用户名: 密码: 验证码:
基于阻抗层析成像的冰—水两相流检测技术与系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高纬度国家以及我国北部与中西部高寒地区,以冰水两相流为主的冰水情问题(如凌汛、冰塞及冰坝等)直接危害到国家大型水利、水电工程设施,水工建筑与设备的安全运行;严重威胁着河道流域广大地区的国家财产与人民生命安全。为了防止灾难性后果的发生,国内外学者对冰水情灾害的检测、预报与防治进行了大量研究;目前冰水情问题的研究主要依赖于人工观测、数学建模分析和室内试验研究的方式,缺乏自动化程度较高的现场冰水情检测仪器。鉴于此种现状,本论文提出一种基于电阻层析成像(Electrical Resistance Tomography,简称ERT)原理的冰-水两相流检测方法,并利用该技术实现对冰水两相物质分布及其动态变化规律的研究。具体完成了以下工作:
     (1)研制了用于冰水两相流参数检测的ERT系统。试验证明该ERT系统具有对冰水两相体截面成像的功能。
     (2)提出了一种基于数字图像处理的截面冰相含率(Ice Packing Factor,简称IPF)计算方法。试验证明利用该算法计算出的IPF值与真实IPF值之间的比对误差≤6%,显示出较好的测量精度,可用于冰水两相流IPF值的定性与定量分析。
     (3)研制了用于微弱阻抗信号检测的相敏解调电路和程序,实现了高信噪比条件下冰水两相流的阻抗参数的高精度测量与实部(电阻)、虚部(电容)分离。
     (4)制作了电压控制电流源(Voltage Controlled Current Source,简称VCCS)电路,其恒流特性好,带负载能力强,提高了ERT系统在冰水两相流测量中的适用范围。
     (5)利用MATLAB软件,编写了ERT系统的图像重建算法程序,程序中包含了等位线反投影算法、灵敏度系数法、截断奇异值分解法和Tikhonov正则化算法。
     (6)为了验证所研制的ERT系统的实际性能,搭建了冰水两相流静态试验系统,对冰水两相体中冰相分布及其动态变化进行了成像测试。试验结果表明:通过ERT系统可以获得水槽内冰柱的位置以及实时运动图像,利用像素点颜色的不同来区分重建图像中水相分布区域与冰相分布区域,对比显著且直观;将图像进行灰度及二值化处理后,利用所提出的截面冰相含率(IPF)计算公式,获得了一组IPF值,且计算值与真实值之间比对误差在6%以内,证明了该方法的实用性。
     本论文的研究成果,将有可能在以下领域发挥重要作用:
     (1)为隧洞、管道等输水设施提供新的冰水情检测技术手段,为解决国家大型水利工程的冬季安全输水问题提供技术支持。
     (2)为大型冰蓄冷设备提供新式冰水两相流检测传感器技术,该技术能够准确获知冰水两相流的流型、IPF等参数,为制冷设备进行冷量控制、实施防冰堵措施提供决策依据,提高其实时监控及自动化管理水平。
     综上所述,面向冰水两相流参数检测的电阻层析成像技术研究是一项具有重要理论研究意义及实际工程推广应用价值的工作。
     本课题研究过程中获得国家自然科学基金项目《基于空气、冰与水物理特性差异的冰层生消过程与力学强度连续在线检测原理研究》及山西省自然科学基金项目《电阻层析成像系统在冰水两相流参数检测中的研究》的资助。
In the high latitude countries and alpine region in north and west of China, disasters mainly caused by ice-water two-phase flows such as ice flood, ice jams and ice dam greatly endanger the safety of large hydraulic facilities, hydropower equipments and people's property along the rivers. To prevent such disasters, foreign and domestic scholars did many jobs to forecast and detect conditions of ice-water two-phase flow. According to literature, researches mainly focus on field observation manually, analysis of mathematical models, indoors experiments, which have disadvantages of being lack of automatic detecting equiments for ice-water in field. This paper puts forwards a principle of ERT (Electrical Resistance Tomography) to detect the distribution and dynamic change of ice-wtaer two-phase flow. The main job is as follows:
     (1) ERT system to detect ice-water two-phase flow is developed, which has the tomogrphy fuction for two-phase sections and is proved by our experiments.
     (2) A calculating method for IPF (Ice Packing Factor) is put forward, which is based on digital image processing. The experimental results show that the errors of IPF are less than6%. Our system can be used to measure IPF of ice-water two-phase flow both quantitively and qualitytively.
     (3) A digital phase-sensitive detect circiuit and its program to detect weak impedance signals are developed, by which the seperation between real part(resistance) and image part(capacitance) is achieved in the condition of high SNA for ice-water two-phase flow measurement.
     (4) This paper improves the character of Voltage Controlled Current Source, namely VCCS, in the field of constant current, which strengthens the load capbility and enlarges the measuring scope of ERT system for two-phase ice and water.
     (5) Algorithms of image reconstruction for ERT system is developed by MATLAB, which include Linear Backprojection (LBP) algorithm, Sensitivity Coefficient algorithm, Truncated Singular Value Decomposition (TSVD) algorithm and Tikhonov Regularization algorithm.
     (6) In order to test the actual performance of ERT system developed, a static experiment system of ice-water two-phase flow is set up, and the image construction of dynamic distribution and variation of ice and water is tested. The result shows that the location and real-time moving state of ice column can be obtained by ERT system. Pixels of different colors are used to distinguish between water phase and ice phase. The images, which are processed by gray and binary conversion, are calculated by IPF formula. The calculated result shows that the error of phase fractions are less than6%,which indicates that our system can be used in real circumstance.
     The research results of this paper can play an important role in the following fields:
     (1) It provides a new ice-water detecting technique for the channels, tunnel, pipeline, other ice-water transfer facilities, and technical support for safe operation of national large water conservancy project in winter.
     (2) Our new detection technology of two-phase flow can be used in large ice storage equipments, with the characters of accurately obtaining two-phase flow pattern and IPF parameters. This technology can improve the level of real-time monitoring and automation management of refrigeration equipments.
     This work was supported by National Science Foundation of China(Grant No.51279122) and Shanxi Province Science Foundation for Youths (Grant No.2012021013-2).
引文
[1]李海青.两相流参数检测及应用[M].浙江大学出版社,1991.
    [2]谢代梁.电容层析成像技术在两相流参数检测中的应用研究[D].浙江大学,2005.
    [3]陈学俊.气液两相流与传热基础[M].科学出版社,1995.
    [4]许燕斌.基于电阻成像技术的水平管气液两相流研究[D].天津大学,2009.
    [5]刘双科,高桥弘.水平管内伴有悬浮床的冰-水两相流动特性[J].泥沙研究,2003(4).
    [6]窦银科.基于电容感应技术的定点冰层厚度检测方法机理与应用研究[D].太原:太原理工大学,2010.
    [7]张宝森,郜国明.宁蒙河段冰凌监测技术试验研究[J].黑龙江水专学报,2009(004):90-95.
    [8]马福昌.数字水文信息采集与自动化报送理论及新技术研究[D].2004.
    [9]秦建敏.基于空气,冰与水的电导率检测冰厚的理论与应用研究[D].西安:西安理工大学,2005.
    [10]杨开林.调水工程水力控制综述[J].中国水利水电科学研究院学报,2009,7(3).
    [11]李大冉.输水工程冰力学模型试验及数值模拟[D].天津:天津大学,2009.
    [12]方贵银.蓄冷空调工程实用新技术[M].人民邮电出版社,2000.
    [13]张升学.海冰输运技术及离心脱盐方法研究[D].天津:天津大学,2008.
    [14]Vince M A, Lahey R T. On the development of an objective flow regime indicator[J]. International Journal of Multiphase Flow,1982,8(2):93-124.
    [15]Hewitt G F. Measurement of two phase flow parameters[J]. NASA STI/Recon Technical Report A,1978,79:47262.
    [16]Barnea D, Shoham O, Taitel Y. Flow pattern characterization in two phase flow by electrical conductance probe[J]. International Journal of Multiphase Flow, 1980,6(5):387-397.
    [17]Paglianti A, Pintus S, Giona M. Time-series analysis approach for the identification of flooding/loading transition in gas-liquid stirred tank reactors[J]. Chemical engineering science,2000,55(23):5793-5802.
    [18]Hubbard M G, Dukler A E. The characterization of flow regimes for horizontal two-phase flow[J]. Proc. Heat Transfer and Fluid Mech. Institute. Stanford University Press-M. Saad JA Moller eds.[Links],1966.
    [19]Matuszkiewicz A, Flamand J C, Boure J A. The bubble-slug flow pattern transition and instabilities of void fraction waves[J]. International journal of multiphase flow, 1987,13(2):199-217.
    [20]陈珙,王保良.基于小波分析的气液两相流流型模糊辨识[J].高校化学工程学报,1999,13(4):303-308.
    [21]陈珙,黄志尧,王保良,等.小波变换辨识流型的一种新方法研究[J].仪器仪表学报,1999,20(2):117-120.
    [22]冀海峰.小波分析技术在两相流检测中的应用研究[D].浙江大学,2002.
    [23]Ji H F, Huang Z Y, Wang B L, et al. Wavelet-based flow regime identification of gas-liquid two-phase flow:Proceedings of International Conference on Power Engineering,2001 [C].
    [24]Bakshi B R, Zhong H, Jiang P, et al. Analysis of flow in gas-liquid bubble columns using multi-resolution methods[J]. Chemical engineering research & design, 1995,73(6):608-614.
    [25]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,1998,454(1971):903-995.
    [26]黄海,黄轶伦.气固流化床压力脉动信号的Hilbert-Huang谱分析[J].化工学报,2004,55(9):1441-1447.
    [27]丁浩.新型信息处理技术在气液两相流流型辨识中的应用研究[D].浙江大学,2005.
    [28]Jones Jr O C, Zuber N. The interrelation between void fraction fluctuations and flow patterns in two-phase flow[J]. International Journal of Multiphase Flow, 1975,2(3):273-306.
    [29]Tutu N K. Pressure fluctuations and flow pattern recognition in vertical two phase gas-liquid flows[J]. International Journal of Multiphase Flow,1982,8(4):443-447.
    [30]刘明言,胡宗定.气液固三相流化床流区及其过渡的混沌分析[J].化学反应工程与工艺,2000,16(4):363-367.
    [31]白博峰,郭烈锦,陈学俊.空气水两相流压力波动现象非线性分析[J].工程热物理学报,2001,3.
    [32]吴浩江,吴浩扬,周芳德.形理论在油气水多相流流型识别中的应用[J].西安交通大学学报,1999,33(9).
    [33]Zhao S, Jin N, Hai M, et al. Characterization of oil/water two-phase flow based on complexity theory:Machine Learning and Cybernetics,2004. Proceedings of 2004 International Conference on,2004[C]. IEEE.
    [34]肖楠金宁德.基于混沌吸引子形态特性的两相流流型分类方法研究[J].物理学报,2007,56(9):5149-5157.
    [35]King C H, Ouyang M S, Pei B S, et al. Identification of two-phase flow regimes by an optimum modeling method[J]. Nucl. Technol.;(United States),1988,82(2).
    [36]任杰,朱衡君.时间序列分析和参数识别方法确定两相流流态[J].北方交通大学学报,1998,22(4):83-86.
    [37]Wu H, Zhou F, Wu Y. Intelligent identification system of flow regime of oil-gas-water multiphase flow[J]. International Journal of Multiphase Flow, 2001,27(3):459-475.
    [38]邵晓寅,黄志尧,冀海峰,等.基于电容层析成像和模糊模式识别的油气两相流流型辨识新方法的研究[J].高校化学工程学报,2003,17(6):616-621.
    [39]王强,周云龙,崔玉峰,等EIN/ID与神经网络在气液两相流流型识别中的应用[J].工程热物理学报,2007,28(3).
    [40]Mahvash A, Ross A. Two-phase flow pattern identification using continuous hidden Markov model[J]. International Journal of Multiphase Flow,2008,34(3):303-311.
    [41]Zhong-Ke Gao, Ning-De Jin.两相流流型复杂网络社团结构及其统计特性[J].物理学报,2008,57(11):6909-6920.
    [42]石文星,赵庆珠,李立一,等.基于RC振荡电路的冰层厚度测量装置[J].暖通空调,2005,35(6):64-69.
    [43]北原拓夫.冰蓄冷系统的测量[J].中国建设信息.供热制冷专刊,2004(03).
    [44]Herman G T. Fundamentals of computerized tomography:image reconstruction from projections[M]. Springer,2009.
    [45]黄志尧,金宁德.层析成像技术在多相流检测中的应用[J].化学反应工程与工艺,1996,12(4):394-405.
    [46]郭志平,董宇峰.工业CT技术[J].无损检测,1996,18(1):27-30.
    [47]刘国华.高速可靠的工业CT数据传输系统的研究与设计[D].重庆:重庆大学,2009.
    [48]夏纪真.无损检测导论[M].中山大学出版社,2010.
    [49]张修刚,王栋,林宗虎.近期多相流过程层析成像技术的发展[J].热能动力工程,2004,19(3):221-226.
    [50]董峰,邓湘,徐立军,等.过程层析成像技术综述[J].仪器仪表用户,2001,8(1):6-11.
    [51]王雷.电容层析成像系统的研制及其在两相流参数检测中的应用研究[D].浙江大学,2003.
    [52]余金华.电阻层析成像技术应用研究[D].博士学位论文.浙江杭州:浙江大学,2005.
    [53]李海青,黄志尧.特种检测技术及应用[M].浙江大学出版社,2000.
    [54]许新刚,刘志新,王大庆.矿井电阻率成像技术的现状与展望[J].地球物理学进展,2004,19(1):52-55.
    [55]Jordana J, Gasulla M, Pallas -Areny R. Electrical resistance tomography to detect leaks from buried pipes[J]. Measurement Science and Technology,2001,12(8):1061.
    [56]Abdullah M Z. Electrical impedance tomography for imaging conducting mixtures in hydrocyclone separators[D].1993.
    [57]Wang M, Dickin F J, Williams R A. Electrical resistance tomography of metal walled vessels and pipelines[J]. Electronics Letters,1994,30(10):771-773.
    [58]邓湘.基于层析成像技术的智能化两相流测量系统研究[D].博士学位论文.天津:天津大学,2001.
    [59]宋健辉.电阻层析成像测试系统中的微弱信号检测[D].中国石油大学,2008.
    [60]Murphy S C, York T A. Electrical impedance tomography with non-stationary electrodes[J]. Measurement Science and Technology,2006,17(11):3042.
    [61]Wilkinson A J, Randall E W, Cilliers J J, et al. A 1000-measurement frames/second ERT data capture system with real-time visualization[J]. Sensors Journal, IEEE, 2005,5(2):300-307.
    [62]Wilkinson A J, Randall E W, Durrett D, et al. The design of a 1000 frames/second ERT data capture system and calibration techniques employed:3rd World Congress on Industrial Process Tomography. Banff,2003 [C].
    [63]黄海波.基于双极性脉冲电流激励的电阻层析成像系统的研制及其在两相流测量中的应用研究[D].浙江大学,2004.
    [64]Ma Y, Holliday N, Dai Y, et al. A high performance online data processing EIT system [J].2003.
    [65]Wang M. Impedance mapping of particulate multiphase flows[J]. Flow Measurement and Instrumentation,2005,16(2):183-189.
    [66]Heikkinen L M, Kourunen J, Savolainen T, et al. Real time three-dimensional electrical impedance tomography applied in multiphase flow imaging[J]. Measurement Science and Technology,2006,17(8):2083.
    [67]Yang W Q, Spink D M, York T A, et al. An image-reconstruction algorithm based on Landweber's iteration method for electrical-capacitance tomography [J]. Measurement Science and Technology,1999,10(11):1065.
    [68]Barber D C, Brown B H. Applied potential tomography [J]. Journal of physics. E. Scientific instruments,1984,17(9):723-733.
    [69]Avis N J, Barber D C, Brown B H, et al. Back-projection distortions in applied potential tomography images due to non-uniform reference conductivity distributions[J]. Clinical Physics and Physiological Measurement,1992,13(A):113.
    [70]Xie C G, Huang S M, Beck M S, et al. Electrical capacitance tomography for flow imaging:system model for development of image reconstruction algorithms and design of primary sensors[J]. IEE Proceedings G (Circuits, Devices and Systems), 1992,139(1):89-98.
    [71]丁永维.ERT图像重建算法研究及应用软件系统设计[D].天津大学,2007.
    [72]Barber D C, Brown B H, Avis N J. Image reconstruction in electrical impedance tomography using filtered back-projection:Engineering in Medicine and Biology Society,199214th Annual International Conference of the IEEE,1992[C]. IEEE.
    [73]王化祥,何永勃,朱学明.基于L曲线法的电容层析成像正则化参数优化[J].天津大学学报,2006,39(3):306-309.
    [74]Ding Y, Dong F. An image reconstruction algorithm based on regularization optimization for process tomography:Machine Learning and Cybernetics,2007 International Conference on,2007[C]. IEEE.
    [75]Tikhonov A N, Arsenin V Y. Solutions of ill-posed problems.1977[J]. WH Winston, Washington, DC,330.
    [76]Cohen-Bacrie C, Goussard Y, Guardo R. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint[J]. Medical Imaging, IEEE Transactions on,1997,16(5):562-571.
    [77]朱学明.电容层析成像技术的图像重建算法研究[D].天津:天津大学电气与自动化T程学院,2004.
    [78]Wang H, Tang L, Cao Z. An image reconstruction algorithm based on total variation with adaptive mesh refinement for ECT[J]. Flow Measurement and Instrumentation, 2007,18(5):262-267.
    [79]付峰,王志敏.电阻抗断层成像中Newton-Raphson重构算法的计算机模拟研究[J].第四军医大学学报,1996,17(1):55-58.
    [80]张晓菊.基于牛顿—拉弗逊正则化算法的开放式电阻抗成像研究[D].重庆大学,2009.
    [81]王化祥,朱学明,张立峰.用于电容层析成像技术的共轭梯度算法[J].天津大学学报,2005(01):1-4.
    [82]李铮,李长军,邵新慧.在最优准则下的共轭梯度重建算法[J].东北大学学报,2003(12):1134-1136.
    [83]Pan T, Yagle A E. Numerical study of multigrid implementations of some iterative image reconstruction algorithms[J]. Medical Imaging, IEEE Transactions on, 1991,10(4):572-588.
    [84]Pan T, Yagle A E. Acceleration of Landweber-type algorithms by suppression of projection on the maximum singular vector[J]. Medical Imaging, IEEE Transactions on,1992,11(4):479-487.
    [85]王化祥,王超,陈磊.基于Landweber迭代的图像重建算法[J].信号处理,2000,16(4):354-356.
    [86]Wang Chao, Wang Huaxiang. M odified Landweber Algorithm for Solving the Inverse Problem in EIT术[J]. Chinese Journal of Electronics,2005,14(1).
    [87]李志鹏,丛鹏,邬海峰.代数迭代算法进行CT图像重建的研究[J].核电子学与探测技术,2005,25(2):184-186.
    [88]Wu Y, Li H, Wang M, et al. Characterization of Air-Water Two-Phase Vertical Flow by Using Electrical Resistance Imaging[J]. The Canadian Journal of Chemical Engineering,2005,83(1):37-41.
    [89]Chhabra R P, Richardson J F. Non-Newtonian Flow:Fundamentals and Engineering Applications[M]. Butterworth-Heinemann,1999.
    [90]Wang M, Dorward A, Vlaev D, et al. Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography (ERT)[J]. Chemical Engineering Journal, 2000,77(1):93-98.
    [91]Wang M, Jones T F, Williams R A. Visualization of asymmetric solids distribution in horizontal swirling flows using electrical resistance tomography [J]. Chemical Engineering Research and Design,2003,81 (8):854-861.
    [92]Wang M, Jia X, Bennett M, et al. Flow regime identification and optimum interfacial area control of bubble columns using electrical impedance imaging:Proceedings of Second World Congress on Industrial Process Tomography,2001 [C].
    [93]Lucas G P, Cory J, Waterfall R C, et al. Measurement of the solids volume fraction and velocity distributions in solids-liquid flows using dual-plane electrical resistance tomography[J]. Flow Measurement and Instrumentation,1999,10(4):249-258.
    [94]Wang M, Yin W. Measurements of the concentration and velocity distribution in miscible liquid mixing using electrical resistance tomography [J]. Chemical Engineering Research and Design,2001,79(8):883-886.
    [95]Hua L, Mi W, Ying-xiang W, et al. Measurement of oil volume fraction and velocity distributions in vertical oil-in-water flows using ERT and a local probe[J]. Journal of Zhejiang University Science A,2005,6(12):1412-1415.
    [96]Schlaberg H I, Baas J H, Wang M, et al. Detection and quantification of suspended sediment concentration and stratification in open channel flows:development and first results using electrical resistance tomography:Proceedings of 4th World Congress on Industrial Process Tomography. Taylor and Francis/Balkema, London, UK,2005 [C].
    [97]Dong F, Jiang Z X, Qiao X T, et al. Application of electrical resistance tomography to two-phase pipe flow parameters measurement[J]. Flow measurement and instrumentation,2003,14(4):183-192.
    [98]Ma Y, Zheng Z, Xu L, et al. Application of electrical resistance tomography system to monitor gas/liquid two-phase flow in a horizontal pipe[J]. Flow Measurement and Instrumentation,2001,12(4):259-265.
    [99]Tan C, Dong F, Wu M. Identification of gas/liquid two-phase flow regime through ERT-based measurement and feature extraction[J]. Flow Measurement and Instrumentation,2007,18(5):255-261.
    [100]Meng Z, Huang Z, Wang B, et al. Air-water two-phase flow measurement using a Venturi meter and an electrical resistance tomography sensor[J]. Flow Measurement and Instrumentation,2010,21(3):268-276.
    [101]刘斌.开放式电阻抗断层成像的测量系统设计与研究[D].重庆大学,2009.
    [102]刘晓飞.基于相量逼近双电流源激励的电阻层析成像测量研究[D].中国石油大学,2011.
    [103]董峰,崔晓会.电阻层析成像技术的发展[J].仪器仪表学报,2003,24(4):703-705.
    [104]Deng X, Dong F, Xu L J, et al. The design of a dual-plane ERT system for cross correlation measurement of bubbly gas/liquid pipe flow[J]. Measurement Science and Technology,2001,12(8):1024.
    [105]庄天戈.CT原理与算法[M].上海交通大学出版社,1992.
    [106]王家礼,朱满座,路宏敏.电磁场与电磁波[M].西安电子科技大学出版社,2000.
    [107]左卫群,陈国栋.似稳场及其电压测量[J].广西物理,1998,3.
    [108]林为干.电磁场理论[M].人民邮电出版社,1996.
    [109]Hahn G, Dittmar J, Just A, et al. Different approaches for quantifying ventilation distribution and lung tissue properties by functional EIT[J]. Physiological measurement,2010,31(8):S73.
    [110]唐磊.电阻抗断层成像算法研究及系统软件设计[D].天津大学,2006.
    [111]Polydorides N, McCann H. Electrode configurations for improved spatial resolution in electrical impedance tomography [J]. Measurement Science and Technology, 2002,13(12):1862.
    [112]杜平安,甘娥忠,于亚婷.有限元法:原理,建模及应用[M].国防工业出版社,2004.
    [113]曾余庚,物理学.电磁场有限单元法[M].科学出版社,1982.
    [114]盛剑霓.工程电磁场数值分析[M].西安交通大学出版社,1991.
    [115]戎立锋.电阻抗成像技术的研究与系统设计[D].南京理工大学,2006.
    [116]田海燕.电阻抗断层成像技术理论和实践的研究[D].重庆大学,2002.
    [117]陈榕,胡熙恩.电吸附技术的应用与研究[J].化学进展,2006,18(1):80-86.
    [118]胡松钰.电阻层析成像系统设计[D].浙江大学,2008.
    [119]宋健辉.电阻层析成像测试系统中的微弱信号检测[D].中国石油大学,2008.
    [120]朱建平.微弱电容/电导检测技术在过程工业中的应用[D].浙江大学,2006.
    [121]张建国,刘笑达,张利春.电阻层析成像技术在冰水两相流流型测量中的应用[J].太原理工大学学报,2013(04):543-545.
    [122]Oh S. Compensation of Shape Change Artifacts and Spatially-variant Image Reconstruction Problems in Electrical Impedance Tomography[D]. University of Florida,2009.
    [123]魏颖.电阻层析成像技术(ERT)及其在两相流测量中的应用研究[D].沈阳:东北大学,2001.
    [124]杨富广,石天明,武华团,等.一种提高ERT电流源带负载能力的方法[J].自动化技术与应用,2010(011):88-91.
    [125]姜爱霞.电阻抗成像系统激励研究[D].南京理工大学,2008.
    [126]王仁平.三维电阻抗成像系统设计与实现[D].河北工业大学,2006.
    [127]Bera T K, Nagaraju J. Surface electrode switching of a 16-electrode wireless EIT system using RF-based digital data transmission scheme with 8 channel encoder/decoder ICs[J]. Measurement,2012,45(3):541-555.
    [128]王文龙.基于虚拟仪器的电阻成像技术的硬件系统设计[D].太原理工大学,2012.
    [129]周求湛,胡封哗,张利平.弱信号检测与估计[M].北京航空航天大学出版社,2007.
    [130]胡昌明.基于MATLAB和LabVIEW的ERT成像系统[J].科协论坛:下半月,2010(006):80-81.
    [131]Avis N J, Barber D C, Brown B H, et al. Back-projection distortions in applied potential tomography images due to non-uniform reference conductivity distributions[J]. Clinical Physics and Physiological Measurement,1992,13(A):113.
    [132]Patino N M, Valentinuzzi M. Reconstruction algorithm for electrical impedance tomography based on the linear approximation method:Engineering in Medicine and Biology Society,1995., IEEE 17th Annual Conference,1995[C]. IEEE.
    [133]Gadd R, Record P, Rolfe P. A sensitivity region reconstruction algorithm using adjacent drive current injection strategy[J]. Clinical Physics and Physiological Measurement,1992,13(A):101.
    [134]何为.电阻抗成像原理[M].科学出版社,2009.
    [135]徐管鑫,何为,Singer H.一种改进的动态电阻抗断层成像反投影算法[J].生物医学工程学杂志,2004,21(5):761-765.
    [136]Nan P C, Aya J C, Lima R G. AN IMPLEMENTATION OF THE BACK-PROJECTION ALGORITHM ACCORDING TO SANTOSA AND VOGELIUS[J].2006.
    [137]何永勃.电阻抗(ECT/ERT)双模态层析成像技术研究[D].博士学位论文],天津大学,2006.
    [138]Murai T, Kagawa Y. Electrical impedance computed tomography based on a finite element model[J]. Biomedical Engineering, IEEE Transactions on,1985(3):177-184.
    [139]Dickin F, Wang M. Electrical resistance tomography for process applications[J]. Measurement Science and Technology,1996,7(3):247.
    [140]Geselowitz D B. An application of electrocardiographic lead theory to impedance plethysmography[J]. Biomedical Engineering, IEEE Transactions on,1971(1):38-41.
    [141]Murai T, Kagawa Y. Electrical impedance computed tomography based on a finite element model[J]. Biomedical Engineering, IEEE Transactions on,1985(3):177-184.
    [142]Cohen-Bacrie C, Goussard Y, Guardo R. Regularized reconstruction in electrical impedance tomography using a variance uniformization constraint[J]. Medical Imaging, IEEE Transactions on,1997,16(5):562-571.
    [143]朱学明.电容层析成像技术的图像重建算法研究[D].天津大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700