用户名: 密码: 验证码:
松辽盆地深层火山岩储层属性量化表征及其储渗单元刻画
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以松辽盆地深层(营城组及火石岭组)火山岩为主要研究对象,基于露头剖面和盆地内密井网区岩心岩屑、测井、地震资料,用火山岩地质、油气储层、地球物理和多元统计等多学科理论和方法,开展火山岩的岩性、岩相、火山机构和储集空间精细研究,进而在“组/段—旋回—期次—储渗单元”的火山地层格架下,对火山岩的储层结构及其储渗单元进行了分析研究。
     利用露头剖面丰富的资料建立了火山机构-岩相模式,表征了火山机构和岩相的规模及内部叠置,对盆内火山岩地震相的解译提供了地质依据。通过167块代表性样品的面孔率测量,得出并讨论了不同种岩性、亚相的储集空间构成及其差异。综合分析储集空间类型与孔隙结构、孔隙度和渗透率的对应关系,确定了储集性能较好的岩性。储渗单元研究的关键问题是隔挡层的识别和类型划分,火山岩储渗单元的隔挡层有两种。露头或取芯段储渗单元类型可以用孔缝单元进行表征,全井段储渗单元可借助物性及测井参数通过数学手段识别。每个储渗单元具有不同的储渗配置关系。储渗单元分布受岩性岩相及其构造控制。从火山岩的结构构造和成岩作用方面探讨了储层的控制因素,通过成岩-孔缝演化研究,理清了火山岩中原生孔缝和次生孔缝的动态变化规律及其分布特征。
There are a lot of faulted basins in Songliao Basin. Especially,80% of natural gas reserves stored in volcanic reservoirs, which are about 280 billion m3. Therefore, there will be a huge potential for exploration in volcanic gas fields. However, in the actual process of exploration and development, there are a lot of problems such as the rapid change of volcanic reservoir properties, the complex sequence relationship in the volcanic body, the unclear cognition to reservoir formation mechanism and how to reasonably deploy the exploration and development wells. To solve the above problems, this paper carried out some researches.
     In this paper, the deeper (Yingcheng and Huoshiling formation) volcanic rocks are the main objects of this study, based on outcrops and cores, cuttings, well logs, seismic data of dense well network,using the theories and methods of volcanic geology, oil and gas reservoirs, geophysical and multivariate statistics,we carried out detailed study on lithology,volcanic facies, volcanic edifice and reservoir space. We have emphatically studied the reservoir structure and reservoir-permeability unit in the stratigraphic framework of formation/member-cycle-stage-reservoir permeability unit.
     1. Geology-geophysical features of deep volcanic rocks
     Deep volcanic rocks can be divided into four categories and nine sub-categories in Songliao Basin. According to the statistical data of 173 well drillings, the most is rhyolitic which accounts for 32% and the next one is tuff which accounts for 15% . Andesites, tuff lava and basalt account for 14% ,13% and 12% respectively. The least are sedimentary tuff and sedimentary volcanic breccia which account for 2% and 1% respectively. We detailed described the minerals, texture and structure of deep volcanic rocks using outcrop and drilling data in Songliao Basin.
     We have done some research on conventional logging response of 12 kinds of volcanic rocks which developed different texture and structure in core intervals. The result reveal that basic,intermediate and acid volcanic rocks can be distinguished by GR and density curves, resistivity and three porosity curves have a significantly response to texture, structure and aperture. We summarized 7 kinds of imaging modes using core and thin slice data combined with the FMI image. Tuff structure shows high-resistance and highlight spot mode. The primary stomata shows low-resistance and dark spots mode. Rhyolite structure shows yellow and white and mid-high-resistance and sine curve mode. Breccia structure shows high resistance light block and low resistance dark spots mode. Low angle fracture shows low resistance sine curve mode. Sedimentary volcanic breccia structure shows yellow and orange mid-low resistance sine curve mode. Pyroclastic solution pores show light block containing some dark spot mode. Massive structure shows light block mode.
     Seismic profiles through cored well have been interpreted based on geological and seismic reflection characteristics. Six kinds of volcanic seismic facies units are identified in the volcanic edifice. Mound-shaped, lens-shaped, dome-shaped are the central facies associations and composed predominantly of explosive, effusive and extrusive facies, respectively. Pond-shaped and wedge-shaped ones belong to the proximal facies associations and composed predominantly of effusive braided lava flow and interbedded explosive pyroclastics and effusive lavas. The sheeted is in the majority of the characteristic distal facies.
     2. Spatially distributing feature and describe of volcanic reservoirs
     This paper establishs a stratigraphic framework of volcanic reservoir which are formation/member-cycle-stage-reservoir-permeability unit, and corresponding volcano eruptive material are volcanic rock body-volcanic edifice-volcanic facies or its combinations-volcanic subfacies or its combinations. Successions of volcanic facies are various in different members and volcanic edifices.The successions of first member of Yingcheng formation are mainly effusive facies→explosive facies. The successions of third member of Yingcheng formation are mainly explosive facies→effusive facies. Successions of facies of pyroclastic edifice are explosive facies→effusive facies→explosive facies. Successions of facies of lava edifice are explosive facies→effusive facies→effusive facies. Successions of facies of compound edifice are explosive facies→effusive facies→explosive facie→effusive facies. There is a successions relationship between subfacies. Successions of the explosive subfacies,from bottom to top,include base surge deposits,interbedding base surge and air-fall,and pyroclastic flow deposits. Successions of the effusive subfacies from bottom to top include lower,middle and upper units.
     Volcanic edifice have been predicted using angle attribute in dense well network area. Central facies generally distributed in the fault zone and its vicinity. The long axis direction of distal facies is consistent with the fault. Proximal facies is a contiguous distribution. Volcanic edifice of seismic profiles show multiple superimposition. Some facies of volcanic edifice miss bccause of later erosion,for example, distal facies is offen disappeared. Through statistics to long axis, short axis, the thickness and area of volcanic edifice, it is concluded that scale of multi-cone stratified volcano is the most,the next is shield volcano, the smallest is lava dome.
     Volcanic facies model is established based on stratotype sections and the Y1d1 well and considering the disposition relationship between lithology, facies, edifice and fault and joint.This models reveal that explosive facies were developed in the early volcanic eruption cycles. Lateral-extension and vertical-thickness of the explosive facies is some thousand and several hundred meters respectively. They are wedge-shaped with a steeper upper slope and gentler lower slope showing an average slope angle of 15°. Effusive facies generally occured in the middle of an eruption cycle and covered on top of the explosive facies. They can extend up to some thousand meters and get a thickness up to several hundred meters. They are lenticular-shaped and pinch out laterally,with a gentler upper slope and steeper lower slope showing an average slope angle of 20°. Extrusive facies generally occured at the end of an eruption cycle. They often cut through and cover other lithofacies. Their stretches and thickness are usually no more than 1km. They are mushroom-shaped with a large flat roof and sharp border.
     3. Formation of reservoir space and analysis of reservoir performance
     We make surface pores statistics to 167 representative samples including 16 types lithology and 12 kinds subfacies which come from outcrop and drilling area in Yingcheng Formation. The results show that:①The ratios among the primary pores and secondary pores and fracture of vesicular lava, dense lavas, pyroclastic lavas, pyroclastic rocks and sedimentary pyroclastic rocks are respectively (7.6:1:1.4), (1.8:1:2), (2.7:1:1.8), (0.4:1:0.6) and (0.3:1:1.1).②Volcanic conduit dominanted by inter-breccia pores and fissures, from the bottom to the top of explosive facies and effusive facies,the proportion of primary pores rise and the proportion of secondary pores and tectoclase drop, condensed shrinkage fissure had been identified mainly extrusive facies. Volcanic sedimentary facies are mainly secondary pores and secondary fissures.③The distribution of primary pores in different volcanic rocks change largely and the next is secondary fracture, besides, the primary microporous, secondary pores and the primary cracks change not so obviously.
     Discussed the relationship between reservoir space and pore-throat structure, porosity and the permeability of 15 kinds lithology, conclusion that the pore-throat structure can be classified into 5 types:coarse throat type, mid-coarse throat type, partial coarse throat type, minute throat type and fine throat type. Lithology developed excellent pore-throat structure are stomatal rhyolite, rhyotaxitic rhyolite, Spherules rhyolite,ignimbrite,brecciated lava,hydrothermal breccia and breccia. The porosity can be sorted into 6 kinds:single peak and high pore type, twin peaks and high pore type, medium pore type, mid-low pore type, partial low pore type and low pore type. Similarly, lithology with good porosity is stomatal rhyolite, rhyotaxitic rhyolite, breccia, brecciated lava, ignimbrite, and brecciated lava. In addition, there are also 5 types of permeability; they are high permeability type, mid-high permeability type, medium permeability type, mid-low permeability type and low permeability type. And the stomatal rhyolite,massive rhyolite, massive adnsite, vesicular and amygdaloidal basalt, rhyotaxitic rhyolite, breccia lava and breccia have good permeability. Comparing the results above, we can draw a conclusion that the stomatal rhyolite, rhyotaxitic rhyolite, spherules rhyolite, ignimbrite, breccia lava and volcanic breccia are easy to form good reservoir, and massive rhyolite, massive basalt and sedimentary tuff have relatively low reservoir capabilities.
     4. The study of volcanic reservoir-permeability units
     Physical property barrier and volcanic/sedimentary rock barrier can be recognized in reservoir-permeability units. Generally,the features of the former are the upper limit porosity and permeability is respectively 3% and 0.01×10-3μm2,and the lower limit of density is 2.57g.cm-3. The features of the latter are the upper limit porosity and permeability is respectively 3.9% and 0.01×10-3μm2,and the lower limit of density is 2.55g.cm-3.They can be identified by logging. Physical property barrier is micro-tooth box form, resistivity curve and density curve are high amplitude, interval transit time curve and neutron curve are low amplitude. The curves of volcanic/sedimentary rock barrier are serrate.
     The concept of reservoir-permeability units is that belongs to the same stage volcanic rock body, it may be subfacies or subfacies association that have relative vertical and horizontal porosity, permeability and number of pore-fracture. Physical properties of rock can be gradually variational but not homogeneous in a single reservoir-permeability units. In essence, volcanic reservoir-permeability units are also pore-fracture units. The relationship of reservoir space and seepage channels can be divided into nine groups,including hole-type, macroporous and microporous type, pore and fissure type, macrofissure and pore type, mesofissure and microporous type, macrofissure type, microfissure and microporous type, macrofissure type, macrofissure and microfissure type, hydrothermal fissure type.
     Reservoir-permeability units of outcrop and cores can be identified combining description of pore-fracture with physical property. The first step of distinguishing between reservoir-permeability units is to identify isolated barrier beds in uncored wells, the next is to divide reservoir-permeability units. Classification of reservoir-permeability units are based on cluster analysis of porosity, permeability, density, interval transit time and neutron of cores,and then establish a discriminant to identify uncored intervals.
     Types of reservoir-permeability units are controlled by lithology, facies and tectonic. Good lithology and facies of reservoir tends to be excellent reservoir-permeability units. This analysis of dense well network area reveal that ignimbrite, tuff lava, volcanic breccia lava of pyroclastic deposits of explosive are excellent reservoir-permeability units. Stomata and rhyotaxitic rhyolite middle and up of effusive facies are good reservoir-permeability units. Profile of reservoir-permeability units indicating that high position are apt to form excellent ones.
     5.Diagenesis evolution and controlling factors of pore-fracture of volcanic reservoirs
     Primary pore-fracture are related with texture and structure of volcanic rocks (including vesicular structure, lithophytic structure, vesicular and amygdaloidal structure, rhyotaxitic structure, perlitic structure, columnar joint, intergranular texture,melting corrosion). Tectonism,weathering,dissolution,devitrification are conducive to the formation of secondary pore-fracture.
     Based on formation stage and variation tendency of pore-fracture,volcanic rock diagenesis stages are divided into syndiagenetic stage, epidiagenetic stage, early/ moderate/late buried diagenetic stage. Primary pore-fractures formed in syndiagenetic stage, they were filled or cemented solution pore in the later. Surface porosity of primary pore-fracture declined form 25% to 7% . Secondary pore-fracture were mainly developed in syndiagenetic stage and moderate buried diagenetic stage, and the increased quantity of pore-fracture was 5% . The destruction of pore-fracture occurred on the early and late buried diagenetic stage. Surface porosity of secondary pore-fracture declined to 1.8% at last. The quantity of collective pores of vesicular lavas changed along with secondary pore-fracture,declined from 25% to 10%, but they are still composed of primary pore-fracture. We establish well-logging response of diagenesis using cores data. The division of diagenesis and types of pore-fracture are based on cuttings and logging,profile distribution of pore-fracture is achieved by multiple drilling.
引文
[1]Aguilera R, Agullera M S. The integration of capillary pressures and pickett plots for determination of flow units and reservoir containers [A]. Spe Reservoir Evaluation & Engineering.2002,5(6) 465-471
    [2]Allard P, Behncke B, D'Amico S, et al. Mount etna 1993-2005:anatomy of an evolving eruptive cycle[J]. Earth-Science Reviews,2006,78:85-114
    [3]Amaefule J O, Altunbay D, Tiab D, et al. Enhanced reservoir description:using core and log data to identify hydraulic(flow)units and predict permeability in uncored intervals/wells[A].SPE Annual Technical Conference and Exhibition,Houston, TX, USA,1993,205-220
    [4]Baltazar O F, Zucchetti M. Lithofacies associations and structural evolution of the Archean Riodas Velhas greenstone belt, Quadrilatero Ferrifero, Brazil:a review of the setting of gold deposits[J]. Ore Geology Reviews.2007,32:471-499
    [5]Barclay S A, Worden R H, Parnell J, et al. Assessment of fluid contacts and compartmentalization in sandstone reservoirs using fluid inclutions:an example from the Magnus Oil Field,North Seal[J]. AAPG Bulletion,2002,84(4):489-504
    [6]Barr D C, Altunbay M. Identifying hydraulic units as an aidto quantifying depositional environments and diagenitic facies[A]. Anon.Geological Soc. Of Malaysia Symp.on Reservoir Evaluation/Formation Damage.Kuala Lumpur:[s.n.],1992:61-73
    [7]Calle C. Neutron porosity logging and core porosity measurements in the Beauvoir granite, Massif Central Range,France[J]. Journal of Applied Geophysics, 1994,32(2-3):125-137
    [8]Canas J A, Wu C H. Characterization of flow units in sandstone reservoirs:La Cira field, Colombia,South America [A]. Permian Basin Oil and Gas Recovery Conference.Midland, TX, USA,1994.883-892
    [9]Cas R A F, Wright J V. Volcanic successions:Modern and ancient:A geological approach to processes, products and successions [M]. London:Allen & Unwin,1987
    [10]Cerepi A, Barde J-P, Labat N. High-resolution characterization and integrated study of a reservoir at Highway-Reward, Queensland, Australia[J]. Journal of Volcanology and Geothermal Research,2000,99:79-96
    [11]Davies D K, Vessell R K. Flow unit characterization of a shallow shelf carbonate reservoir:North Robertson Unit, West Texas[A]. SPE/DOE Improved Oil. Recovery Symposium. Tulsa,Oklahoma USA,1996.295-304
    [12]Doyle M G, McPhie J. Facies architecture of a silicic intrusion-dominated volcanic centre Highway-Reward, Queensland, Australia[J]. Journal of Volcanology and Geothermal Research,2000,99(1-4):79-96
    [13]Dutton S P, Loucks R G. Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200-6700 m)burial, Gulf of Mexico Basin, U.S.A[J]. Marine and Petroleum Geology,2010:1-13
    [14]Ebanks W J JR. Flow unit concept-integrated approach to reservoir description for engineering projects [J]. AAPG Bulletin,1987,71(5):551-552
    [15]Einsele G. Sedimentary Basins:Evolution, Facies, and Sediment Budget[M]. Berlin: Springer,2000.1-792
    [16]Fisher R V, Schmincke H U. Pyroclastic rocks [M]. Berlin:Springer-Verlag,1984
    [17]Gei(?)ler M, Breitkreuz C, Kiersnowski H. Late Paleozoic volcanism in the central part of the Southern Permian Basin (NE Germany, W Poland):facies distribution and volcano-topographic hiati[J]. Int J Earth Sci (Geol Rundsch),2008,97:973-989
    [18]Guangming Ti, Munly W, Hatzignatiou D G. Use of flow units as a tool for reservoir description:a case study[J]. SPE Fomration Evaluatio,1995.10(2):122-128
    [19]Hamlin H S, Dutton S P, Seggie D, et al. Depositional controls reservoir properties in a braid-delta sandstone,Tirrawarra oil Field, South Australia[J]. AAPG Bulletin,1996,80(2):139-155
    [20]Hawlander H M. Diagenesis and reservoir potential of volcanogenic sandstone-Cretaceous of the Surat Basin, Australia[J]. Sedimentary Geology, 1990,66(3/4):181-195
    [21]Hearn C L, Ebanks W J Jr, Tye R S, Raganathan V. Geological factors influencing reservoir performance of the Hartzog Draw Field,Wyoming[J]. Journal of Petroleum Technology,1984,36:1335-1344
    [22]Jeff Martin A J, Solomon S T, Hartmann DJ. Characterization of petrophysical flow units in carbonate reservoirs[J]. AAPG Bulletin,1997,81(5):731-759.
    [23]Lajoie J, Stix J. Facies models 15:Volcaniclastic rocks[M]. Geoscience Canada,1979
    [24]LeMaitre R W, Bateman P,Dudek A. A classification of igneous rocks and glossary of terms[M]. London:Blackwell Scientific Publ.,1989
    [25]Meng Q R. What drove Late Mesozoic extension of the Northern China-Mongolia traet?[J]. TeetonoPhysies,2003,369:155-174
    [26]Nelson P H, Glenn W E. Influence of bound water on the neutron log in mineralized igneous rocks[A]. SPWLA 16th Annual Logging Symposium,1975,1-9
    [27]Nemeth K, White J D.L. Reconstructing eruption processes of a Miocene monogenetic volcanic field from vent remnants:Waipiata Volcanic Field, South Island, New Zealand[J]. Journal of Volcanology and Geothermal Research.2003,124:1-21
    [28]Neri M, Lanzafame G. Structural features of the 2007 Stromboli eruption[J]. J. Volcanol. Geotherm. Res., (2008),doi:10.1016/j.jvolgeores.2008.07.021
    [29]Orton G J. Volcanic environments[M]. In:Reading, H.G.(Ed.), Sedimentary Environments:Processes, Facies and Stratigraphy,3rd edition. Blackwell, Oxford, 1996,485-567
    [30]Ozkaya S I, Lewandoswki H J, Coskun S B. Fracture study of a horizontal well in a tight reservoir—Kuwait[J]. Journal of Petroleum Science and Engineering,2007,55:6-17
    [31]Pan B Z, Xue L F, Huang B Z,et al. Evaluation of volcanic reservoirs with the QAPM mineral model using a genetic algorithm[J]. Applied Geophysics,2008,5(1):1-8
    [32]Petford N, Mccaffery KJW. Hydrocarbons in crystalline rocks[M].Geological Society,London, Special Publication,2003
    [33]Pittari A, Cas R A-F, Edgar C J. et al. The influence of palaeotopography on facies architecture and pyroclastic flow processes of a lithic-rich ignimbrite in a high gradient setting:The Abrigo Ignimbrite, Tenerife, Canary Islands[J]. Journal of Volcanology and Geothermal Research,2006,152:273-315
    [34]Pittari A, Cas R A-F, Lefebvre N, et al. Eruption processes and facies architecture of the Orion Central kimberlite volcanic complex, Fort a la Corne, Saskatchewan; kimberlite mass flow deposits in a sedimentary basin[J]. Journal of Volcanology and Geothermal Research,2008,174:152-170
    [35]Rodriguez A, Maraven S.A. Facies modeling and the flow unit concept as a sedimentological tool in reservoir description:a case study [A]. SPE Annual Technical Conference and Exhibition,Houston, TX, USA,1988,465-472
    [36]Sanyal S K, Juprasert S, Jusbasche M. An evaluation of rhyolite-basalt-volcanic ash sequence from well logs[A].20th SPWLA annual lagging symposium transactions[C],Oklahoma,1979,Paper TT
    [37]Schutter S R. Hydrocarbon occurrence and exploration in and around igneous rocks[M]. Geological Society, london,special publication,214:7-33
    [38]Secmann U, Schere M. Volcaniclastics as potential hydrocarbon reservoirs[J].Clay Minerals,1984,19(9):457-470
    [39]Sllseth J K.流动单元油藏描述对模拟水驱动态的影响[J].李彦平,译.石油勘探开发情报,1994,6(1):82-90.
    [40]Smith R L, Bailey R A. The bandolier tuff, a study of ash-flow eruption cycles from zoned magma chambers [J]. Bull. Volcanol.,1966,29:83-104.
    [41]Sruoga P, Rubinstein N, Hinterwimmer G. Porosity and permeability in volcanic rocks:a case study on the Serie Tobifera, South Patagonia, Argentina[J]. Journal of Volcanology and Geothermal Research,2004,132:31-43
    [42]Surdam R C, Boese S W, Crosses L J. The chemistry of secondary porosity[M]. In: McD A, Surdam R C. Clastic diagenesis. Am Assoc Pet. Ceol.Mem.,1984
    [43]Valentine G A, Krier D J, Perry F K, et al. Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano [J]. Journal of Volcanology and Geothermal Research,2007,161:57-80
    [44]Vazquez J A, Ort M H. Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA[J]. Journal of Volcanology and Geothermal Research,2006,154(3-4):222-236
    [45]Walker R, James N. Facies Models response to sea level change[J]. Geological Association of Canada,1992:101-18
    [46]Wang F, Zhou X H., Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'an Range (NE China):timing and implications for the dynamic setting of NE Asia[J]. Earth and Planetary Science Letters,2006,251:179-198.
    [47]Wang P J, Liu W Z, Wang S X, et al.40Ar/39Ar and K/Ar dating on the volcanic rocks in t he Songliao basin, NE China:constraints on stratigraphy and basin dynamics[J]. International Journal of Earth Sciences,2002a,91(2):331-340.
    [48]Wang P J, Hou Q J, Wang K Y, et al. Discovery and significance of high CH4 primary fluid inclusions in reservoir volcanic rocks of the Songliao basin, NE China[J].Acta Geologica Sinica,2007,81(1):113-120
    [49]Wang P J, Ren Y G, Shan X L,et al. The Cretaceous volcanic succession around the Songliao Basin,NE China:relationship between volcanism and sedimentation [J]. Geological Journal,2002b,37(2):97-115.
    [50]Wright H M N, Cashman K V,Gottesfeld E H, et al. Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity [J]. Earth and Planetary Science Letters,2009,280(2009):93-104
    [51]Wu F Y, Sun D Y, Li H M, et al. The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints [J]. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy 2001,26(9-10):793-803
    [52]Wu F Y, Sun D Y,Li H M, et al. A-type granites in Northeastern China:age and geochemical constraints on their pentrogenesis[J]. Chemical Geology,2002, 187:143-173
    [53]边伟华,陈玉魁,唐华风,等.火山岩相的岩屑识别——以松辽盆地南部东岭探区为例[J].吉林大学学报(地球科学版),2007,37(6):1104-1109
    [54]陈福,朱笑青.表生风化淋滤作用的演化和为沉积矿床提供矿质能力的研究[J].地球化学,1987,(4):341-349
    [55]陈钢花,吴文圣,毛克文.利用地层微电阻率扫描图像识别岩性[J].石油勘探与开发,2001,28(2):53-55
    [56]陈建文,王德发,张晓东,等.松辽盆地徐家围子断陷营城组火山岩相和火山机构分析[J].地学前缘,2000b,7(4):371-378.
    [57]陈建文.一个大型弧后裂谷盆地的沉积充填模式——以松辽盆地为例[J].石油实验地质,2000a,22(2):50-54
    [58]陈井胜.松辽盆地南部营城组火山岩成因[D].长春:吉林大学硕士学位论文,2009
    [59]陈文涛,张晓东,陈发景.松辽盆地晚侏罗世火山岩分布与油气[J].中国石油勘探.2001,6(2):23-26
    [60]陈振岩,李军生.辽河坳陷火山岩与油气关系[J].石油勘探与开发,1996,23(3):1-5
    [61]程三友.中国东北地区区域构造特征与中、新生代盆地演化[D].北京:中国地质大学(北京)博士学位论文,2006
    [62]程裕淇.中国区域地质概论[M].北京:地质出版社,1994
    [63]迟元林,云金表,蒙启安,等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002
    [64]迟元林,王璞珺,单玄龙,等.中国陆相含油气盆地深层地层研究——以松辽盆地为例[M].长春:吉林科学技术出版社,2000
    [65]崔军平.松辽盆地东部哈尔滨—绥化地区构造演化及其对油气成藏条件的控制作用[D].西安:西北大学博士论文,2007
    [66]戴亚权,罗静兰,林潼,等.松辽盆地北部升平气田营城组火山岩储层特征与成岩演化[J].中国地质,2007,34(3):528-535
    [67]单玄龙,刘青帝,任利军,等.松辽盆地三台地区下白垩统营城组珍珠岩地质特征与成因[J].吉林大学学报(地球科学版),2007,37(6):1146-1151
    [68]丁日新,舒萍,纪学雁,等.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义[J].吉林大学学报(地球科学版),2007,37(3):525-530.
    [69]丁秀春.测井响应在火成岩储层研究中的应用[J].特种油气藏,2003,10(1):69-72
    [70]董冬.熔岩流单元测井响应模式[J].石油实验地质,1990,12(4):407-411
    [71]窦松江,唐月红,孔令江,等.大港枣园油田火山岩储集层研究[J].录井工程,2009,20(1):61-64
    [72]窦之林.孤东馆陶组河流相储集层流动单元模型与剩余油分布规律研究[J].石油勘探与开发,2000,27(6):50-52
    [73]顿铁军.储层研究状况与发展趋势[J].西北地质,1995,16(2):1-15
    [74]范宜仁,黄隆基,代诗华.交会图技术在火成岩岩性和裂缝识别中的应用[J].测井技术,1999,23(1):53-56
    [75]冯晓宏,刘学峰,岳清山.厚油层非均质特征描述的新方法——水力(流动)单元分析[J].石油学报(增刊),1994,15:149-158
    [76]冯志强,刘嘉麒,王璞珺,等.油气勘探新领域:火山岩油气藏——松辽盆地大型火山岩气田发现的启示[J].地球物理学报,2011,54(2):269-279
    [77]冯子辉,邵红梅,童英.松辽盆地庆深气田深层火山岩储层储集性控制因素研究[J].地质学报,2008,82(6):760-769
    [78]高瑞祺,蔡希源.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社,1997
    [79]高山林,李学万,宋柏荣.辽河盆地欧利坨子地区火山岩储集空间特征[J].石油与天然气地质,2001,22(2):173-177
    [80]高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征[D].长春:吉林大学硕士学位论文,2008
    [81]高有峰,刘万洙,纪学雁,等.松辽盆地营城组火山岩成岩作用类型、特征及其对储层物性的影响[J].吉林大学学报(地球科学版),2003,33(4):449-456
    [82]高知云,章濂澄.辽河盆地老第三纪火山岩及其构造环境分析[J].西北大学学报,1993,23(4):365-377
    [83]葛荣峰,张庆龙,王良书,等.松辽盆地构造演化与中国东部构造体制转换[J].地质论评,2010,56(2):180-193
    [84]郭振华,王璞珺,印长海,等.松辽盆地北部火山岩岩相与测井相关系研究[J].吉林大学学报(地球科学版),2006,36(2):207-214
    [85]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993
    [86]侯启军,赵志魁,王立武.火山岩气藏——松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科学出版社,2009
    [87]侯英姿.松辽盆地杏山——莺山地区火山岩储集空间类型特征及其控制因素[J].特种油气藏,2003,10(1):99-102
    [88]候启军.南北辉映气贯松辽——吉林油田公司长岭断陷长深1井发现纪略[J].中国石油企业,2006,3:45-46
    [89]胡华光,胡世玲,王松山,等.根据同位素年龄讨论侏罗、白垩纪火山岩系地层的时代[J].地质学报,1982,56(4):315-323.
    [90]黄布宙,潘保芝.松辽盆地北部深层火成岩测井响应特征及岩性划分[J].石油地质,2001,40(3):42-47
    [91]黄清华,谭伟,杨会臣.松辽盆地白垩纪地层序列与年代地层[J].大庆石油地质与开发,1999,18(6):15-28.
    [92]黄玉龙,王璞珺,舒萍,等.松辽盆地营城组中基性火山岩储层特征及成储机理[J].岩石学报,2010,26(1):82-92
    [93]黄玉龙,王璞珺,门广田,等.松辽盆地营城组火山岩旋回和期次划分及其地质—地球物理方法—以盆缘剖面和盆内钻井为例[J].吉林大学学报(地球科学版),2007,37(6):1183-1191.
    [94]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社,1988.
    [95]季汉成,徐珍.深部碎屑岩储层溶蚀作用实验模拟研究[J].地质学报,2007,81(2):212-219
    [96]冀国盛,戴俊生,马欣本,等.金湖凹陷闵北地区阜一、二段火山岩地层划分与对比[J].石油大学学报(自然科学版),2002,26(4):5-8
    [97]贾承造,赵文智,邹才能,等.岩性地层油气藏地质理论与勘探技术[J].石油勘探与开发,2007,34(3):257-272
    [98]贾军涛,王璞珺,万晓樵.松辽盆地断陷期白垩纪营城组的时代归属[J].地质论评,2008,54(4):439-448
    [99]焦养泉,李思田,李祯,等.碎屑岩储层物性非均质性的层次结构[J].石油与天然气地质,1998,19(2):89-92.
    [100]金伯禄,张希友.长白山火山地质研究[M].延吉:东北朝鲜民族教育出版社,1994.
    [101]金成志,杨双玲,舒萍,等.升平开发区火山岩储层孔隙结构特征与产能关系综合研究[J].大庆石油地质与开发,2007,26(2):38-41,45
    [102]靳彦欣,林承焰,赵丽,等.关于用FZI划分流动单元的探讨[J].石油勘探与开发,2004,31(5):130-132
    [103]科普切弗-德沃尔尼科夫.火山岩及其研究方法[M].周济群,黄光昭译.北京:地质出版社,1978
    [104]雷天柱,石新璞,孔玉华,等.溶蚀在形成碱性火山岩优质储集层中的作用—— 以准噶尔盆地陆西地区石炭系火山岩为例[J].新疆石油地质,2008,29(3):306-308
    [105]李兼海,邓文祥.火山岩的野外工作方法[M].北京:地质出版社,1980
    [106]李军.准噶尔盆地西北缘石炭系火山岩油藏储层分布规律及控制因素研究[D].北京:中国地质大学(北京)博士学位论文,2008
    [107]李石,王彤.火山岩[M].北京:地质出版社,1980
    [108]李伟,何生,谭开俊,等.准噶尔盆地西北缘火山岩储层特征及成岩演化特征[J].天然气地球科学,2010,21(6):909-915
    [109]李学万,魏喜,高占琴,等.扫描电镜在火山岩储层成岩作用研究中的应用[J].电子显微学报,2004,23(4):474-474
    [110]李阳.储层流动单元模式及剩余油分布规律研究[J].石油学报,2003,24(3):52-55
    [111]李喆,王璞珺,纪学雁,等.松辽盆地东南隆起区营城组火山岩相和储层的空间展布特征[J].吉林大学学报(地球科学版),37(6):1224-1231
    [112]梁晓东,赵志刚,陈全茂,等.辽河盆地荣兴屯地区中生界火山岩储集性能研究[J].地球科学:中国地质大学学报,2000,25(2):143-146
    [113]林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义[J].地质学,1998,33(2):129-139
    [114]林强,葛文春,孙德有,等.东北亚中生代火山岩的地球动力学意义[J].地球物理学报,1999,42(增刊):75-84
    [115]刘成林,杜蕴华,高嘉玉,等.松辽盆地深层火山岩储层成岩作用与孔隙演化[J].岩性油气藏,2008,20(4):33-37
    [116]刘德来,陈发景,杨丰平.中国东北地区中生代火山岩与板块构造环境[J].大庆石油学院学报,1994,18(2):1-7
    [117]刘光鼎.祝大庆油田再铸辉煌[J].地球物理学报,2011,54(2):267-268
    [118]刘嘉麒,孟凡超,崔岩,等.试论火山岩油气藏成藏机理[J].岩石学报,2010,26(1):1-13
    [119]刘孟慧,赵澄林.第二届国际储层表征技术研讨会译文集[A].东营:石油大学出版社,1990
    [120]刘万洙,王璞珺,门广田,等.松辽盆地北部深层火山岩储层特征[J].石油与天然气地质,2003,24(1):28-31
    [121]刘万洙,庞彦明,吴河勇,等.松辽盆地深层储层砂岩中火山碎屑物质在成岩阶段的变化与孔隙发育[J].吉林大学学报(地球科学版),2007,37(4):698-702
    [122]刘为付,王永生,杜刚.松辽盆地徐家围子断陷营成组火山岩储集层特征[J].特种油气藏,2004,11(2):6-10
    [123]刘为付,孙立新,刘双龙.松辽盆地莺山断陷火山岩地震反射特征及分布规律 [J].石油实验地质,2000,22(3):256-259
    [124]刘文灿,孙善平,李家振.大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征[J].现代地质,1997,11(2):237-243
    [125]刘喜顺,郭建华,瞿建华,等.准噶尔盆地西北缘火山岩孔隙特征及演化[J].新疆石油地质,2008,29(5):565-568
    [126]刘喜顺,许杰,张晓平.准噶尔盆地西北缘石炭系火山岩岩相特征及相模式[J].新疆地质,2010,28(1):73-76
    [127]刘祥,向天元.中国东北地区新生代火山和火山碎屑堆积物-资源与灾害[M].长春:吉林大学出版社,1997
    [128]刘云祥,何展翔,张碧涛,等.识别火成岩岩性的综合物探技术[J].勘探地球物理进展,2006,29(2):115-118
    [129]吕晓光,闫伟林,杨银锁.储层岩石物理相划分方法及应用[J].大庆石油地质与开发,1997,16(3):18-21
    [130]罗静兰,曲志浩,孙卫,等.风化店火山岩岩相、储集性与油气的关系[J].石油学报,1996,17(1):32-39
    [131]罗静兰,邵红梅,张成立.火山岩油气藏研究方法与勘探技术综述[J].石油学报,2003,24(1):31-38
    [132]罗权生,聂朝强,文川江,等.新疆三塘湖盆地牛东地区卡拉岗组火山旋回和期次的划分与对比[J].现代地质,2009,23(3):515-522
    [133]马全华,姜在兴,杜文拓,等.欧利坨子中北段火山岩与浊积岩岩相研究[J].特种油气藏,2008,15(1):25-31
    [134]蒙启安,王璞珺,杨宝俊,等.松辽盆地断陷期超层序界面的地质属性刻画及其油气地质意义[J].地质论评,2005,51(1):46-54
    [135]闵飞琼,王璞珺,于世泉,等.营城组三段及二段岩性岩相和储层物性的精细刻画—基于标准剖面营三D1井最新全取心钻孔资料[J].吉林大学学报(地球科学版),2007,37(6):1203-1216
    [136]穆龙新,黄石岩,贾爱林.油藏描述新技术[A].中国石油天然气总公司油气田开发工作会议文集.北京:石油工业出版社,1996,1-10
    [137]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991
    [138]欧家强,罗明高,王小蓉.低渗透油藏中储层流动单元划分[J].西安石油大学学报(自然科学版),2008,23(5):24-28
    [139]庞彦明,章凤奇,邱红枫,等.酸性火山岩储层微观孔隙结构及物性参数特征[J].石油学报,2007,18(6):72-77
    [140]裴福萍,许文良,杨德彬,等.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约[J].地球科学—中国地质大学学报,2008,33(5):603-617
    [141]彭彩珍,郭平,苏萍,等.流纹岩类火山岩储层物性特征研究[J].西南石油学院学报,2004,26(3):12-15
    [142]彭仕宓,尹志军,常学军,等.陆相储集层流动单元定量研究新方法[J].石油勘探与开发,2001,28(5):68-70
    [143]钱峥.济阳坳陷罗151块火成岩油藏储集层概念模型[[J].石油勘探与开发,1999,26(6):72-74,94
    [144]邱隆伟,席庆福.欧利沱子地区沙三下亚段火山岩成岩作用及孔演化[J].石油与天然气地质,2000,21(2):139-143
    [145]裘怿楠,王振彪.油藏描述新技术[A].中国石油天然气总公司油气田开发会议文集.北京:石油工业出版社,1996,62-72
    [146]曲延明,舒萍,纪学雁,等.松辽盆地庆深气田火山岩储层的微观结构研究[J].吉林大学学报(地球科学版),2007,37(4):721-725
    [147]任作伟,金春爽.辽河坳陷洼609井区火山岩储集层的储集空间特征[J].石油勘探与开发,1999,26(4):54-56
    [148]邵英梅,冯子辉.徐家围子断陷营城组火山岩岩石学及地球化学特征[J].大庆石油地质与开发,2007,26(4):27-30
    [149]邵正奎,孟宪禄.松辽盆地火山岩地震反射特征及其分布规律[J].长春科技大学学报,1999,29(1),33-36
    [150]史基安,晋慧娟.长石砂岩中长石溶解作用发育机理及其影响因素分析[J].沉积学报,1994,12(3):67-75
    [151]舒萍,纪学雁,丁日新,等.徐深气田火山岩储层的裂缝特征研究[J].大庆石油地质与开发,2008,27(1):13-17
    [152]舒萍,丁日新,纪学雁,等.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志,2007,26(3):239-246
    [153]宋吉杰.松辽盆地北部兴城地区火山岩地震预测[J].石油地球物理勘探,2007,42(3):315-317
    [154]宋宗平,姜传金,杨耀坤.兴城—丰乐地区深层火山岩储层识别[J].天然气工业,2007,(8):28-30
    [155]孙来喜,孙建平,杨凤波,等.井间流动单元生产压差预测方法[J].石油与天然气地质,1999,20(2):176-178
    [156]孙先达,索丽敏,张民志,等.激光共聚焦扫描显微检测技术在大庆探区储层分析研究中的新进展[J].岩石学报,2005,21(5):1479-1499
    [157]孙晓猛,龙胜祥,张梅生,等.佳木斯一伊通断裂带大型逆冲构造带的发现及形成时代[J].石油与天然气地质,2006,27(5):637-643
    [158]孙晓猛,朱德丰,郑常青,等.松辽盆地东缘中生代断裂构造特征、形成期次及其储层意义[J].吉林大学学报(地球科学版),2007,37(6):1055-1061
    [159]孙圆辉,沈平平,阮宝涛,等.松辽盆地长岭断陷长深1号气田火山岩岩性及储渗特征研究[J].天然气地球科学,2008,19(5):630-633
    [160]唐华风,徐正顺,王璞珺,等.松辽盆地白垩系营城组埋藏火山机构岩相定量模型及储层流动单元特征[J].吉林大学学报(地球科学版),2007,37(6):1074-1082
    [161]唐华风,王璞珺,姜传金,等.松辽盆地火山岩相地震特征及其与控陷断裂的关系[J].吉林大学学报(地球科学版),2007,37(1):73-78
    [162]唐金生,李成立,杨海波,等.高精度磁法在松辽盆地北部古龙——常家围子断陷火山岩预测方面的应用[J].现代地质,2009,23(3):508-514
    [163]陶奎元,谢家莹,阮宏宏,等.中国东南沿海中生代火山作用基本特征[J].中国科学院南京地质矿产研究所所刊,1988,9(4):12-24
    [164]陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社,1994
    [165]田玉栋,李相方,曹宝军,等.火山岩气藏储层渗流特征浅析[J].断块油气田,2009,16(6):43-45
    [166]汪筱林,刘立,刘招君.满洲里-绥芬河地学断面域中新生代盆地基底结构及构造演化[A]北京:地质出版社,1994:26-37
    [167]王大华,肖永军,徐佑德,等.松南长岭断陷查干花地区火山岩储层特征及影响因素[J].油气地质与采收率,2010,17(6):39-42
    [168]王槐基.火成岩的地震反射特征[J].石油地球物理勘探,1981,(5):56-63
    [169]王建新,张俊华,王超,等.东北地区中生代火山岩成分空间变异及其成矿规律[J].吉林大学学报(地球科学版),2010,40(4):752-763
    [170]王璞珺,迟元林,刘万洙,等.松辽盆地火山岩相:类型、特征和储层意义[J].吉林大学学报(地球科学版),2003,33(4):449-456
    [171]王璞珺,吴河勇,庞颜明,等.松辽盆地火山岩相:相序、相模式与储集层物性的定量关系[J].吉林大学学报(地球科学版),2006,36(5):805-812
    [172]王璞珺,郑常青,舒萍,等.松辽盆地深层火山岩岩性分类方案[J].大庆石油地质与开发,2007,26(4):17-22.
    [173]王璞珺,冯志强,刘万洙,等.盆地火山岩:岩性·岩相·储层·气藏·勘探[M].北京:科学出版社,2008:16-17
    [174]王仁冲,徐怀民,邵雨,等.准噶尔盆地陆东地区石炭系火山岩储层特征[J].石油学报,2008,29(3):350-355
    [175]王颖,李锡瑞,曹跃,等.松辽盆地南部长岭断陷二氧化碳成藏期次[J].中国石油勘探,2009,14(4):21-25
    [176]王拥军,冉启全,童敏,等.ECS测井在火山岩岩性识别中的应用[J].国外测井技术,2006;21(1):13-16
    [177]王玉学,韩大匡,刘文岭,等.相干体技术在火山岩预测中的应用[J].石油物探,2006,45(2):192-196
    [178]王月莲,宋新民.按流动单元建立测井储集层解释模型[J].石油勘探与开发,2002,29(3):53-55.
    [179]魏斌,陈建文,郑浚茂,等.应用储层流动单元研究高含水油田剩余油分布[J].地学前缘,2000,7(4):403-410
    [180]吴胜和,王仲林.陆相储层流动单元研究的新思路[J].沉积学报,1999,17(2):252-256.
    [181]吴颜雄,王璞珺,曲立才,等.营城组一段及下段岩性岩相和储层物性的精细刻画—基于标准剖面营一D1井全取心钻孔资料[J].吉林大学学报(地球科学版),2007,37(6):1192-1202
    [182]吴颜雄,王璞珺,宋立忠,等.松辽盆地营城组火山机构相带地震-地质解译[J].地球物理学报,2011,54(2):0545-0555
    [183]吴颜雄,王璞珺,闫林,等.松辽盆地营城组火山岩相量化表征与应用[J].岩石学报,2010a,26(1):73-81
    [184]吴颜雄,王璞珺,吴艳辉,等.火山岩储层储集空间构成——以松辽盆地为例[J].天然气工业,2011b,31(4):28-33
    [185]肖尚斌.渤海湾盆地火成岩及其相关油气藏的分类[J].特种油气藏,1999,6(4):6-10
    [186]谢家莹,蓝善先,张德宝,等.运用火山地质学理论研究竹田头火山机构[J].火山地质与矿产,2000,21(2):87-95
    [187]谢家莹,陶奎元,谢芳贵,等.试论凝灰熔岩相特征、相模式及其成因[J].火山地质与矿产,1995,16(3):1-5
    [188]谢家莹,陶奎元,谢芳贵,等.碎斑熔岩相特征与相模式[J].火山地质与矿产,1993,14(3):1-5
    [189]谢家莹.试论陆相火山岩区火山地层单位与划分[J].火山地质与矿产,1996,17(3/4):85-93
    [190]谢庆宾,韩德馨,朱筱敏,等.三塘湖盆地火成岩储集空间类型及特征[J].石油勘探与开发,2002,29(1):84-86
    [191]熊琦华,彭仕亦,黄述旺,等.岩石物理相研究方法初探-以辽河冷东—雷家地区为例[J].石油学报.1994,15(专刊):68-75
    [192]徐颖新,尚华,李秀珍,等.火山岩地震解释技术在松辽盆地长岭断陷深层天然气勘探中的应用[J].石油地球物理勘探,2008,43(S1):63-68
    [193]徐正顺,王渝明,庞彦明,等.大庆徐深气田火山岩气藏储集层识别与评价[J].石油勘探与开发,2006,33(5):521-531
    [194]闫春德,俞惠隆,余芳权,等.江汉盆地火山岩气藏发育规律及其储集性能[J].江汉石油学报,1996,18(2):1-6
    [195]闫奎邦,李鸿,邓传伟,等.WLT地区深层火山岩储层地震识别与描述[J].石油物探,2008,47(3):156-261
    [196]闫林,周雪峰,高涛,等.徐深气田兴城开发区火山岩储层发育控制因素分析[J].大庆石油地质与开发,2007,26(2):9-13
    [197]闫全人,高山林,王宗起,等.松辽盆地火山岩的同位素年代、地球化学特征及意义[J].地球化学,2002,31(2):169-179
    [198]阎长辉,羊裔常,董继芬.动态流动单元研究[J].成都理工学院学报,1999,26(3):273-275
    [199]杨春志,沈德安.吉林省松辽盆地东缘中生代含煤地层层序划分与对比[J].吉林地质,1986,(3):50-59.
    [200]杨申谷,杨光明.大洼油田火山岩岩相分析[J].江汉石油学院学报,2003,25(4):12-14
    [201]姚光庆,赵彦超,张森龙.新民油田低渗细粒储集砂岩岩石物理相研究[J].地球科学—中国地质大学学报,1995,(3):16-20
    [202]尹太举,张昌民,陈程.建立储层流动单元模型的新方法[J].石油与天然气地质,1999,20(2):170-175
    [203]余淳梅,郑建平,唐勇,等.准噶尔盆地五彩湾凹陷基底火山岩储集性能及影响因素[J].地球科学:中国地质大学学报,2004,29(3):303-308
    [204]张春露.徐深气田火山岩储层岩石物理相分类及其应用[J].大庆石油学院学报,2009,33(3):18-21
    [205]张凤鸣,许晓艳,张守国,等.五大连池火山构造环境与地震活动[J].自然灾害学报,2000,9(3):133-137
    [206]张吉,张烈辉,南力亚.碎屑岩流动单元研究进展及认识[J].中国海上油气(地质),2003,17(4):284-285
    [207]张炯飞,权恒.东北地区中生代火山岩形成的构造环境[J].贵金属地质,2000,9(1):33-38
    [208]张庆春,胡素云,王立武,等.松辽盆地含CO2火山岩气藏的形成和分布[J].岩石学报,2010,26(1):109-120
    [209]张尚锋,洪秀娥,郑荣才,等.应用高分辨率层序地层学对储层流动单元层次性进行分析—以泌阳凹陷双河油田为例[J].成都理工学院学报,2002,29(2):147-151
    [210]张兴华.欧利佗子油田火山岩相研究[J].特种油气藏,2003,10(1):40-46
    [211]张莹,潘保芝,印长海,等.成像测井图像在火山岩岩性识别中的应用[J].石油物探,2007,46(3):288-293
    [212]张子枢,吴邦辉.国内外火山岩油气藏研究现状及勘探技术调研[J].天然气勘探与开发,1994,16(1):1-26
    [213]章凤奇,程晓敢,陈汉林,等.松辽盆地东南缘晚中生代火山事件的错石年代学与地球化学制约[J].岩石学报,2009,25(1):39-54
    [214]章凤奇,庞彦明,杨树锋,等.松辽盆地北部断陷区营城组火山岩锆石SHRIMP年代学、地球化学及其意义[J].地质学报,2007a,81(9):1248-1258
    [215]章凤奇.松辽盆地北部早白垩世火山事件与地球动力学[D].杭州:浙江大学学博士论文,2007b
    [216]赵澄林.火山岩储层储集空间形成机理及含油气性[J].地质论评,1996,42(增刊):37-43
    [217]赵海玲,黄微,王成,等.火山岩中脱玻化孔及其对储层的贡献[J].石油与天然气地质,2009b,30(1):47-58
    [218]赵海玲,王成,刘振文,等.火山岩储层斜长石选择性溶蚀的岩石学特征和热力学条件[J].地质通报,2009a,28(4):412-419
    [219]赵翰卿.对储层流动单元研究的认识与建议[J].大庆石油地质与开发,2001,20(3):8-10.
    [220]赵文智,邹才能,李建忠,等.中国陆上东、西部地区火山岩成藏比较研究与意义[J].石油勘探与开发,2009,36(1):1-11
    [221]郑常青,王璞珺,刘杰,等.松辽盆地白垩系火山岩类型与鉴别特征[J].大庆石油地质与开发,2007,26(4),9-16
    [222]郑亚斌,王延斌,冉启全.枣35断块火山岩储层特征研究[J].石油学报,2006,27(4):54-58
    [223]周庆华,冯子辉,门广田.松辽盆地北部徐家围子断陷现今地温特征及其与天然气生成关系研究[J].中国科学D辑:地球科学,2008,30(增刊Ⅱ):177-188
    [224]朱德丰,任延广,杨永斌,等.松辽盆地北部深层天然气勘探突破方向研究[R].大庆油田勘探开发研究院,2003.
    [225]朱建华,王晓艳.核磁测井识别火山岩气层应用研究[J].国外测井技术,2007,22(4):7-9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700