinkelbein J, Feldmann RE Jr, et al. The effects of sevoflurane anesthesia on rat brain proteins: a proteomic time-course analysis[J]. Anesth Analg. 2007, 104(5):1129-1135
    [33] Charpe MD,Young GB,Mirsattari S,et al.Prolonged desflurane administration for refractory status epilepticus [J].Anesthesiology. 2002,97(1) :261 -264
    [34] Mirsattari SM, Sharpe MD, Young GB. Treatment of refractory status epilepticus with inhalational anesthetic agents isoflurane and desflurane[J]. Arch Neurol. 2004, 61(8): 1254-1259
    [35] Musialowicz T, Mervaala E, K?lvi?inen R, et al. Can BIS monitoring be used to assess the depth of propofol anesthesia in the treatment of refractory statusepilepticus? [J]. Epilepsia. 2010, Feb 3. [Epub ahead of print]
    [36] Furuta A, Martin LJ, Lin CL, et al. Cellular and synaptic localization of the neuronal glutamate transporters excitatoryamino acid transporter 3 and 4 [J]. Neuroscience. 1997, 81: 1031-1042
    [37] Furuta A, Noda M, Suzuki SO, et al. Translocation of glutamate transporter subtype excitatory amino acid carrier 1 protein in kainic acid-induced rat epilepsy [J]. Am. J. Pathol. 2003,163: 779-787
    [38] He Y, Janssen WG, Rothstein JD, et al. Differentialsynaptic localization of the glutamate transporter EAAC1 and glutamate receptor subunit GluR2 in the rat hippocampus [J]. J. Comp. Neurol. 2000, 418: 255-269
    [39] Rothstein JD, Martin L, Levey AI, et al. Localization of neuronal and glial glutamate transporters [J]. Neuron, 1994, 13: 713-725
    [40] Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate [J]. Neuron 1996,16: 675-686
    [41] Sepkuty JP, Cohen AS, Eccles C, et al. A neuronal glutamate transporter contributes to neurotransmitter GABA synthesis and epilepsy [J]. J. Neurosci. 2002,22: 6372-6379
    [42] Simantov R, Crispino M, Hoe W, et al. Changes in expression of neuronal and glial glutamate transporters in rat hippocampus following kainate-induced seizure activity. Brain Res. Mol. Brain Res [J]. 1999, 65: 112-123
    [43] Ghijsen WE, da Silva Aresta Belo AI, Zuiderwijk M, et al. Compensatory change in EAAC1 glutamate transporter in rat hippocampus CA1 region during kindling epileptogenesis [J]. Neurosci. Lett. 1999, 276: 157-160
    [44] Gorte, JA, Van Vliet EA, Proper EA, De Graan PN, et al. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats [J]. J. Comp. Neurol. 2002, 442: 365-377
    [45] Maragakis NJ,Rothstein JD. Glutamate transporters: animal models to neurologic disease [J]. Neurobiol. Dis. 2004, 15: 461-473
    [46] Mathews GC, Diamond JS. Neuronal glutamate uptake Contributes to GABA synthesis and inhibitory synaptic strength [J]. J. Neurosci. 2003, 23: 2040-2048
    [47] Gorter JA, Van Vliet EA, Proper EA, et al. Glutamate transporters alterations in the reorganizing dentate gyrus are associated with progressive seizure activity in chronic epileptic rats [J]. J. Comp. Neurol. 2002, 442: 365-377
    [48] Conti F, DeBiasi S, Minelli A, et al. EAAC1, a high-affinity glutamate transporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex [J]. Cereb. Cortex. 1998,8: 108-116
    [49] Yu YX, Shen L, Xia P, et al. Syntaxin 1A promotes the endocytic sorting of EAAC1 leading to inhibition of glutamate transport [J]. J Cell Sci. 2006,119: 3776-3787
    [50] Bajjaliehs .SNARES take the stage : a prime time to trigger neurotransmitter secretion [J]. Trends Neurosci. 2001, 24(12): 678~680
    [51] Rettig J, Neher E . Emerging roles of presynaptic proteins in Ca2+-triggered exocytosis. Science. 2002, 298(5594): 781~785
    [52]Weber T, Zemelman BV, McNew JA, et al. SNAREpins: minimal machinery for membrane fusion [J]. Cell. 1998, 92: 759—772.
    [53] Sheng ZH, Rettig J, Takahashi M, Identification of a syntaxin-binding site on N-type calcium channels [J]. Catterall WA.Neuron. 1994, 13(6):1303-1313.
    [54] Naren AP, Nelson DJ, Xie W, et al. Regulation of CFTR chloride channels by syntaxin and Munc18 isoforms[J]. Nature. 1997,390(6657):302-305.
    [55] Fili O, Michaelevski I, Bledi Y, et al. Direct interaction of a brain voltage-gated K+ channel with syntaxin 1A: functional impact on channel gating [J]. J Neurosci. 2001, 21(6):1964-1974
    [56] Saxena S, Quick MW, Tousson A, et al. Interaction of syntaxins with the amiloride-sensitive epithelial sodium channel [J]. J Biol Chem. 1999, 274(30): 20812-20817
    [57] Deken SL, Beckman ML, Boos L, et al. Transport rates of GABA transporters: regulation by the N-terminal domain and syntaxin 1A [J]. Nat Neurosci. 2000,3(10): 998-1003.
    [58] Sung U, Apparsundaram S, Galli A, et al. A regulated interaction of syntaxin 1A with the antidepressant-sensitive norepinephrine transporter establishes catecholamine clearance capacity [J]. J Neurosci. 2003,23(5):1697-1709
    [59] Haase J, Killian AM, Magnani F, Williams C. Regulation of the serotonin transporter by interacting proteins [J]. Biochem Soc Trans. 2001,29(Pt 6):722-728.
    [60] Geerlings A, López-Corcuera B, Aragón C. Characterization of the interactions between the glycine transporters GLYT1 and GLYT2 and the SNARE protein syntaxin 1A. FEBS Lett. 2000, 470(1):51-4
    [61] Huettner JE. Kainate receptors and synaptic transmission[J]. Prog. Neurobiol. 2003, 70: 387-407
    [62]Engel Jr., J., Dichter MA, Schwartzkroin PA, 1997. Basic mechanisms of human epilepsy. In: Engel Jr., J., Pedley, T.A. (Eds.), Epilepsy: A Comprehensive Textbook, vol. 1. Lippincott-Raven, Philadelphia, pp. 499—512.
    [63]Minamoto Y, Itano T, Tokuda M, et al. In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amygdaloid kindled rat[J]. Brain Res. 1992, 573: 345-348
    [64]Geula C, Jarvie PA, Logan TC, et al. Long-term enhancement of K+-evoked release of L-glutamate in entorhinal kindled rats[J]. Brain Res. 1988, 442: 368-372.
    [65]Jarvie PA, Logan TC, Geula C, et al. Entorhinal kindling permanently enhances Ca2(+)-dependent L-glutamate release in regio inferior of rat hippocampus. Brain Res. 1990, 508:188-193
    [66] Kamphuis W, Huisman E, Veerman MJ, et al. Development of changes in endogenous GABA release during kindling epileptogenesis in rat hippocampus[J]. Brain Res. 1991,545: 33-40
    [67] Yamagata Y, Obata K, Greengard P, et al. Increase in synapsin I phosphorylation implicates a presynaptic component in septal kindling[J]. Neuroscience. 1995, 64: 1-4
    [68] Ueda Y, Doi T, Tokumaru J, et al. Kindling phenomena induced by the repeatedshort-term high potassium stimuli in the ventral hippocampus of rats: on-line monitoring of extracellular glutamate overflow[J]. Exp. Brain Res. 2000, 135: 199-203
    [69] Hjorth-Simonsen A, Jeune B. Origin and termination of the hippocampal perforant path in the rat studied by silver impregnation[J]. J. Comp. Neurol. 1972,144: 215-232
    [70] Steward O. Topographic organization of the projections from the entorhinal area to the hippocampal formation of the rat[J]. J. Comp. Neurol. 1976, 167: 285—314
    [71] Kajiwara R, Takashima I, Mimura Y, et al. Amygdala input promotes spread of excitatory neural activity from perirhinal cortex to the entorhinal—hippocampal circuit[J]. J. Neurophysiol. 2003, 89: 2176—2184
    [72]Dasheiff RM, McNamara JO. Evidence for an agonist independent down regulation of hippocampal muscarinic receptors in kindling[J]. Brain Res. 1980, 195: 345—353
    [73]Savage DD, Rigsbee LC, McNamara JO. Knife cuts of entorhinal cortex: effects on development of amygdaloid kindling and seizure-induced decrease of muscarinic cholinergic receptors[J]. J. Neurosci. 1985, 5: 408—413.
    [74]Yoshida K. Influences of bilateral hippocampal lesions upon kindled amygdaloid convulsive seizure in rats[J]. Physiol. Behav. 1984, 32: 123—126.
    [75] Matveeva EA, Vanaman TC, Whiteheart SW, et al. Asymmetric accumulation of hippocampal 7S SNARE complexes occurs regardless of kindling paradigm[J]. Epilepsy Res. 2007, 73(3):266-74
    [76] Matveeva EA, Whiteheart SW, Slevin JT. Accumulation of 7S SNARE complexes in hippocampal synaptosomes from chronically kindled rats[J]. J Neurochem. 2003, 84(3):621-4
    [77] Kamphuis W, Smirnova T, Hicks A. The expression of syntaxin1B/GR33 mRNA is enhanced in the hippocampal kindling model of epileptogenesis[J]. J Neurochem. 1995, 65(5):1974-80
    [78] Okada M, Zhu G, Yoshida S, Exocytosis mechanism as a new targeting site formechanisms of action of antiepileptic drugs[J]. Life Sci. 2002, 72(4-5): 465-73
    [79] Tocco G, Bi X, Vician L, et al. Two synaptotagmin genes, Syt1 and Syt4, are differentially regulated in adult brain and during postnatal development following kainic acid-induced seizures[J]. Brain Research Molecular Brain Research. 1996, 40: 229–239
    [80] Kobayashi S, Ohno K, Iwakuma M, et al. Synaptotagmin I hypothalamic knockdown prevents amygdaloid seizure-induced damage of hippocampal neurons but not of entorhinal neurons[J]. Neuroscience Research. 2002, 44: 455-465
    [81] Matthew WD, Tsavaler L, Reichardt LF. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue[J]. The Journal of Cell Biology. 1981, 91: 257–269
    [82] Fernández-Chacón R, K?nigstorfer A, Gerber SH, et al. Synaptotagmin I functions as a calcium regulator of release probability[J]. Nature. 2001, 410: 41–49
    [83] Mackler JM, Drummond JA, Loewen CA, et al. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo[J]. Nature. 2002, 418: 340–344
    [84] Robinson IM, Ranjan R, Schwarz TL. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain[J]. Nature. 2002, 418: 336–340
    [85] Stevens CF, Sullivan JM. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission[J]. Neuron. 2003, 39: 299–308
    [86] Yoshihara M, Littleton JT. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release[J]. Neuron. 2002, 36: 897–908
    [87]Haucke V, De Camilli P. AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs[J]. Science. 1999, 285: 1268-1271
    [88]Haucke V, Wenk MR, Chapman ER, et al. Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation[J]. The EMBO Journal. 2000, 19: 6011–6019
    [89] Jarousse N, Wilson JD, Arac D, et al. Endocytosis of synaptotagmin 1 is mediatedby a novel, tryptophan-containing motif[J]. Traffic. 2003, 4: 468–478
    [90]Jorgensen EM, Hartwieg E, Schuske K, et al. Defective recycling of synaptic vesicles in synaptotagmin mutants of Caenorhabditis elegans[J]. Nature. 1995, 378: 196–199
    [91]Nicholson-Tomishima K, Ryan TA. Kinetic efficiency of endocytosis at mammalian CNS synapses requires synaptotagmin I[J]. Proceedings of the National Academy of Sciences of the United States of America. 2004, 101: 16648–16652
    [92] Bhalla A, Chicka MC, Tucker WC, et al. Ca(2+)-synaptotagmin directly regulates t-SNARE function during reconstituted membrane fusion[J]. Nature Structural & Molecular Biology. 2006, 13: 323–330
    [93]Dai H, Shen N, Ara? D, et al. A quaternary SNARE- synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release[J]. Journal of Molecular Biology. 2007, 367: 848–863
    [94] Martens S, Kozlov MM, McMahon HT. How synaptotagmin promotes membrane fusion[J]. Science. 2007, 316: 1205–1208
    [95]Pang ZP, Shin OH, Meyer AC, et al. A gain-of-function mutation in synaptotagmin-1 reveals a critical role of Ca2+-dependent soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex binding in synaptic exocytosis[J]. The Journal of Neuroscience. 2006, 26: 12556–12565
    [96]Rettig J, Neher E. Emerging roles of presynaptic proteins in Ca2+-triggered exocytosis[J]. Science. 2002, 298: 781–785
    [97]Meldrum BS. The role of glutamate in epilepsy and other CNS disorders[J]. Neurology. 1994, 44(S8): S14–S23
    [98] During MJ, Spencer DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain[J]. Lancet. 1993, 341: 1607–1610
    [99] Proper EA, Hoogland G, Kappen SM, et al. Distribution of glutamate transporters in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy[J]. Brain. 2002, 125: 32-43
    [100] Meldrum BS, Akbar MT, Chapman AG. Glutamate receptors and transporters ingenetic and acquired models of epilepsy[J]. Epilepsy Research. 1999, 36: 189–204
    [101] Nishiki T, Augustine GJ. Synaptotagmin I synchronizes transmitter release in mouse hippocampal neurons[J]. Journal of Neuroscience. 2004, 24: 6127-6132
    [102] Fukuda M, Mikoshiba K. Expression of synaptotagmin I or II promotes neurite outgrowth in PC12 cells[J]. Neuroscience Letters. 2000, 295: 33-36
    [103] Mikoshiba K, Fukuda M, Ibata K, et al. Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth[J]. Chemistry and Physics of Lipids. 1999, 98: 59-67
    [104] Kabayama H, Takei K, Fukuda M, et al. Functional involvement of synaptotagmin I/II C2A domain in neurite outgrowth of chick dorsal root ganglion neuron[J]. Neuroscience. 1999, 88: 999-1003
    [105] Mikoshiba K, Fukuda M, Ibata K, et al. Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth[J]. Chemistry and Physics of Lipids. 1999, 98: 59-67
    [106] Sutula T, Cascino G, Cavazos J, et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe[J]. Annals of Neurology. 1989, 26: 321-330
    [107] Zhang X, Cui SS, Wallace AE, et al. Relations between brain pathology and temporal lobe epilepsy[J]. Journal of Neuroscience. 2002, 22: 6052-6061
    [1]文世全,王学峰,晏勇.基因芯片检测耐PHT点燃鼠脑突触可塑性基因的表达[J].重庆医科大学学报. 2002, 27(03): 276~279
    [2]龚云,王学峰,汪建华,等.难治性癫痛突触囊泡回收相关蛋白的表达及基因研究[J].中华神经科杂志. 2006, 3: 155一158
    [3] Xiao F, Chen D, Lu Y, et al. Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy[J]. Brain Res. 2009, 1255: 180-189
    [4] Armstead WM, Mirro R, Leffer CW, et a1. Cerebral superoxide anion generationduring seizures in newborn pigs[J].J Cercb Blood Flow Metab. 1989, 9: 175-179
    [5] Oliver CN, Starke—Reed PE, Stadtman ElL, et a1. Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/riperfusion induced injury to gerbil brain[J].Proc Natl Acad Sci USA. 1990, 87: 5144~5147
    [6] Sudha K, Rao AV, Rao A. Oxidative stress and antioxidants in epilepsy[J]. Clin Chim Acta. 2001, 303: 19-24
    [7]王羽主编.全国临床检验操作规程[M].南京:东南大学出版社, 2006. 342-345
    [8] Tibbling G, Link H. Principles of albumin and IgG analysis in neurological disorders ofreference values[J]. Scand J Lab Invest. 1997, 37(5): 385-390
    [9] Bianchi MT, Dworetzky BA, Bromfield EB. Auditory auras in patients with postencephalitic epilepsy: case series[J]. Epilepsy Behav. 2009, 14(1): 250-252
    [10] Pieti?inen V, Marjom?ki V, Upla P, et al. Echovirus 1 endocytosis into caveosomes requires lipid rafts, dynamin II, and signaling events[J]. Mol Biol Cell. 2004, 15(11):4911-25
    [11] Jaber T, Henderson G, Li S, et al. Identification of a novel herpes simplex virus type 1 transcript and protein (AL3) expressed during latency[J]. J Gen Virol. 2009, 90(Pt 10):2342-52
    [12] Di Paolo G, Pellegrini L, Letinic K, et al. Recruitment and regulation of phosphatidylinositol phosphate kinase type 1γby the FERM domain of talin[J].Nature. 2002, 420: 85–89
    [13] Morgan JR, Di Paolo G, Werner H, et al. A role for talin in presynaptic function[J]. Cell Biol. 2004, 167: 43–50
    [14] Senetar M A, McCann RO.Gene duplication and functional divergence during evolution of the cytoskeletal linker protein talin[J]. Gene. 2005, 362: 141-152
    [15] Calderwood DA, Zent R, Grant R, et al. The Talin head domain binds to integrinβsubunit cytoplasmic tails and regulates integrin activation[J]. J Biol Chem. 1999, 274: 28071–28074
    [16] Ling K, Doughman RL, Firestone AJ, et al. Type Iγphosphatidylinositol phosphate kinase targets and regulates focal adhesions[J]. Nature. 2002, 420: 89–93
    [17] Calderwood DA, Tai V, Di Paolo G, et al. Competition for talin results in trans-dominant inhibition of integrin activation[J]. J Biol Chem. 2004, 279: 28889–28895
    [18] Roos J, Kelly RB. The endocytic machinery in nerve terminals surrounds sites of exocytosis[J]. Curr Biol. 1999, 9: 1411–1414
    [19] Teng H, Wilkinson RS. Clathrin-mediated endocytosis near active zones in snake motor boutons[J]. J Neurosci. 2000, 20: 7986–7993
    [20] Slepnev VI, Camilli PD. Accessory factors in clathrin-dependent synaptic vesicle endocytosis[J]. Nat Rev Neurosci. 2000, 1: 161–172
    [21] Morgan JR, Augustine GJ, Lafer EM. Synaptic vesicle endocytosis: the races, places, and molecular faces[J]. Neuromolecular Med. 2002, 2: 101–114
    [22] Di Paolo G., Moskowitz HS, Gipson K, et al. Impaired PI(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking[J]. Nature. 2004, 431: 415–422
    [23] Wenk MR, Pellegrini L, Klenchin VA, et al. PIP kinase Iγis the major PI(4,5)P(2) synthesizing enzyme at the synapse[J]. Neuron. 2001, 32: 79–88
    [24] Wenk M, Camilli PD. Protein lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals[J]. Proc Natl Acad Sci USA. 2004, 101: 8262–8269
    [25] Van Rooijen LA, Vadnal R, Dobard P, et al. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus[J]. Biochem Biophys Res Commun. 1986, 136(2): 827-834
    [26] Calderwood DA, Ginsberg MH. Talin forges the links between integrins and actin[J]. Nat Cell Biol. 2003, 5: 694–697
    [27] Critchley DR, Holt MR, Barry ST, et al. Integrin-mediated cell adhesion: the cytoskeletal connection[J]. Biochem Soc Symp. 1999, 65: 79–99
    [28] Brown NH, Gregory SL. Talin is essential for integrin function in Drosophila[J]. Dev Cell. 2002, 3(4): 569-579
    [29] Conti FJ, Monkley SJ. Talin 1 and 2 are required for myoblast fusion, sarcomere assembly and the maintenance of myotendinous junctions[J]. Development. 2009, 136(21): 3597-606.
    [30] NUCKOLLS GH, ROMER LH, BURRIDGE K. Microinjection of antibodies against talin inhibits the spreading and migration of fibroblasts[J]. I Cell Sci. 1992, 102: 753-762
    [31] Calderwood DA, Zent R. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation[J]. J Biol Chem. 1999, 274(40): 28071-28074
    [32] Kim GW, Kim HJ, Cho KJ, et al. The role of MMP-9 in integrin-mediated hippocampal cell death after pilocarpine-induced status epilepticus[J]. Neurobiol Dis. 2009, 36(1): 169-180
    [33] Pinkstaff JK, Lynch G, Gall CM. Localization and seizure-regulation of integrin beta 1 mRNA in adult rat brain Localization and seizure-regulation of integrin beta 1 mRNA in adult rat brain. Brain Res Mol Brain Res. 1998, 55(2):265-276.
    [34] Pico RM, Gall CM. Hippocampal epileptogenesis produced by electrolytic iron deposition in the rat dentate gyrus[J]. Epilepsy Res.1994, 19(1): 27-36
    [35] Plow EF, Haas TA, Zhang L, et al. Ligand binding to integrins[J]. J Biol Chem. 2000, 275(29): 21785-21788
    [36] Pierschbacher MD, Ruoslahti E. Cell attachment activity of fibronectin can beduplicated by small synthetic fragments of the molecule[J]. Nature. 1984, 309(5963): 30-33
    [37] Grooms SY, Jones LS. RGDS tetrapeptide and hippocampal in vitro kindling in rats: evidence for integrin-mediated physiological stability[J]. Neurosci Lett. 1997, 231(3): 139-142
    [38] Kalman M, Szabo A. Immunohistochemical investigation of actin-anchoring proteins vinculin, talin and paxillin in rat brain following lesion: a moderate reaction, confined to the astroglia of brain tracts[J]. Exp Brain Res. 2001, 139(4): 426-434
    [39] Kim JH, Guimaraes P O. Hippocampal neuronal density in temporal lobe epilepsy with and without gliomas[J]. Acta Neuropathol. 1990, 80(1): 41-45
    [40] Meldrum BS. Excitotoxicity and selective neuronal loss in epilepsy[J]. Brain Pathol. 1993, 3(4): 405-412.
    [41] Zhang S, Khanna S. Patterns of hippocampal neuronal loss and axon reorganization of the dentate gyrus in the mouse pilocarpine model of temporal lobe epilepsy[J]. J Neurosci Res. 2009, 87(5): 1135-1149
    [42] Oby E, Janigro D. The blood-brain barrier and epilepsy[J]. Epilepsia. 2006, 47(11): 1761-1774
    [43] Rigau V, Morin M. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy[J]. Brain 2007, 130(Pt 7): 1942-1956
    [44] van Engelen BG, Renier WO, Weemaes CM, et al. High-dose intravenous immunoglobulin treatment in cryptogenic West and Lennox-Gastaut syndrome; an add-on study[J]. Eur J Pediatr. 1994, 153(10): 762-769
    [45] Dabbagh O, Gascon G, Crowell J, et al. Intraventricular interferon-alpha stops seizures in Rasmussen's encephalitis: a case report[J]. Epilepsia. 1997, 38(9): 1045-1049
    [46] Lagae LG, Silberstein J, Gillis PL, et al. Successful use of intravenous immunoglobulins in Landau-Kleffner syndrome[J]. Pediatr Neurol. 1998, 18(2): 165-168
    [47] Leach JP, Chadwick DW, Miles JB, et al. Improvement in adult-onset Rasmussen's encephalitis with long-term immunomodulatory therapy[J]. Neurology. 1999, 52(4): 738-742
    [48] Villani F, Avanzini G. The use of immunoglobulins in the treatment of human epilepsy[J]. Neurol Sci. 2002, 23(S1): S33-S37
    [49] Folli F., Solimena M, Cofiell R, et al. Autoantibodies to a 128-kd synaptic protein in three women with the stiff-man syndrome and breast cancer[J]. N Engl J Med. 1993, 328: 546–551
    [50] Cronin CC, Jackson LM, Feighery C, et al. Coeliac disease and epilepsy[J]. QJM. 1998, 91: 303–308
    [51] Jennekens FG, Kater L. The central nervous system in systemic lupus erythematosus. Part 1. Clinical syndromes: a literature investigation[J]. Rheumatology. 2002, 41: 605–618
    [52] Chaudhuri A, Behan PO. The clinical spectrum, diagnosis, pathogenesis and treatment of Hashimoto's encephalopathy (recurrent acute disseminated encephalomyelitis) [J]. Curr Med Chem. 2003, 10: 1945–1953
    [53] Marzano AV, Menni S, Parodi A, et al. Localized scleroderma in adults and children. Clinical and laboratory investigations on 239 cases[J]. Eur J Dermatol. 2003, 13: 171–176
    [54] Jasani B. Immunohistologically definable light chain restriction in autoimmune disease[J]. J Pathol. 1988, 154: 1-5
    [55] Daute KH, Hassler A, Klust E: Myoklonischastatisches Petit Mal: immunologische Aspekte in Atiopathogenese und therapie.Ⅳth prague intern symp[R]. Child Neurol. 1978, 16
    [56] Lischka A, Herkner K, Pollak A. [Neuroimmunologic parameters in therapy refractory epilepsy in children] [J]. Wien Klin Wochenschr. 1990, 102(8): 227-230
    [57] Lischka A, Graf M, Hauser E, et al. Kappa/lambda ratio as parameter for evaluation of therapy-resistant epilepsy of childhood[J]. Eur Neurol. 1994, 34 (S1): S74-S78
    [58] Haraldsson A, van Engelen BG, Renier WO, et al. Light chain ratios andconcentrations of serum immunoglobulins in children with epilepsy[J]. Epilepsy Res. 1992, 13(3): 255-260
    [59] van Engelen BG, Renier WO, Weemaes CM, et al. Immunoglobulin treatment in epilepsy, a review of the literature[J]. Epilepsy Res. 1994, 19(3): 181-190
    [60] Mikati MA, Kurdi R, El-Khoury Z, et al. Intravenous immunoglobulin therapy in intractable childhood epilepsy: open-label study and review of the literature[J]. Epilepsy Behav. 2010, 17(1): 90-94
    [61] van Rijckevorsel-Harmant K, Delire M, Schmitz-Moorman W, et al. Treatment of refractory epilepsy with intravenous immunoglobulins. Results of the first double-blind/dose finding clinical study[J]. Int J Clin Lab Res. 1994, 24(3): 162-166
    [62] Sandstedt P, Kostulas V, Larsson LE. Intravenous gammaglobulin for post-encephalitic epilepsy[J]. Lancet. 1984, 8412:1154-1155
    [63] Tourtellotte W. On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple sclerosis and other diseases. A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system[J]. J Neurol Sci. 1970, 10(3): 279-304
    [64] Fagnarta OC, Sindic CJM, Laterrea C. Free kappa and lambda light chain levels in the cerebrospinal fluid of patients with multiple sclerosis and other neurological diseases[J]. Journal of Neuroimmunology. 1988, 19: 119-132
    [65] Eickhoff K., Heipertz R., Wikstr?m J. Determination of k/l immunoglobulin light chain ratios in CSF from patients with multiple sclerosis and other neurological diseases[J]. Acta Neurologica Scandinavica. 2009, 57(5): 385 - 395
    [66] Griffin DE. Immunoglobulins in the cerebrospinal fluid: changes during acute viral encephalitis in mice[J]. J Immunol. 1981, 126(1): 27-31
    [1] Weil AA, Glaser CA, Amad Z, Forghani B. Patients with suspected herpes simplex encephalitis: rethinking an initial negative polymerase chain reaction result. Clin Infect Dis. 2002 Apr 15;34(8):1154-7.
    [2] Lin JJ, Lin KL, Wang HS, Hsia SH, Wu CT. Analysis of status epilepticus related presumed encephalitis in children. Eur J Paediatr Neurol. 2008 Jan;12(1):32-37.
    [3] McGrath N, Anderson NE, Croxson MC, Powell KF. Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry. 1997 Sep;63(3):321-6.
    [4] Hsieh WB, Chiu NC, Hu KC, Ho CS, Huang FY. Outcome of herpes simplexencephalitis in children. J Microbiol Immunol Infect. 2007 Feb;40(1):34-38.
    [5] Ramesha KN, Rajesh B, Ashalatha R, Kesavadas C, Abraham M, Radhakrishnan VV, Sarma PS, Radhakrishnan K. Rasmussen's encephalitis: experience from a developing country based on a group of medically and surgically treated patients. Seizure. 2009 Oct;18(8):567-572.
    [6]张玲如,赵平,葛跃荣.病毒性脑炎与癫痫[J],脑与神经疾病杂志,1999,7:22.
    [7]蒲蜀湘,廖卫平,中枢神经系统感染与癫痫[J],临床荟萃杂志,2004,19(2l):1206-1209.
    [8]王学峰,肖波,孙红斌主编.难治性癫癎 [C].上海:上海科学技术出版社,2002.151-159
    [9] Chen SF, Huang CC, Wu HM, Chen SH, Liang YC, Hsu KS. Seizure, neuron loss, and mossy fiber sprouting in herpes simplex virus type 1-infected organotypic hippocampal cultures. Epilepsia. 2004 Apr;45(4):322-332.
    [10] Wu HM, Huang CC, Chen SH, Liang YC, Tsai JJ, Hsieh CL, Hsu KS. Herpes simplex virus type 1 inoculation enhances hippocampal excitability and seizure susceptibility in mice. Eur J Neurosci. 2003 Dec;18(12):3294-3304.
    [11] Misra UK, Kalita J. Seizures in encephalitis: predictors and outcome. Seizure. 2009 Oct;18(8):583-587.
    [12] Misra UK, Tan CT, Kalita J. Viral encephalitis and epilepsy. Epilepsia. 2008 Aug;49 Suppl 6:13-18
    [13] Chapman MG, Smith M, Hirsch NP. Status epilepticus. Anaesthesia 2001;56:648–659.
    [14] Lowenstein DH, Alldredge BK. Status epilepticus. N Engl J Med. 1998;338:970–976.
    [15] Prasad A, Worrall BB, Bertram EH, Bleck TP. Propofol and midazolam in the treatment of refractory status epilepticus. Epilepsia 2001;42:380–386.
    [16]迟兆富.脑炎与癫痫.神经损伤与功能重建[J],2009,4(3):160-164.
    [17] Kalita J, Nair PP, Misra UK.Status epilepticus in encephalitis: a study of clinical findings, magnetic resonance imaging, and response to antiepileptic drugs.JNeurovirol. 2008 Oct;14(5):412-417.
    [18] Lee WT, Yu TW, Chang WC, Shau WY. Risk factors for postencephalitic epilepsy in children: a hospital-based study in Taiwan. Eur J Paediatr Neurol. 2007 Sep;11(5):302-309.
    [19] Trinka E, Dubeau F, Andermann F, Bastos A, Hui A, Li LM, K?hler S, Olivier A. Clinical findings, imaging characteristics and outcome in catastrophic post-encephalitic epilepsy. Epileptic Disord. 2000 Sep;2(3):153-162.
    [20] Ohtsuka Y, Yoshinaga H, Kobayashi K. Refractory childhood epilepsy and factors related to refractoriness. Epilepsia. 2000;41 Suppl 9:14-17.
    [21] Riera-Mestre A, Gubieras L, Martínez-Yelamos S, Cabellos C, Fernández-Viladrich P. Adult herpes simplex encephalitis: fifteen years' experience. Enferm Infecc Microbiol Clin. 2009 Mar;27(3):143-147.
    [22]吴振华,郭启勇主编。.神经系统影像鉴别诊断指南.北京:人民军医出版社,2005.252-253
    [23]. Aurelius E, Johansson B, Skoldenberg B, Staland A, Forsgren M. Rapid diagnosis of herpes simplex encephalitis by nested polymerase chain reaction assay of cerebrospinal fluid. Lancet. 1991;337:189-192.
    [24]. Revello MG, Baldanti F, Sarasini A, Zella D, Zavattoni M, Gerna G. Quantification of herpes simplex virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis by the polymerase chain reaction. Clin Diagn Virol. 1997;7:183-191.
    [25]. Fomsgaard A, Kirkby N, Jensen JP, Vestergaard BF. Routine diagnosis of herpes simplex virus (HSV) encephalitis by an internal DNA controlled HSV PCR and an IgG-capture assay for intrathecal synthesis of HSV antibodies. Clin Diagn Virol. 1998;9:45-56.
    [26] Tyler KL. Herpes simplex virus infections of the central nervous system: encephalitis and meningitis, including Mollaret's. Herpes. 2004;11:57-64.
    [27] Kamei S, Sekizawa T, Shiota H, Mizutani T, Itoyama Y, Takasu T. Evaluation of combination therapy using acyclovir and corticosteroid in adult patients with herpes simplex virus encephalitis. J Neurol Neurosurg Psychiatry.2005;76:1544-1549.
    [28] Koppel BS. Treatment of acute and remote symptomatic seizures. Curr Treat Options Neurol. 2009 Jul;11(4):231-241.
    [29] French J, Arrigo C. Rapid onset of action of levetiracetam in refractory epilepsy patients. Epilepsia. 2005 Feb;46(2):324-326
    [30] M?ddel G, Bunten S, Dobis C, Kovac S, Dogan M, Fischera M, Dziewas R, Sch?bitz WR, Evers S, Happe S. I ntravenous levetiracetam: a new treatment alternative for refractory status epilepticus. J Neurol Neurosurg Psychiatry. 2009 Jun;80(6):689-692.
    [31] Whitley RJ, Soong S-J, Dolin R, et al. Adenine arabinoside therapy of biopsy-proved herpes simplex encephalitis. National Institute of Allergy and Infectious Diseases collaborative antiviral study. N Engl J Med 1977;297:289–294.
    [32] Rennick PM, Nolan DC, Bauer RB, Lerner AM. Neuropsychologic and neurologic follow-up after herpesvirus hominis encephalitis. Neurology 1973;23:42–47.
    [33] M cGrath N, Anderson NE, Croxson MC, et al. Herpes simplex encephalitis treated with acyclovir: diagnosis and long term outcome. J Neurol Neurosurg Psychiatry 1997; 63: 321–326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700