用户名: 密码: 验证码:
复杂小断块低渗透油藏主控因素与剩余油分布规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂小断块低渗透油藏的勘探、开发难度较大,目前该类油藏采收率普遍较低,开发效果差,剩余油分布规律复杂,具有较大的储量挖掘潜力。本文以苏北盆地溱潼凹陷台兴油田阜三段油藏为典型特例,重点研究复杂小断块低渗透油藏的主控因素与剩余油分布规律,认识此类油藏的地下面貌,研究有效的开发方式和开发对策,制定合理的科学挖潜方案,通过综合治理,以期获得较高的采收率,这对于提高复杂小断块低渗透油藏难动用储量的开发水平,实现资源接替有重要现实意义。
     从复杂小断块低渗透油藏主控因素入手,进行精细油藏描述研究,通过精细地层对比及三维地震人机联作构造解释,结合生产动态资料,以动静态综合识别技术落实内部低序级断层为突破口,建立精细构造模型,同时开展精细储层研究,对沉积微相及砂体展布规律进行深入分析,并加强油藏工程技术与动态分析相结合,根据影响剩余油分布的主要因素,对剩余油分布进行定性和定量描述,针对剩余油分布特点制定合理的挖潜对策。
     研究中采用了一系列特色方法和技术,如在构造研究过程中,充分利用钻井、测井和地震资料,做到井、震结合,通过地质标定、人机交互精细地震解释,为复杂小断块油藏低序级断层归位组合,准确刻画构造奠定了基础;在储层研究中,把储层单元细分至单砂体,进行储集岩的类型、岩相、岩性、分布范围、形态特征、孔隙结构和储油物性变化综合描述;在油藏精细描述的基础上,建立了油藏模型,结合动态监测成果,通过精细数值模拟,找出了剩余油的分布规律。
     通过本研究提出的综合治理措施,较为明显地改善了复杂小断块低渗透油藏的开发效果。主力断块加密调整,开发状况明显好转,油田产量上升,水驱采收率显著提高,低效区块通过零散调整恢复了正常生产。
     研究取得的主要认识有:(1)苏北盆地经过多期构造运动,断层相互切割,是复杂小断块油藏形成的主控因素;(2)储集岩的岩相、分布范围、孔隙结构和储集物性变化,直接控制着地下油气的分布和产能,是复杂小断块低渗透油藏形成的重要因素;(3)断裂系统发育的部位,断块破碎、复杂、面积小,往往一次井网储量控制程度低,是剩余油分布的主要富集区;(4)沉积微相过渡带,储层非均质性严重,水驱波及程度低,是剩余油分布的重要富集区;(5)断裂系统是复杂小断块低渗透油藏形成的主控因素,低序级断层是此类油藏剩余油分布的主要控制因素。
It is very difficult to explore and develop low permeability reservoirs in small complex fault block, the recovery factor of which is usually low at present, the development effect of which is poor, and the remaining oil distribution of which is complicated with great tap potential of reserves. Take Fu3 Member reservoir of Taixing Oilfield in Qingtong Sag of Subei Basin as typically special example, the paper focuses on main controlling factors and remaining oil distribution of low permeability reservoirs of small complex fault block, recognizes underground features of this kind of reservoir, researches effective development methods and development countermeasures, and makes reasonable and scientific schemes for potential tapping to obtain higher recovery factor through comprehensive treatment, which have vital practical significance in improving the development level of hard-to-recover reserves of low permeability reservoir in small complex fault block to realize the resource substitution.
     The remaining oil distribution has been researched in main controlling factors, fine reservoir description, fine reservoir numerical simulation, and so on; and the potential tapping countermeasures have been discussed in the paper. Based on main controlling factors of reservoir, the fine reservoir description has been researched. Through fine stratigraphic correlation and interactive 3D seismic structure interpretation, combined with production performance data, determining internal low grade faults by dynamic and static comprehensive recognition technology, the fine structural model has been established, the fine reservoir research has been made, the distribution of sedimentary micro-facies and sand body has been deeply analyzed, and the combination has been strengthened between reservoir engineering technology and dynamic analysis. Through qualitative and quantitative description of remaining oil distribution based on main factors influencing remaining oil distribution, reasonable potential tapping countermeasures have been made in view of remaining oil distributing features.
     Some distinguishing methods and technologies have been used in the research:during research in structure, making full use of the drilling, well logging and seismic data, and combination of well logging and seismic lay a foundation for migration and combination of low grade faults of small complex fault block reservoirs and accurately specifying the structure, through geological calibration and interactive fine seismic interpretation; during research in reservoirs, subdividing the reservoir unit into single sand body, the comprehensive description has been made in category, lithofacies, lithologic character, distribution range, morphologic characteristics, pore structure and changes in physical properties of oil stored in reservoir rocks; based on fine reservoir description, the reservoir model has been established, and distribution laws of remaining oil have been found out, combining with dynamic monitoring and by using of fine numerical simulation. The fine research degree is a prerequisite of key technology to realize scientific and reasonable development of low permeability reservoirs of small complex fault blocks.
     By comprehensive treatment advice of the article, the exploited effect of small complex fault block and low permeability reservoirs can be evidently improved. Encrypting and modulating the brunt fault block, the result of exploited was evidently straighten up, the output increased, the harvest rat of water expel oil visibly advanced and the inefficient fault block resumed Normal production through scattered modulated.
     The cognitions obtained include:(1) multiphase tectonic activities of Subei Basin and mutual cutting of faults are main controlling factors for forming of small complex fault block reservoirs; (2) the distribution and productivity of oil and gas underground are directly controlled by lithofacies, distribution range and pore structure of reservoir rocks and changes in reservoir physical properties, which are important factors to form low permeability reservoirs of small complex fault blocks; (3) in the developed parts of fault system, the fault block is broken, complicated, and of small size with low control degree of primary well pattern reserves usually, which is main enrichment area of remaining oil distribution; (4) the transition zone of sedimentary micro-facies is important enrichment area of remaining oil distribution, with serious reservoir heterogeneity and low sweep degree of water flooding; (5) the fault system is the main controlling factor to form low permeability reservoirs of small complex fault blocks, and the low grade fault is the main controlling factor of remaining oil distribution of this kind of reservoir.
引文
[1]林承焰.剩余油形成与分布.石油大学出版社,1999,45-47
    [2]肖武.断块油藏剩余油分布的地质研究方法探讨.油气地质与采收率,2004,11(1)
    [3]刘伟,周荔青,汪深,等.复杂微型断块油藏剩余油综合判识及应用.2000年中国国际石油天然气会议论文集(上册),2000
    [4]张玲萍.极复杂断块油藏的分析研究.断块油气田,2001,8(2):123
    [5]荣启荣,蒲玉国,等.复杂断裂油田小构造研究模式.石油学报,2000,21(6):43-49
    [6]孙新铭,倪丰平,林东升.剩余油形成与分布的地质控制因素.科技信息,2007(31)
    [7]崔玉亭,等.低渗透油田采收率评价方法研究.中外能源,2007,12(1):49-55
    [8]陈元千.预测油气田可采储量方法的优选.油气采收率技术,1998,5(2):47-53
    [9]陈元千,刘雨芬,毕海滨.确定水驱砂岩油藏采收率的方法.石油勘探与开发,1996,23(4):58-60.
    [10]曾文冲.测井地层分析与油气评价.石油工业出版社,1989
    [11]王庚阳,宋振宇.利用常规测井确定油田开发期储层剩余油分布.石油学报,1992,13(4):60-66
    [12]侯建国,林承焰,姚合法,等.断陷盆地成藏动力系统特征与油气分布规律—以苏北盆地为例.中国海上油气,2004,16(6):360-364
    [13]韩大匡.深度开发高含水油田提高采收率问题的探讨.石油勘探与开发,1995(5)
    [14]赵培华,谭廷栋,宋社民,曹嘉猷,等.利用生产测井资料确定水驱油藏产层剩余油饱和度方法.石油学报,1997(2)
    [15]朱平.江苏油田油气藏基本特征及其分类.断块油气田,2001,8(5):12-15
    [16]陈永生.油田非均质对策论.石油工业出版社,1993,297-303
    [17]裘亦楠,王振彪.油藏描述新进展.中国石油天然气总公司油气田开发会议文集,1996,62-72.
    [18]陈增智.利用微型圈闭法研究油田剩余油分布.油藏描述新进展.石油大学学报,1992,16(5):8-12.
    [19]李兴国.应用微型构造和储层沉积微相研究油层剩余油分布.油气采收率技术,1994,1(1):68-80.
    [20]朱平,毛凤鸣,李亚辉,等.复杂断块油藏形成机理和成藏模式.石油工业出版社,2008
    [21]师永民,霍进,张玉广.陆相油田开发中后期油藏精细描述.石油工业出版社,2004
    [22]朱平,毛凤鸣,李亚辉.复杂断块油藏形成机理和成藏模式.石油工业出版社,2008
    [23]周荔青,刘池阳.深大断裂与中国东部新生代盆地油气资源分布.石油工业出版社,2005
    [24]马玉梅.核磁测井资料应用新进展.测井技术信息交流会论文集,1999,14(3)
    [25]刘泽容,王伟峰,金强.复杂断块油藏描述的技术方法.石油学报,1993,14(3):8-7
    [26]翁秋兰.苏北盆地溱潼凹陷草舍油田构造及油气分布特征[J].海洋地质动态,2003,19(4):26-29
    [27]王玉华.苏北盆地小断块油田滚动评价技术方法[J]. 石油天然气学报,2008,30(1):225-227
    [28]王建民,周卓明.顺宁油田低渗透砂岩储层沉积特征与控油因素[J].石油与天然气地质,2001,22(2):146-149
    [29]陆修莲,蒋弋平,范海林.复杂小断块油气藏滚动勘探开发研究[J].石油物探,2004,43(6):568-572
    [30]魏纪德,杜庆龙,林春明等.大庆油田剩余油的影响因素及分布[J].石油与天然气地质,2001,22(1):57-59
    [31]徐守余,李红南. 储集层孔喉网络场演化规律和剩余油分布[J].石油学报,2003,24(4):48-53
    [32]赵永胜.剩余油分布研究中的几个问题.大庆石油地质与开发,1996
    [33]李存贵.低渗透储层三维地质模型和剩余油分布预测.石油工业出版社,2003
    [34]M.J.埃克诺米德斯,K.G.诺尔蒂[美],康德泉,等译.油藏增产措施.石油工业出版社,1991
    [35]王娟茹,邵先杰,胡景双等.复杂小断块油田剩余油分布规律—以杨家坝油田为例[J]. 油气地质与采收率,2009,16(3):76-78
    [36]俞启泰. 关于剩余油研究的探讨[J].石油勘探与开发,1997,24(2):46-50
    [37]王元基.高含水储层剩余油分布研究技术文集.石油工业出版社,2009
    [38]陈烨菲,彭仕宓,宋桂茹.流动单元的井间预测及剩余油分布规律研究[J].石油学报,2003,24(3):74-77
    [39]邓玉珍.胜坨油田浅水浊积相储集层流动单元研究[J].石油勘探与开发,2003,30(1):96-98
    [40]窦松江,周嘉玺.复杂断块油藏剩余油分布及配套挖潜对策[J].石油勘探与开发,2003,30(5):90-93
    [41]胡书勇,胡仁权,刘启国.复杂断块油藏流动单元与剩余油分布研究[J].西南石油大学学报(自然科学版),2009,31(5):93-96
    [42]李阳.储层流动单元模式及剩余油分布规律[J].石油学报,2003,24(3):51-55
    [43]李中锋.微观物理模拟水驱油实验及残余油分布分形特征研究[J].中国石油大学学报:自然科学版,2006,30(3):67—-70
    [44]刘秋杰.文南油田文95断块区剩余油分布研究[J].石油勘探与开发,2002,29(2):100-102
    [45]陆建林,李国强,樊中海等.高含水期油田剩余油分布研究[J].石油学报,2001,22(5):48-52
    [46]石玉梅,刘雯林,姚逢昌,等. 用地震法监测水驱薄互层油藏剩余油的可行性研究[J].石油学 报,2003,24(5):52-56.
    [47]石占中,张一伟,熊琦华,等.大港油田港东开发区剩余油形成与分布的控制因素[J].石油学报,2005,26(1):79-86
    [48]涂兴万,陈林媛,莫文丽,等. 高含水期复杂断块油藏剩余油分布及挖潜[J].西南石油学院学报,2004,26(1):39-42
    [49]魏斌,陈建文,李胜军,等.应用储层流动单元研究高含水油田剩余油分布[J].地学前缘,2000,7(4): 403
    [50]张同义,闰东,徐劭.用试井资料确定剩余油分布方法的研究[J]. 油气井测试,2001,10(1,2):10-12
    [51]钟思,刘辛,李瑛等.江苏复杂小断块油田滚动评价思路与技术对策[J]. 复杂油气藏,2009,2(2):50-54
    [52]张继芬.提高石油采收率基础.石油工业出版社,1997
    [53]张景存.提高采收率方法研究.石油工业出版社,1990
    [54]朱宏绶,余大江,常燕.台兴油田苏217、苏236断块剩余油分布研究[J]. 试采技术,2006,27(2):10-15
    [55]刘桂玲,谭旭东,张连.江苏油区复杂小断块油田采收率标定方法的应用评价[J]. 油气地质与采收率,2004,11(1):53-55
    [56]李道品.低渗透油田高效开发决策论.石油工业出版社,2003
    [57]Alan P. Byrnes and James W. Castle. Integration of geologic and reservoir characteristics of the low permeability Medina Group, Appalachian Basin[J]. Journal of the Geological Society,1978,135:93-99
    [58]Edward D. Dolly and Daniel A. Busch. Stratigraphic, Structural, and Geomorphologic Factors Controlling Oil Accumulation in Upper Cambrian Strata of Central Ohio[J]. AAPG Bulletin,1972; 56: 2335-2368
    [59]Gao C., Wang Z.L., Deng J., Zhao J.H. and Yang X.C. Physical property and origin of lowly permeable sandstone reservoirin Chang 2 division, Zhang-Han oilfield, Ordos Basin[J]. Energy Exploration & Exploitation,2009,27(5):367-389
    [60]Thomas J B. Diagenetic sequences in low-permeability argillaceous sandstones[J]. Journal of the Geological Society,1978; 135:93-99
    [61]Weber K J. Locating the remaining oil in mature fields with 3D-sedimentological models[J]. AAPG Bulletin,1997,81(8):1419
    [62]Zeng Lianbo and Li Xiang-Yang. Fractures in sandstone reservoirs with ultra-low permeability:A case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China[J]. AAPG Bulletin,2009; 93: 461-477
    [63]Keith W. Shanley, Robert M. Cluff, John W. Robinson. Factors controlling prolific gas production from low-permeability sandstone reservoirs:Implications for resource assessment, prospect development, and risk analysis[J]. AAPG Bulletin,2004; 88:1083-1121
    [64]Keith W. Shanley. Fluvial reservoir description for a giant, low-permeability gas field; Jonah Field, Green River basin, Wyoming, U.S.A[J]. AAPG Studies in Geology,2004,52:159-182
    [65]Kevin J. Keogh and Frode K. Berg Glitne Asset Team et al. Quantifying geological uncertainties for assessing remaining oil targets; a case study from the Glitne Field, North Sea [J]. AAPG Bulletin,2005, 14:A72
    [66]Kevin J. Keogh and Frode K. Berg Glitne Asset Team, Stavanger. AAPG Bulletin,2005,14:A72
    [67]Lianbo Zeng, Hongtao Liu. The key geological factors influencing on development of low-permeability sandstone reservoirs:A case study of the Taizhao Area in the Songliao Basin, China[J]. Energy Exploration & Exploitation,2009,27(6):425-437
    [68]M. J. Goss and D. I. Exall. Experimental investigations of the transport mechanisms controlling in-situ recovery from heavy oil sands[J]. Special Volume-Canadian Institute of Mining and Metallurgy,1977, 17:327-333
    [69]Robert R. Berg and Anthony F. Gangi. Primary migration by oil-generation microfracturing in low-permeability source rocks; application to the Austin Chalk, Texas[J]. AAPG Bulletin,1999; 83:727-756
    [70]S. B. Reymond, E. Matthews, and B. Sissons. Imaging additional oil and gas reserves, integrating well production data and 3D seismic AVO classification to image remaining oil and gas reserves; a case study on the Ngatoro Field, Taranaki, New Zealand[J]. APPEA Journal,2001,41(1):679-687
    [71]Scherer M. Parameters influencing porosity in sandstone:a model for sandstone porosity prediction [J]. AAPG Bulletin,1987,71 (5):485-491
    [72]Shirley P. Dutton, Eugene M. Kim, Ronald F. Broadhead, et al. Play analysis and leading-edge oil-reservoir development methods in the Permian basin:Increased recovery through advanced technologies[J]. AAPG Bulletin,2005,89:553-576
    [73]Sidnei Pires Rostirolla, Antonio Carlos Mattana, Marcelo Kulevicz Bartoszeck. Bayesian assessment of favorability for oil and gas prospects over the Reconcavo basin, Brazil[J].. AAPG Bulletin,2003,87: 647-666
    [74]T. G. Powell and D. M. Mckirdy. Geologic factors controlling crude oil composition in Australia and Papua New Guinea[J]. AAPG Bulletin,1975,59:1176-1197
    [75]T. Maldal, S. R. Jakobsen, J. Alvestad et al. Relationship between remaining oil saturation after waterflooding and rock/flow properties at laboratory and reservoir scale[J]. Petroleum Geoscience,1999, 5:31-35
    [76]W. A. Ambrose, M. Mendez, M. Saleem Akhter, F. P. Wang, et al. Geological controls on remaining oil in Miocene fluvial and shoreface reservoirs in the Mioceno Norte area, Lake Maracaibo, Venezuela[J]. Petroleum Geoscience,1998,4:363-376
    [77]Warren L. Calvert, Edward D. Dolly, et al. Stratigraphic, Structural, and Geomorphologic Factors Controlling Oil Accumulation in Upper Cambrian Strata of Central Ohio; Discussion and Reply[J]. AAPG Bulletin,1973,57:2447-2450

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700