用户名: 密码: 验证码:
LASIS高光谱干涉图像压缩技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高光谱图像在采集地物空间信息的同时,亦获取地元的光谱信息,从而提供更为丰富的地物细节,因此在农业、地质、海洋、军事等领域有非常重要的应用价值。随着成像光谱仪分辨率的不断提高,高光谱图像数据量剧增,给数据的存储和传输带来了很大困难,因此必须对其进行压缩。高光谱数据作为一种三维图像,不同于二维静止图像,也不同于视频图像,一般的图像压缩技术难以达到高光谱压缩的性能要求。因此分析高光谱图像本身的特点,研究适合高光谱图像压缩的有效算法,具有重要意义。
     论文详细分析了大孔径静态干涉成像光谱仪(Large Aperture StaticImaging Spectrometer,LASIS)高光谱干涉图像的特点,并得出了相关的结论。LASIS图像不仅具有普通静止图像的帧内相关性,同时存在较强的帧间相关性及谱间相关性。LASIS高光谱干涉图像具有谱像合一的特点,0光程差谱线附近光谱条纹明显,富含光谱信息,需要充分保护,这是LASIS图像的最明显的特性,也是压缩技术的难点之一。后续压缩方法的研究主要围绕LASIS图像的特性展开,以期获得较好的压缩效果。
     论文针对LASIS图像压缩的高实时性、低复杂度、低存储资源等要求,提出了改进的无链表SPIHT算法(MLSPIHT)。该算法采用2bit的系数状态标志代替SPIHT算法的3个可变长度链表,省却了存储链表需要的大容量不定额外内存及复杂的链表操作。相对于无链表零树编码LZC算法,进一步降低了存储需求和算法复杂度。
     根据LASIS图像序列本身的特点,提出以下几种压缩方案:(1)、3D非对称等长树DWT和基于感兴趣谱段BOI的3D-MLSPIHT算法。该算法以LASIS系统推扫过一个完整视场形成的图像序列为编码单位,充分利用LASIS图像的谱间相关性,在给定的压缩比下,取得了最佳压缩性能。(2)、基于感兴趣区域ROI的3D-MLSPIHT算法,该算法以连续8帧图像为编码单位,适合于高实时性、低内存的应用环境。(3)、基于感兴趣区域ROI的准三维MLSPIHT算法。该算法以相邻两帧图像为编码单位,进一步降低了内存需求和计算复杂度,其压缩性能介于3D-SPIHT和2D-SPIHT算法之间,适合于对实时性和内存容量要求苛刻的应用条件。以上算法在8:1的压缩比下,PSNR值大于40dB,同时有效的保护了光谱信息,并满足LASIS高光谱图像压缩系统的应用要求。
     本论文从分析LASIS高光谱干涉图像的特性出发,围绕LASIS图像所特有的光谱特性,针对不同的应用环境,提出了相应的压缩算法,并对所提出的方法进行了实验分析和性能评价。
Hyperspectral imagery is generated by collecting spatial information as well as the spectral information of the earth targets, and describes the targets with more detail, so it has great value of applications in agriculture, geology, ocean and military surveillance. With the increasing of remote sensor resolution, we get massively large image data sets which it is difficult to access and transport. Therefore they must be compressed before being processed, storage and transmission. As a kind of three-dimensional data sets, it is different from the 2D still image, and is also different from video series, so the general image compression method is not efficient for them. Analyzing their character and study appropriate algorithm for coding is very necessary.
     We particularly analyze the character of the Large Aperture Static Imaging Spectrometer (LASIS) hyperspectral interference images and give the inclusions. LASIS images not only have the spatial correlation, which is the same as general 2D still images, but also have the inter-frame correlation and inter-band correlation. LASIS image is amplitude modulated by the interference spectrum. The spectral information concentrates about the zero optical path difference, and needs to be efficiently protected. This character is very important, which makes it difficult to process. The followed compression algorithms specially designed according to LASIS's character have good performance.
     In order to meet the demands of high real-time, low complexity and low memory, we proposed a Modified Listless SPIHT algorithm, which uses 2-bit state-flag per coefficient, instead of the three variable-length lists of SPIHT. The MLSPIHT save much memory and complicated list-operating required by the original SPIHT, and need less memory and operation than the LZC.
     Considering the characteristic quality of LASIS, we proposed the following scheme: (1) 3D asymmetrical DWT with equal length tree and 3D-MLSPIHT based on Band Of Interest. The scheme defines the whole LASIS sequences as a coding unit and take fully consideration of LASIS's inter-band correlation. It get good performance under the given compression rate. (2) 3D-MLSPIHT algorithm based on Region Of Interest. This method define every 8 sequential images as a coding unit, and satisfies the requirement of less memory and lower operation complexity. (3) Nearly 3D-MLSPIHT algorithm based on Region Of Interest. This algorithm defines tow contiguous images as a coding units to decrease more memory and operation complexity. Its compression performance is between the 2D-SPIHT and 3D-SPIHT. This scheme is specially designed under the condition of the highest real-time and the lowest memory. All the algorithms have the PSNR of above 40dB at the 8:1 rate and efficiently protect the interference spectral information as well. They all meet the application requirement of the LASIS system.
     This paper is based on the analysis of the LASIS image characters, especially on its spectral character. According to different application requirements, we propose different schemes, and gives the numerical experimental results and conclusions.
引文
[1.1]冯钟葵,张洪群,王万玉,等.遥感卫星数据获取与处理关键技术概述[J].遥感信息,2008(4):91-97
    [1.2]姜景山.中国对地观测技术发展现状及未来发展的若干思考[J].中国工程科学,2006,8(11):19-24.
    [1.3]A.E H.Goetz,G.Vane,J.E.Solomon,B.N.Rock.Imaging Spectrometry for Earth Remote Sensing[J].Science,1985.228:1147-1153.
    [1.4]安培浚,高峰,曲建升.对地观测系统未来发展趋势及其技术需求[J].遥感技术与应用,2007,22:762-767.
    [1.5]袁迎辉,林子瑜,高光谱遥感技术综述[J].中国水运,2007,7(8):155-157.
    [1.6]J.Dozier,A.F.H.Goetz.HIRIS-EOS Instrument with High Spectral and Spatial Resolution[J].Photogrammetria.1989,43:167-180.
    [1.7]C.E.Shannon.A Mathematical Theory of Communication[J].Bell System Technical Journal,1948,27:379-423.
    [1.8]Kunt M.et al.Second-generation image-coding techniques[J].Proc.IEEE.1985,73(4):549-574.
    [1.9]Jacquin A.E.Image coding based on a fractal theory of iterated contractive image transform actions[J].IEEE Trans.on Image Processing,1992,1(1):18-30..
    [1.10]Hotter M.,Thoma R.Image Segmentation Based on Object-oriented Mapping Parameter Estimation[J].Signal Processing,1988,15(3):15-334..
    [1.11]M.Antonini,M.Barlaud.P.Mathieu.I.Daubechies.Image coding using wavelet transform[J].IEEE Trans.on Image Processing,1992,1(2):205-220.
    [1.12]R.A.DeVore,B.Jawerth,B.J.Lucier,Image compression through wavelet transform coding[J].IEEE Trans.Inform.Theory,1992,38:719-746.
    [1.13]Shapiro J M.Embedded image coding using zerotrees of wavelet coefficients[J].IEEE Trans.on Signal Process,1993,41(12):3445-3462.
    [1.14]Said A.,Pearlman W.A.A new,fast,and efficient image codes based on set partitioning in hierarchical trees[J].IEEE Trans.on Circuits Syst.Video Tech, 1996,6(3): 243-249.
    [1.15] Asad Islam, William A. Pearlman, Embedded and efficient low-complexity hierarchical image coder [J]. Visual Communications and Image Processing'99,San Jose, CA, USA. 1998, 3653:294-305.
    [1.16] Wallace G. K., The JPEG Still Picture Compression Standard [J]. IEEE Trans. on Consumer Electronics 1992,38(1): 18-34.
    [1.17] Taubman D., High performance scalable image compression with EBCOT [J]. IEEE Trans. on Image Processing, 2000, 9(7): 1158-1170.
    [1.18] Taubman D, Ordentlin E, Weinberger M J, Seroussi G. Embedded Block Coding in JPEG2000 [J]. Signal Processing: Image Communication. 2002,17(1): 49-72.
    [1.19] Rabbani M, Joshi R. An overview of the JPEG 2000 still image compression standard [J]. Signal Processing: Image Communication, 2002,17(1): 3-48.
    [1.20] Martin Boliek, Charilaos Christopoulos, Eric Majani, JPEG 2000 image coding system, ISO/IEC JTC1 /SC29 WG1, 2000.
    [1.21 ] J M. D. Adams, R. Ward, Wavelet transforms in the JPEG-2000 standard [J].IEEE Communications, Computers and signal Processing, PACRIM, 2001, 1:160-163.
    [1.22] Tang Xiao-li, Cho Sungdae, W. A. Pearlman, Comparison of 3D set Partitioning methods in hyperspectral image compression featuring an improved 3D-SPIHT [C]. Data Compression Conference, DCC 2003: 449-456.
    [1.23] Kim Beong-Jo, W. A. Pearlman, An embedded wavelet video coder using three-dimensional set Partitioning in hierarchical trees (SPIHT) [C]. IEEE Data Compression Conf., 1997: 251-260, .
    [1.24] X. Tang, S. Cho, W. A. Pearlman, 3D set Partitioning coding methods in hyperspectral image compression. Image Processing, ICIP2003, 2003, 2: 39-42.
    [1.25] W. Sweldens. The lifting scheme: a new philosophy in biorthogonal wavelet constructions [C], Wavelet Applications in Signal and Image Processing, SPIE,1995, 3: 68-79.
    [1.26] W. Sweldens. The lifting scheme: a construction of second generation wavelets[J].SIAM J.Math.Anal.1997,29(2):511-546
    [1.27]I.Daubechies,W.Sweldens.Factoring wavelet transforms into lifting steps [J].Fourier Analysis and Applications,1998,4(3):245-267.
    [1.28]A.R.Calderbank,I.Daubechies,W.Sweldens et al.Wavelet transforms that map integers to integers.Journal of Appl.and Comput.Harmonic Analysis,1998,5(3):332-369.
    [1.29]A.R.Calderbank,I.Daubechies,W.Sweldens et al.Lossless Image Compression Using Integer to Integer Wavelet Transform.IEEE Int.Proc.Image Processing,vol.1,1997,596-599.
    [1.30]S.Lim,K.H.Sohn,C.Lee.Principal Component Analysis for Compression of Hyperspectral Images.Proc.IEEE,International Geoscience and Remote Sensing Symposium(IGARSS),pp.97-99,2001
    [1.31]F.Rizzo,G.Motta,B.Carpentieri,J.A.Storer.Lossless Compression of Hyperspectral Imagery:A Real Time Approach.Image and Signal Processing for Remote Sensing X,SPIE,2004,5573:262-272.
    [1.32]Q.Du,C.-I Chang.Linear Mixture Analysis-based Compression for Hyperspectral Image Analysis.IEEE Trans.on Geoscience and Remote Sensing,2004,42(4):875-891.
    [1.33]马晨光,郭雷.基于3维SPIHT编码的超光谱图像压缩[J].量子电子学报,2005,22(5):680-684.
    [1.34]苏令华,万建伟.基于单邻点多波段预测的高光谱图像无损压缩算法[J].遥感学报,2007,11(2):166-170.
    [1.35]吴家骥,吴振森,吴成柯.超光谱图像的三维小波嵌入零块压缩编码[J].软件学报,2007,18(2):461-468.
    [1.36]张立燕,谌德荣,陶鹏.端元提取技术在高光谱图像压缩中的应用[J].光谱学与光谱分析,2008,28(7):1445-1448.
    [1.37]相里斌.干涉成像光谱技术研究,博士后研究工作总结报告.西北大学现代物理研究所、中国科学院西安光机所,1995.8-1997.8.
    [1.38]董瑛,相里斌,赵葆常.大孔径静态干涉成像光谱仪的干涉系统分析[J].光学学报,2001,21(3):330-334.
    [1.39]邓家先,吴成柯,陈军.基于率失真斜率提升的干涉多光谱图像压缩[J].光学学报,2004,24(3):299-303.
    [1.40]杜振洲,周付根.基于帧间去相关的超光谱图像压缩方法[J].红外与激光工程,2004,33(6):642-645.
    [1.41]马静,吴成柯,李云松.基于运动估计和感兴趣区域的干涉多光谱图像压缩算法.西安交通大学学报,2006,40(4):449-453.
    [1.42]孔繁锵,李云松,吴成柯,等.大孔径静态干涉多光谱图像压缩算法[J].宇航学报,2007,28(6):1693-1697.
    [1.43]吴冬梅,王军,张海宁.基于谱间DPCM和整数小波变换的超光谱图像无损压缩[J].光子学报,2008,37(1):156-159.
    [1.44]李云松,马静,吴成柯.基于方向角预测三维小波变换的干涉多光谱图像压缩.光学学报,2008,28(12):2281-2287.
    [2.1] Young R., An introduction to nonlinear Fourier Series, New York:Academic Press. 1980:1 — 150.
    [2.2] Grossman A., Morlet J. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J. Appl. Math. Anal., 1984, 15(4):723-736.
    [2.3] Mallat S. Multiresolution approximation and wavelet orthonormal bases of L~2(R) [J]. Trans. Amer. Math. Soc. 1989, 315: 69-87.
    [2.4] Mallat S. A Theory for Multiresolution Signal Decompositions: The Wavelet Representation [J]. IEEE Transactions on PAMI, 1989, 11(7): 674—693. []Mallat S. Multifrequency Channel Decompositions of Images and Wavelet Models. IEEE Trans. ASSP., 1989, 37(12): 2091-2110.
    [2.5] Daubechies I. Orthonormal bases of compactly supported wavelets.Comm.on Pure and Appl. Math., 1988,41(7): 909-996
    [2.6] Daubechies I. Ten Lectures on Wavelets [C]. CBMS Conference Series in Applied Mathematics, SIAM, Philadelphia, 1992.
    [2.7] Chui C. K., Wang J. Z. A cardinal spline approach to wavelets. Proc. Amer.Math. Coc, 1991, 113(3): 785-793].
    [2.8] Ramchandran K., Vetterli M. Best wavelet packet bases in a rate-distortion sense. IEEE Trans. IP. 1993. 2: 160-175
    [2.9] Jiang Q. Orthogonal mutiwavelets with opotimum time-frequency, IEEE Trans. on Signal Processing, 1998,46(4): 830-844.
    [2.10] Lebrun J., Vetterli M., Balanced multiwavelets: theory and design. IEEE Trans. On Signal Processing, 1998, 46(4): 1119-1125.
    [2.11] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comut. Harmon. Appl., 1996, 3(2): 186-200.
    [2.12] Sweldens W. The lifting scheme: A construction of second generation wavelets. SIAM J. Math. Anal., 1997, 29(2): 511-546.
    [2.13] D. Gabor, Theory of communication, Journal of the IEE, vol.93, pp. 429— 457, 1946.
    [2.14] S. Mallat, Multiresolution approximation and wavelet orthonormal bases of L~2(R), Trans. on American Math. Society, vol.35, no. 1, pp. 69-87, 1989.
    [2.15] S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, Pattern Analysis and Machine Intelligence, IEEE Transactions on,vol. 11, no. 7, pp. 674-693, 1989.
    [2.16] Sweldens W. The lifting scheme: A custom-design construction of biorthogonal wavelets. Appl. Comut. Harmon. Appl., 1996, 3 (2): 186-200.
    [2.17] Cohen A, Daubechies I., Feauveau J C. Biorthogonal bases of compactly supported wavelets. Pure Appl. Math., 1992, 45:485-560.
    [2.18] Sweldens W.. The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis, 1996,3(2): 186-200.
    [2.19] Sweldens W., Schroder P. Building your own wavelets at home [J].Wavelets in Computer Graphics, ACM SIGGRAPH Course Notes, 1996, 15-87.
    [2.20] Keinert F. Raising multiwavelet approximation order through lifting [J].SIAM J. Math. Anal. 2001, 32(5): 1032-1049.
    [2.21] Kovacevic J., Sweldens W. Wavelet families of increasing order in arbitrary dimensions. IEEE Trans. IP., 2000, 9(3): 480-496.
    [2.22] Davis G.M., Strela V., Turcajova R. Multiwavelet construction via the lifting scheme [R]. Wavelet Analysis and Multiresolution Methods, He T. X., ED.,Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, 1999.
    [2.23] Michael D.Adams, Faouzi Kossentini. Reversible Integer-to-integer Wavelet Transforms for Image Compression: Performance Evaluation and Analysis. IEEE Trans.Image Processing, 2000, 9(6): 1010-1023.
    [3.1] A. S. Lewis, G K. Nowles. Image compression using the 2-D wavelet transform [J] IEEE Trans. on Image Processing, 1992,1(2): 244-250.
    [3.2] Wen-Kuo Lin, N Burgess. Listless zerotree coding for color image [C].In 32nd Asilomar Conference on Signals. Systems and Computers. Monterey.CA,USA.1998: 231-235.
    [3.3] Wen-Kuo Lin. N. Burgess. Low memory color image zerotree coding [J].Info. Decision and Controls. 1999(2): 91-95.
    [5.1] J. Sembiring, M. Nakabayashi, K. Soemintapoera, K. Akizuki, Image compression using zerotrees of wavelet packets in rate-distortion sense [J],APCC 2003, 2: 822-824.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700