用户名: 密码: 验证码:
管幕预筑法中密排大直径钢管群顶进研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沈阳地铁新乐遗址站为暗挖车站,采用管幕预筑法施工。管幕预筑法是在传统的管幕法基础上改进形成的。管幕预筑法所使用的钢管直径大,可以达到2米以上。在顶进的钢管保护下人工或机械进入钢管内部开挖排土。然后对钢管进行切割并支撑,在钢管内进行结构浇筑。最后等结构强度及刚度达到要求后,再进行结构下大范围土体开挖,形成大断面的地下空间。该工法最突出的特点是:整个过程中,所有的开挖都是在预先建造了可靠结构后完成的,因此保证了施工安全。
     由此可见,顶管是该工法中至关重要的一个环节,其为后续工序预先制造了安全的工作空间,从而减小了施工风险。然而,该工法中顶管工程与普通的顶管工程相比较,有很大的特殊性。主要体现在顶管埋深大、管径大、数量多、管间距小、排列形式复杂。本文以沈阳地铁新乐遗址站工程为依托,总结了该工法中的顶管施工技术,着重研究了密集大口径钢管群顶进与土体之间的相互作用,以及顶管过程造成的环境影响等。
     密集大口径钢管群顶进与土体之间的相互作用方面,主要研究了如下内容:(1)结合文献分析与本工程顶管顶力实测数据,分析了现有垂直土压力计算理论的不足。基于普氏理论和太沙基理论提出了改进垂直土压力计算理论,并编制了Matlab计算程序用于深埋顶管顶力计算。计算结果表明改进垂直土压力理论计算结果小于普氏理论和太沙基理论计算结果,与实测结果更接近。(2)结合实测结果,对顶管过程中管道的轴线偏移和管头变形进行了理论分析。提出通过顶管应力监测来进行管道轴线的实时偏移判断,并通过顶管应力监测试验验证该方案是可行的。(3)利用弹性力学和土力学相关知识,对顶管过程中的开挖面稳定性进行了理论分析。(4)利用土拱效应的理论知识,提出了顶管间距的优化设计方法。并结合本工程实际情况,对顶管间距进行优化设计,得到了2种优化方案。相对于原方案,优化方案能节省钢材,缩短顶进施工的时间,并可以减小顶管造成的土体重复扰动。
     密集大口径钢管群顶进环境影响研究主要包括以下内容:(1)分析了密集大口径钢管群顶进对地面沉降的影响。通过实测和理论计算,提出密集大口径钢管群顶进地表沉降主要是由顶管土体损失和地下水渗流引起的。已建顶管的支挡作用会限制土体向下位移,大大减小新建顶管造成的地表沉降,因此由顶管土体损失引起的地表沉降一般较小,不会超过沉降警戒值。而地下水渗流引起的地表沉降远大于顶管土体损失引起的地表沉降,地下水渗流严重时,地表沉降会远大于沉降警戒值。(2)根据刚性管道与顶管间距大小,把顶管对刚性管道的影响分为远距离影响和近距离影响两种类型。并且基于Winkler弹性地基梁理论,提出了两种情况下顶管作用使既有刚性管道产生的位移、转角、弯矩以及剪力的计算方法。编制了Matlab计算程序对刚性管道产生的位移、转角、弯矩以及剪力进行计算,结合管道失效标准,能方便地判断其是否稳定。(3)在该工法中,注浆主要有3个目的:顶管减阻,注浆抬升以及注浆加固。本文对顶管工程注浆进行了研究,并分析了各种注浆方法在本工程中取得的效果。
     本文的部分研究成果已在沈阳地铁新乐遗址站得到了应用。
Xinle Ruins Station of Shenyang Metro is a Mining Station, which is constructed by Pipe-roof Pre-construction Method. Pipe-roof Pre-construction Method is an improvement on the basis of the formation Pipe-roofing Method. The steel pipe diameter can reach more than2meters in Pipe-roof Pre-construction Method. The soil is excavated inside the steel pipe manually or mechanically under the protection of jacking pipe. Then the steel pipe is cut, support structure is welded, and reinforced concrete structure is poured in the pipe. After strength and rigidity of reinforced concrete structure is attained, the soil under reinforced concrete structure is excavated and large cross section of underground space form. The most prominent feature of the construction method:through out the process, all of the excavation is completed after the pre-built and reliable structure, thus ensuring construction safety.
     Thus, the pipe jacking is a vital link in the construction method, which pre-manufactured a safe working space for follow-up process, thereby reducing the risk of construction. However, compared with the ordinary pipe jacking project, jacking pipe in this construction is with great particularity. Mainly reflected in the deep depth, full diameter, large quantity, and arranged in the form of complex. Based on Xinle Ruins Station of Shenyang Metro, the pipe jacking technology in the construction method is summed up, the interaction between the intensive full diameter steel pipe group and soil is focused on, as well as the environmental impact caused by the pipe jacking process and so on.
     The interactions between the intensive full diameter steel pipe group and the soil are of the following:(1) Combined with literature review and measured data of jacking force, the theoretical deficiencies of existing vertical earth pressure calculation is analyzed. New theoretical formula is got based on Terzaghi theory and M.M.PROMOJIYFAKONOV theory, and Matlab calculation program is written for jacking force calculation of the deep buried pipe. The calculation results show that the calculation results by the improved vertical soil pressure theoretical is less than that by Terzaghi theory and M.M.PROMOJIYFAKONOV theory, which is closer with measured results.(2) Combined with measured results, theoretical analysis of pipe axis offset and head deformation in jacking is proposed. It is proposed to carry out real-time monitoring of pipe axis by the pipe jacking stress monitoring, and proves the program is feasible by testing.(3) Based on knowledge of elastic mechanics and soil mechanics, theoretical analysis on the stability of the excavation surface is made in jacking.(4) Based on soil arching effect, optimum design method of the distance between pipes is put forward. Combined with this project, optimum distance is designed, and two kinds of optimization are got. Relative to the original program, the optimization program can save steel, shortening the time of the construction of the jacking, and can reduce repeated disturbance of soil in jacking.
     The environmental impacts caused by the pipe jacking process are of the following:(1) The surface settlement is caused by the dense jacking of full diameter pipes group. By the measured and theoretical study, it indicates that surface settlement is mainly caused by the loss of soil in jacking and groundwater seepage. Supporting and retaining of existing pipe will limit the downward displacement of soil, and greatly reduce the surface settlement caused by new pipe, so the surface settlement caused by the loss of soil in jacking is generally small, and no more than the value of the settlement alert. Surface settlement caused by groundwater seepage is much larger than that caused by the loss of soil. So serious groundwater seepage can cause much larger surface subsidence than the alert value.(2) According to the distance between rigid pipe and the jacking pipe, the impact is divided into two types:far-impact and close-impact. Based on the Winkler elastic foundation beam theory, the calculation method of the displacement, rotation, bending moment and shear of existing rigid pipe by jacking is proposed. And Matlab calculation program is written for the calculation of displacement, rotation, bending moment and shear. Combined with pipeline failure criteria, the stability can be determined easily.(3)In the construction method, grouting has three purposes:friction reduction in jacking, uplifting of surface, and reinforcement. Grouting in pipe jacking is researched, and effect of all kinds of grouting is analyzed.
     Parts of the research results in this paper have been used in Xinle Ruins Station of Shenyang Metro.
引文
[1]钱七虎.迎接我国城市地下空间开发高潮[J].岩土工程学报,1998,20(4):112-113.
    [2]何玲玲,段菁菁,方列.地铁施工事故频发背后的反思[N].人民公安报·交通安全周刊,2008-11-22(2).
    [3]Reilly J J.Management process for complex underground and tunneling projects[J].Tunneling & Underground Space Technology,2000,15(1):31-44.
    [4]Eskesen Sren Degn, Tengborg Per, Kampmann Jrgen. Guidelines for tunnelling risk management[J]. Tunneling and Underground Space Technology,2004, 19(3):217-237.
    [5]孙河川.地铁浅埋暗挖车站设计安全风险分析[D].北京:北京交通大学,2006.
    [6]Kim Jeongyoon, Park Innjoon, Kim Kyonggon. A Study on the applicability of underground structure using steel tubular in Korean geotechnical condition [J].Tunneling Technology (Korean).2003,5(4):401-409.
    [7]刑凯,陈涛,黄常波.新管幕工法概述[J].施工技术,2009,(6):63-67.
    [8]张可能,黎永索,杨仙,等.预筑法(PCM)建造地下空间综合技术研究报告[R],长沙:中南大学,2011.
    [9]Yong-suo Li, Ke-neng Zhang, Chang-bo Huang, et al.Numerical simulation on the ground deformation by pipe-roof Pre-construction method[C].The Internationl Conference on Consumer Electronics, Communications and Networks. Xianning,China,2011:3291-3294.
    [10]Yong-suo Li, Ke-neng Zhang, Chang-bo Huang, et al. Analysis of the ground deformation to large cross-section tunnel by Pipe-roof Pre-construction Method[C].The 2nd International Conference on Mechanic and Control Engineering.Inner Mongolia,China,2011:2889-2892.
    [11]黎永索.管幕预筑地铁站大开挖施工力学效应研究[D].长沙:中南大学,2011.
    [12]苏斌,明挖顺作法深基坑加固设计与施工控制技术[J].铁道建筑,2006(3):35-37.
    [13]程道广.大型地下电缆隧道浅埋暗挖法施工技术[J].建筑技术,2002,vo1.33(11):821-822.
    [14]高德龙.“浅埋暗挖”技术在北京地铁建设中的应用[J].施工技术,2000(2):54-6.
    [15]甘百先.地铁车站盖挖顺作法施工技术研究[D].成都:西南交通大学,2003.
    [16]傅德明,杨国祥.上海地区越江交通盾构施工技术综述[J].国际隧道研讨会暨公路建设技术交流大会论文集,人民交通出版社,2002.
    [17]Colle R,Philip J, Abbott, David G. Micro-tunneling techniques to form an in-situ barrier around existing structures [C]. High Level Radioactive Waste Management-Proceedings of the Annual International Conference. Las Vegas, NV,USA,1994, (2):386-394.
    [18]G. Musso. Jacked Pipe Provides Roof for Underground Construction in Busy Urban Area[J]. Civil Engineering-ASCE,1979,11(49):79-82.
    [19]肖世国,朱合华,夏才初等,管幕内顶进箱涵顶部管幕承载作用的分析[J].岩石力学与工程学报,2005,24(18):3355-3359.
    [20]马锁柱,陈浩.地铁车站下穿既有地铁隧道的暗挖法施工[J].现代城市轨道交通,2005(3):38-40.
    [21]岑冈.封闭管幕保护下的箱涵顶进设计[J].科技创新导报,2009(3):76-78.
    [22]余彬泉,陈传灿.顶管施工技术[M].北京:人民交通出版社,1998.1-3.
    [23]孙钧.城市工程活动引起土体沉降对环境公害的预测与控制[C].中国土木工程学会第八届年会学术委员会.北京“二十一世纪城乡建设中的关键科学问题”学术论文集,1996:2-8.
    [24]孙钧.城市地下工程活动的环境土工学问题(上)[J].地下工程与隧道,1999(3):2-6.
    [25]徐玉中,杨秀鸿,张荣华.因污水顶管施工导致道路破坏的处理方法[J].城市道桥与防洪,2005(6):26-31.
    [26]律文田.顶管施工中的风险分析[J].非开挖技术,2007(6):27-29.
    [27]孙钧,方从启.城市地下工程活动的环境土工学问题(中)[J].地下工程与隧道,1999,(4):7-9.
    [28]薛振兴,顶管施工顶力计算与力学特性研究[D].北京:中国石油大学2010.
    [29]中华人民共和国建设部.GB50069-2002.给水排水工程构筑物结构设计规范[S].北京:中国建筑工业出版社,2003-02-01.
    [30]汤华深,刘叔灼,莫海鸿.顶管侧摩阻力理论公式的探讨[J],岩土力学增刊,2011(10),574-577.
    [31]Terzaghi K.Theoretical Soil-mechanics[M].New York:John-Wiley and Sons, 1943:76-80.
    [32]朱永全,宋玉香.隧道工程[M],北京:中国铁道出版社,2005.65-70.
    [33]宋玉香,贾晓云,朱永全.地铁隧道竖向土压力荷载的计算研究[J].岩土力学, 2007(10):2240-2244.
    [34]郭文赓.关于顶管顶力计算公式的讨论和建议[J].市政技术,1983(1):2-18.
    [35]周小文,濮家骝,包承纲.隧洞拱冠砂土位移与破坏的离心模型试验研究[J].岩土力学,1999(6):32-36.
    [36]朱伟,钟小春,加瑞.盾构隧道垂直土压力松动效应的颗粒流模拟[J].岩土工程学报,2008(5):750-754.
    [37]王海涛.隧道管棚预支护体系的力学机理与开挖面稳定性研究[D].大连:大连理工大学,2009.
    [38]钟小春.盾构隧道管片土压力的研究[D].上海:河海大学,2005.
    [39]Pellet B.A.L., Kastner R.. Experimental and Analytical Study of Friction Forces during Micro-tunneling Operations [J].Tunneling and Underground Space Technology,2002,17:83-97.
    [40]孙训方,方孝淑,关来泰.材料力学(下)[M].北京:高等教育出版社:56-62.
    [41]国家技术监督局.GB9711[1].3-2005.石油天然气工业输送钢管交货技术条件[S].北京:中国建筑工业出版社,2005.
    [42]刘纪峰,刘波,陶龙光.基于弹塑性分析的浅埋盾构隧道地表沉降控制[J].沈阳建筑大学学报(自然科学版).2009,1(1):28-33.
    [43]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(2):174-178.
    [44]CHEN C.Y, MARTIN G.R. Soil-structure Interaction for Landslide Stabilizing Piles[J]. Computers and Geo-technics.2002(9):363-386.
    [45]冯君,吕和林,王成华.普氏理论在确定抗滑桩间距中的应用[J].中国铁道科学,2003,24(6):79-81.
    [46]杨明,姚令侃,王广军.抗滑桩宽度与桩间距对桩间土拱效应的影响研究[J].岩土工程学报,2007,29(10):1476-1482.
    [47]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(3):445-450.
    [48]贾海莉,王成华,李江洪.关于土拱效应的几个问题[J].西南交通大学学报,2003,38(4):398-402.
    [49]刘静.基于桩土共同作用下的抗滑桩的计算与应用研究[D].长沙:中南大学,2007.
    [50]张主华,陈秋南,王建东,等.基于土拱效应的支护桩间距确定方法[J].湖南科技大学学报,2010,25(1):72-75.
    [51]Peck R B.Deep excavations and tunneling in soft ground [C]. Proceeding of 7th International Conference on Soil Mechanics and Foundation Engineering. Mexico City:State of the Art Report,1969:225-290.
    [52]Fujita K. On the surface settlement caused by various methods of shield tunneling[C]. Proc.11th ICSMFE,1981:609-610.
    [53]Attewell P B. Ground movements caused by tunneling in soil[C]. Conference on Large Ground Movements and Structures. London:Pentech Press,1978:812-948.
    [54]Sagareta C. Analysis of un-drained soil deformation due to ground loss[J].Geo-technique,1987,37(3):301-320.
    [55]Lognaathna N, Poulos H G. Analytical Prediction for tunneling-induce ground movement in clays[J] Journal of Geo-technical and Geo-environmental Engineering, 1998,124(9):846-856.
    [56]Verruijt A, Booker J R.Surface settlements due to deformation of a tunnel in an elastic half plane [J].Geo-technique,1996,46(4):753-756.
    [57]魏纲.顶管工程土与结构的性状及理论研究[D].杭州:浙江大学,2005.
    [58]刘宝琛,张家生,廖国华.随机介质理论在矿业工程中的应用[M].长沙:湖南科学技术出版社,2003:18-30.
    [59]阳军生,刘宝深.城市隧道施工引起的地表移动及变形[M].北京:中国铁道出版社,2002:1-3.
    [60]Lee K M,Rowe R K.Finite element modeling of the three—dimensional ground deformations due to tunneling in soft cohesive soils:Partl-method of analysis[J].Computers and Geo-techniques,1990(10):87-109.
    [61]方从启.基于半解析元法研究顶管施工引起的地层运动[D].上海:同济大学,1998.
    [62]黄宏伟,胡听.顶管施工力学效应的数值模拟分析[J].岩石力学与工程学报,2003,22(3):400-406.
    [63]冯海宁,温晓贵,龚晓南.顶管施工环境影响的二维有限元计算分析[J].浙江大学学报(工学版),2003,37(4):432-435.
    [64]冯海宁,龚晓南,徐日庆.顶管施工环境影响的有限元计算分析[J].岩石力学与工程学报,2004,23(7):1155-1162.
    [65]林敏,张平之.铁路顶管施工中路基面沉降的研究[J].北方交通大学学报,2001,25(4):69-72.
    [66]张冬梅,黄宏伟.隧道长期沉降的弹-粘塑性预测[C].首届全球华人岩土工程论坛编委会.首届全球华人岩土工程论坛论文集.中国:上海,2003,255-267.
    [67]Gutter U, Stoffers U.Investigation of the deformation and collapse behaviors of circular lined tunnels in centrifuge model tests[J].Centrifuges in soil Mechanics. Rotterdam:Balkema,1998:13-186.
    [68]Shinichiro Imamura, Toshiyuki Hagiwara, et al.Settlement trough above a model shield observed in a centrifuge [J].In:Centrifuge 98.Tokyo,1998:713-719.
    [69]马险峰,余龙,李向红.不同下卧层盾构隧道长期沉降离心模型试验[J].地下空间与工程学报,2010,6(1):14-20.
    [70]漆泰岳,高波,马亮.富水软土地层地铁开挖地表沉降离心模型试验[J].西南交通大学学报,2006(02):184-189.
    [71]黄常波,李钟,张可能,等.顶管进洞洞口防水止浆装置[P]:中国,ZL 201 0 20166685.4[P].2010-07-14.
    [72]邹长中.吴闵污水外排穿越黄浦江顶管的施工[J].地下空间,1998,18(增):413-418.
    [73]张海波,殷宗泽,朱俊高.近距离叠交地铁盾构施工对老隧道影响的数值模拟[J].岩土力学,2005,26(2):282-286.
    [74]胡熹竹.大口径管道前后同步平行顶进施工法初探[J].上海市政工程,1999(1):30-33.
    [75]万尚武.大口径φ3500双排平行顶管的施工措施[J].上海建设科技,2001(1):16-17.
    [76]徐迎武.平行管道顶进施工的相互影响与设计方法和施工工艺优化研究[D].上海:同济大学,2000.
    [77]南康.双孔平行隧道施工地表位移及变形研究[D].长沙:中南大学,2008.
    [78]魏新江,魏纲.水平平行顶管引起的地面沉降计算方法研究[J].岩土力学,2006,27(7):1129-1132.
    [79]Cording E J, Hansmire W H.Displacements around soft ground tunnels [C].5th Pan American Conference on Soil Mechanics and Foundation Engineering,Aregentina,1975 (4):571-633.
    [80]魏纲,徐日庆,屠玮.顶管施工引起的扰动理论分析及试验研究[J].岩石力学与工程学报,2003,22(4):601-605.
    [81]Yi X, Rowe R K, Lee K M.Observed and calculated pore pressures and deformations included by an earth balance shield[J].Proceedings of the In situation of Civil Engineers:Geotechnical Engineering,1995,113(7):144-156.
    [82]姜忻良,赵志民,李圆.隧道开挖引起土层沉降槽曲线形态的分析与计算[J].河海大学学报(自然科学版),2003,31(5):556-559.
    [83]Lee K M, Rowe R K, Lo K Y.Subsidence owing to tunneling:Estimating the gap parameter [J].Canadian Geotechnical Journal,1992,29(6):929-940.
    [84]徐永福,陈建山,傅德明.盾构掘进对周围土体力学性质的影响[J].岩石力学与工程学报,22(7):1174-1179.
    [85]许小平,孙向阳,谢兴武.概率统计[M].武汉:中国地质大学出版社,1994.231.
    [86]刘成宇.土力学[M].北京:中国铁道科学出版社,2005.117-122.
    [87]郭菊彬,宋吉荣,张昆.基坑降水引起建筑物地基沉降计算探讨[J].工程勘察,2006(12):40-42.
    [88]李志平.基坑降水引起的地面沉降分析[D].长沙:中南大学,2008.
    [89]张鹏,韩煊.地铁施工作用下地下管线变形损坏控制标准研究[C].第二届全国工程安全与防护学术会议编委会.第二届全国工程安全与防护学术会议论文集:152-158.
    [90]廖少明,刘建航.邻近建筑及设施的保护技术[M].北京:中国建筑出版社,1997:6-15.
    [91]段光杰.地铁隧道施工扰动对地表沉降和管线变形影响的理论和方法研究[D].北京:中国地质大学,2003.
    [92]陈龙.城市软土盾构隧道施工期风险分析与评估研究[D].上海:同济大学,2004.
    [93]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.11-12.
    [94]Attewell P.B.,et al. Soil movements induced by tunneling and the effects on pipelines and structures [M].London:Blackie,1986.
    [95]马涛.隧道施工引起的地层位移及其对邻近地下管线的影响分析[D].长沙:长沙理工大学,2005.
    [96]Kristin M. Molnar, Richard J. Finno, Edwin C. Rossow. Analysis of effects of deep beached excavations on adjacent buried utilities[D]. Illinois:Northwestern University, December,2003.
    [97]王霆,刘维宁,李兴高,等.地铁施工影响邻近管线的研究现状与展望[J].中国铁道科学,2006(6):117-123.
    [98]高田至郎.受地基沉降影响的地下管线的设计公式及应用[M].北京:学术书刊出版社,1990.
    [99]高文华.基坑变形预测与邻近建筑及设施的保护研究[M].长沙:湖南大学,2001.
    [100]李大勇,龚晓南,张土乔.软土地基深基坑周围地下管线保护措施的数值模拟[J].岩土工程学报,2001,23(6):736-740.
    [101]李大勇,龚晓南.软土地基深基坑工程邻近柔性接口地下管线的性状分析[J],土木工程学报,2003,36(2):77-80.
    [102]吴波,高波.地铁区间隧道施工对邻近管线影响的三维数值模拟[J].岩石力学与工程学报,2002,21(增2):2451-2456.
    [103]姜忻良,赵志民.盾构施工引起土体位移的空间计算方法[J].华中科技大学学报(城市科学版).2005,6(2):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700