用户名: 密码: 验证码:
基于波谱库的作物纯像元识别与种植面积遥感估算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作物类型识别和播种面积估算一直是农业遥感的重要内容,对农作物播种面积和种植结构调整具有重要的现实意义。单一作物像元(纯像元)识别是作物类型识别和作物播种面积遥感估算的关键。
     本文设计了野外试验方案,开展了玉米和小麦两个作物全生长期光谱测试实验,获取了大量作物生长期的组分-冠层-像元级光谱、结构参数、背景光谱信息和相关参数,建立了典型农作物波谱库。
     基于该典型农作物波谱库,论文对作物纯像元识别和作物面积估算等方面进行了理论与方法的探讨:
     (1)作物纯像元的识别方法与模型
     根据作物光谱信息不确定性的原理,通过开发遥感影象-参考波谱距离阈值模型,提出基于距离阈值的纯作物像元的识别方法。对玉米生长后期TM影象试验表明,该方法获得的作物纯像元估算精度可以达到92%;在此基础上,论文提出了结合遥感影象-参考波谱距离阈值、光谱角度和多时相方法对玉米作物纯像元综合识别方法,该方法使玉米作物纯像元的识别精度提高到95%以上。
     (2)作物面积估算模型
     在光谱混合分析模型基础上,提出了光谱角度和影象拟合残差相结合的最优端元选择方法,获得混合像元中各端元的面积比例。通过实地制图试验表明小麦像元内小麦作物比例制图的精度达到95%以上,研究发现3月下旬是小麦亚像元比例面积制图中遥感影象时相的一个较好选择。该方法还对华南一个镇的荔枝种植面积进行了应用,结果表面,荔枝面积估算结果和制图精度达到98%。
     (3)像元纯度的检测方法与模型
     论文分析发现像元纯度指数(PPI)方法在提取纯像元时对端元选择存在不确定性,可能由此导致所提取地物端元纯度降低,或把同类稍有光谱偏差地物作
The crop identification and area estimation are an important domain in agricultural remotely sensing at all times. However, LANDS AT TM images are one of the most important remotely sensing information sources for development of agricultural information extraction methods in a long period. At present, the accuracy, efficiency and cost are still main problems facing the planting area monitoring by wideband TM satellite remote sensing in China. The pure crop pixel identification is of special significance in remotely sensing scaling transformation and inversion of crop biophysical parameters while the estimation of planting area by remotely sensing has great practical meaning for state agriculture structure adjusting at present stage. The convenient and quick pure crop pixel identification and area estimation approach may improve the acquirement ability of agriculture information. In this study spectral library based image-reference spectrum distance (IRSD) combined with spectral angle mapper(SAM), multi-temporal satellite data(MSD) were examined to address the need for pure, spatially accurate maize crop pixel identification. As reference spectra of maize are from in-situ measurement, which less were influenced by other elements such as atmosphere and man's eye in training sample area election etc, they better present the crop average eigenvector in N dimension space than the statistical parameter of training sample area by traditional classification method. Maize crop pixels where IRSD of 6 sites in experimental region were combined were identified with an overall accuracy level of more than 92%, compared to 51.3% explained by 6 site training sample method of traditional Maximum Likelihood classification alone. Further, the classification accuracy can attain more than 95% if SAM and MSD were combined into the IRSD method. This result of this study support the use of moderate resolution spectral imagery combined with TM images to image scaling and crop biophysical parameter extraction. Also, the SAM combined linear spectral mixture analysis (LSMA) was investigated to meet the demand for mapping wheat and litchi planting area in endmember level. Landsat 5 TM image, in-situ crop spectra combined band values from 2 scenes acquired on March 23, 2004 and November 2, 2000 were independently
引文
[1] -Aaron Moody and Curtis E. Woodcock, Calibration-based models for correction of area estimates derived from coarse resolution land-cover data, Remote Sensing of Environment[J], Volume 58, Issue 3, December 1996, Pages 225-241
    [2] Aaron Moody, Sucharita Gopal and Alan H. Strahler, Artificial neural network response to mixed pixels in coarse-resolution satellite data, Remote Sensing of Environment, Volume 58, Issue 3, December 1996, Pages 329-343
    [3] Amy Parker Williams and E. Raymond Hunt, Jr, Estimation of leafy spurge cover from hyperspectral imagery using mixture tuned matched filtering, Remote Sensing of Environment, Volume 82, Issues 2-3, October 2002, Pages 446-456
    [4] Ann Bateson and Brian Curtiss(1996), A method for manual endmember selection and spectral unmixing, Remote Sensing of Environment, Volume 55, Issue 3, Pages 229-243
    [5] Bannari, A., Morin, D., Huette, A. R. and Bonn, F., 1995, Areview of vegetation indices. Remote Sensing Reviews, vol. 13, p. 95-120. USA, 115 pages.
    [6] Boardman, J. W., Kruse, F. A., and Green, R. O., 1995, Mapping target signatures via partial unmixing of AVIRIS data: in Summaries, Fifth JPL Airborne Earth Science Workshop, JPL Publication 95-1, v. 1, pp. 23-26.
    [7] Boardman, J. W. (1995), Analysis, Understanding and Visualization of Hyperspectral Data Convex Sets in N-Space. In. Proc. SPIE' s International Conf. On Imaging pectrometry, Orlando, FL. Vol. 2480, pp. 14-20.
    [8] Brandt Tso and Paul M. Msther, Classification Methods for Remotely Sensed Data, London and New York, 2001
    [9] California Institute of Technology, http://speclib.jpl.nasa.gov/, spectral library, September 24, 2002
    [10] Camille C. D. Lelong, Patrick C. Pinet and Herve Poilve, Hyperspectral Imaging and Stress Mapping in Agriculture: A Case Study on Wheat in Beauce (France), Remote Sensing of Environment, Volume 66, Issue 2, November 1998, Pages 179-191
    [11] Changshan Wu, and Alan T. Murray, Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, Volume 84, Issue 4, 10 April 2003, Pages 493-505
    [12] Clark, R. N., Gallagher, A. J., and Swayze, G A. (1990), Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with in regions of 100% cover, the clay library reference spectra. In Proceedings 2nd Airborne Visible- Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54, Jet Propulsion Laboratory, Pasadena, CA, pp. 176-186.
    [13] Csornai G et al. Operational crop monitoring by remote sensing by Hungary. Operational Remote Sensing for Sustainable Development[M], Nieuwenhis, Vaughan & Molenaar, 1999.
    [14] D. A. Roberts, Mapping Chaparral in the Santa Monica Mountains Using Multiple Endmember Spectral Mixture Models, REMOTE SENS. ENVIRON. 65: 267-279 (1998)
    [15] David B. Lobell and Gregory P. Asner, Cropland distributions from temporal unmixing of MODIS data, Remote Sensing of Environment, Volume 93, Issue 3, 15 November 2004, Pages 412-422
    [16] David E. Pitts and Gautam Badhwar. Field size, length, and width distributions based on LACIE ground truth data · Remote Sensing of Environment, Volume 10, Issue 3, November 1980, Pages 201-213
    [17] Dengsheng Lu et al., Linear mixture model applied to Amazonian vegetation classification[J], Remote Sensing of Environment 87 (2003) 456-469.
    [18] Elisabetta Binaghi et al., A hybrid approach to fuzzy land cover mapping [J], Pattern Recognition Letters, Volume 17, Issue 13,25 November 1996, Pages 1399-1410.
    [19] Fabio Maselli, Definition of Spatially Variable Spectral Endmembers by Locally Calibrated Multivariate Regression Analyses, Remote Sensing of Environment, Volume 75, Issue 1, January 2001, Pages 29-38
    [20] Freek van der Meer, Spectral mixture modelling and spectral stratigraphy in carbonate lithofacies mapping, ISPRS Journal of Photogrammetry and Remote Sensing, Volume 51, Issue 3, June 1996, Pages 150-162
    [21] G I. Metternicht and A. Fermont, Estimating Erosion Surface Features by Linear Mixture Modeling, REMOTE SENS. ENVIRON. 64:254-265 (1998)
    [22] Generate Fraction Images From Remote Sensing on Multispectral Data. IEEE
    [23] Global and Planetary Change, Volume 37, Issues 3-4, 20 June 2003, Pages 297-306
    [24] Gommes Rene, Crop-yield weather modeling : lecture notes and exercises . FAO Publications[M], 1999
    [25] Green, R., Conel, J., & Roberts, D. (1993). Estimation of aerosol optical depth and additional atmospheric parameters for the calculation of apparent surface reflectance from radiance as measured by the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS). Summaries of the Fourth Annual JPL Airborne Geosciences Workshop ( pp. 73- 76). Pasadena, CA: Jet Propulsion Laboratory.2. Oxford: Clarendon, 1892, pp.68-73.
    [26] Gregory P. Asner et al., Scale dependence of biophysical structure in deforested areas bordering the Tapajo's National Forest, Central Amazon, Remote Sensing of Environment [J], Volume 87, Issue 4, 15 November 2003, Pages 507-520
    [27] Gregory S. Okin, Dar A. Roberts, Bruce Murray and William J. Okin, Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments, Remote Sensing of Environment, Volume 77, Issue 2, August 2001, Pages 212-225
    [28] Gyanesh et al., Revised Landsat 5 TM Radiometric Calibration Procedures and Post-Calibration Dynamic Ranges, 2003, www.usgs.gov
    [29] H. M. ONSI, Designing a rule-based classifier using syntactical approach, int. j. remote sensing[J], 2003, vol. 24, no. 4,637- 647
    [30] H.L FANG (1998), Rice crop area estimation of an administrative division in China using remote sensing data, int. j. remote sensing[J], 1998, vol. 19, no. 17, 3411-3419
    [31] Hall, F. G, Shimabukuro, Y. E., and Huemmrich, K. F., Remote sensing of forest biophysical structure in boreal stands of picea mariana using mixture decomposition and geometric reflectance models. Ecol. Appl. [J], Volume 5(1995):993-1013.
    [32] http://www.cas.cn/html/Dir/2001/10/15/1366.htm, Oct., 15, 2001
    [33] http://www.chinaqw.com.cn/node2/node 116/node 1414/node 1415/node 1419/userobject6ai 165665. html, April 20th, 2004
    [34] http://www.enet.com.cn/ecorp/inforcenter/A20020300203177.htmI, Sept., 29, 2002
    [35] http://www.hfcas.ac.cn/hfyjy/cghb/91 .htm
    [36] http://www.imde.ac.cn/chinese/KeyanJigou/3s.htm
    [37] Huete, A.R., 1988, A soil-adjusted vegetation index (SAV1). Remote Sensing of Environment, vol. 25, p.295-309.
    [38] Huixiao Wang et al., "Improving water use efficiency of irrigated crops in the North China Plain—measurements and modelling", Agricultural Water Management, 48(2001)151 -167.
    [39] J. E. Hansen and L. D. Travis, "Light scattering in planetary atmospheres," Space Sci. Rev., vol. 16,pp. 527-610, 1974.
    [40] J. E. LEWIS, Estimating maize production in Kenya using NDVI:some statistical considerations. int. j. remote sensing[J], 1998, vol. 19, no. 13, 2609-2617
    [41] Jing M.Chen, Spatial Scaling of a Remotely Sensed Surface Parameter by Contexture, Remote Sensing of Environment, Volume 69, Issue 1, July 1999, Pages 30-42
    [42] John B. Adams, Donald E. Sabol, Valerie Kapos, Raimundo Almeida Filho, Dar A. Roberts, Milton O. Smith and Alan R. Gillespie, Classification of multispectral images based on fractions of endmembers: Application to land-cover change in the Brazilian Amazon, Remote Sensing of Environment, Volume 52, Issue 2, May 1995, Pages 137-154
    [43] John C. Price, Comparing MODIS and ETM+ data for regional and global land classification, Remote Sensing of Environment[J], vol.86 (2003) 491-499.
    [44] John Townshend, Christopher Justice, Wei Li, Charlotte Gurney and Jim McManus, Global land cover classification by remote sensing: present capabilities and future possibilities, Remote Sensing of Environment[J], Volume 35, Issues 2-3, February-March 1991, Pages 243-255
    [45] Kenneth McGwire, Timothy Minor and Lynn Fenstermaker, Hyperspectral Mixture Modeling for Quantifying Sparse Vegetation Cover in Arid Environments. Remote Sensing of Environment, Volume 72, Issue 3, June 2000, Pages 360-374
    [46] Kruse, F. A., Lefkoff, A. B., Boardman, J. B., Heidebrecht, K. B., Shapiro, A. T., Barloon, P. J., and Goetz, A. F. H., 1993, The Spectral Image Processing System (SIPS) - Interactive Visualization and Analysis of Imaging Spectrometer Data: Remote Sensing of Environment, Special issue on AVIRIS, May-June 1993, v. 44, pp. 145-163.
    [47] Leica Geosystems GIS & Mapping , http://gis.leica-geosystems.com/Support/FocusOn/FocusOn_detail.aspx?article_lD=8, 2003
    [48] M. A. THESEIRA, G THOMAS, J. C. TAYLOR, Sensitivity of mixture modelling to end-member selection, International Journal of Remote Sensing, 2003, Vol.24, No.7, 1559-1575
    [49] M. Brown, H.G Lewis, and S.R. Gunn, Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing (2000), IEEE Trans. on Geoscience and Remote Sensing, Volume 38, number 5, pages 2346-2360.
    [50] M. Faraklioti and M. Petrou. Recovering more classes than available bands for sets of mixed pixels in satellite images. Image and Vision Computing, Volume 18, Issue 9, June 2000, Pages 705-713
    [51] Mac Donald R. B, Hall F. G. Global crop forecasting. Science[J], 1980, 208: 670-679.
    [52] Minghua Zhang., Zhihao Qin, Xue Liu, Susan L. Ustin(2003), Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing, International Journal of Applied Earth Observation and Geoinformation, Vol.4 : 295-310
    [53] P. C. Smits and A. Annoni, Towards operational knowledge-based remote-sensing image analysis , Pattern Recognition Letters, Volume 20, Issues 11-13, November 1999, Pages 1415-1422
    [54] Patrick Hostert et al., Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands, Remote Sensing of Environment[J], vol.87 (2003) 183-197.
    [55] Philip E. Dennison, Dar A. Roberts, Sommer R. Thorgusen, Jon C. Regelbrugge, David Weise and Christopher Lee. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sensing of Environment, Volume 88, Issue 4, 30 December 2003, Pages 442-452
    [56] Philip E. Dennison, Kerry Q. Halligan and Dar A. Roberts. A comparison of error metrics and constraints for multiple endmember spectral mixture analysis and spectral angle mapper, Remote Sensing of Environment, Volume 93, Issue 3, 15 November 2004, Pages 359-367
    [57] R. SINGH et al., Small area estimation of crop yield using remote sensing satellite data, int. j. remote sensing[J], 2002, vol. 23, no. 1, 49-56
    [58] Raj S. Chhikara, Effect of mixed (boundary) pixels on crop proportion estimation, Remote Sensing of Environment, Volume 14, Issues 1-3, January 1984, Pages 207-218
    [59] Raymond F. Kokaly et al., Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data, Remote Sensing of Environment[J], 84 (2003) 437-456
    [60] Research Systems, Inc., ENVI 4.0 User's Guide, August 28, 2003
    [61] Research Systems, Inc., The Environment for Visualizing Images, ENVI Version 4.0, WWW : http://www.RSInc.com/envi, 2003
    [62] Richardson, A.J., and Wiegand, C.L., 1977, Distinguishing vegetation from soil background information. Photogrammitric engineering and Remote Sensing, vol.43, p. 15-41.
    [63] Robert E. Dickinson, Land processes in climate models, Remote Sensing of Environment[J], Volume 51, Issue 1, January 1995, Pages 27-38
    [64] Rousse, J.W., Haas, R.W., Schelle, J.A., Deering, D.W, and Harlan, J.C., 1974, Monitoring the vernal advancement and retrogradation (green wave effet) of natural vegetation. NASA/GSFCT Type I rapport, Greenbelt, Maryland, USA.
    [65] Stefanie Tompkins, John F. Mustard, Carle M. Pieters and Donald W. Forsyth, Optimization of endmembers for spectral mixture analysis , Remote Sensing of Environment, Volume 59, Issue 3, March 1997, Pages 472-489
    [66] Stephen South, Jiaguo Qi and David P. Lusch, Optimal classification methods for mapping agricultural tillage practices, Remote Sensing of Environment, Volume 91, Issue 1, 15 May 2004, Pages 90-97
    [67] Sushil Pradhan, Crop area estimation using GIS, remote sensing and area frame sampling, International Journal of Applied Earth Observation and Geoinformation[J], Volume 3, Issue 1, 2001, Pages 86-92
    [68] Thomas H. Painter, Jeff Dozier, Dar A. Roberts, Robert E. Davis and Robert O. Green, Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data, Remote Sensing of Environment, Volume 85, Issue 1, 25 April 2003, Pages 64-77
    [69] Transactions on Geoscience and Remote Sensing. 29:16-20.
    [70] Vincent GUISSARD, Pierre DEFOURNY, Jean-Francois LEDENT (2004), Crop specific information extraction based on coarse resolution pixel sampling, 2nd VEGETATION International Users Conference, Antwerp, Belgium.
    [71] Virginia Gewin, Mapping opportunities, NATURE, VOL 427 | 22 JANUARY 2004: pp376-377
    [72] Wang Zhengxing, Zhao Bingru, Liu Chuang, www.codata.org/codata02/131arge/absl3.html,
     Development of Land Cover Database of East Asia, 15 March 2003
    [73] Wu Bingfang, Crop monitoring of China with AVHRR. Presented at Science Symposium on Space Technology for improving Quality of Life in Developing Countries: A perspective for the Next Millennium[C]. Delhi, India, 1999. 15-17.
    [74] Xiangming Xiao etc., Uncertainties in estimates of cropland area in China: a comparison between an AVHRR-derived dataset and a Landsat TM-derived dataset ·ARTICLE
    [75] Yafit Cohen, Maxim Shoshany, A national knowledge-based crop recognition in Mediterranean environment, International Journal of Applied Earth Observation and Geoinformation, 4 (2002): 75-87
    [76] Youngsinn Sohn and N. Sanjay Rebeilo, Supervised and Unsupervised Spectral Angle Classifiers, Photogrammetric Engineering & Remote Sensing, Vol. 68, No. 12, December 2002, pp. 1271-1280.
    [77] 阿布都瓦斯提·吾拉木,秦其明,朱黎江,基于6S模型的可见光、近红外遥感数据的大气校正,北京大学学报(自然科学版),第40卷,第4期,2004年7月
    [78] 陈沈斌,孙九林,建立我国主要农作物卫星遥感估产运行系统的主要技术环节及解决途径,自然资源学报,1997,12(4):363-369。
    [79] 陈沈斌,种植业可持续发展的支持系统——农作物卫星遥感估产,地理科学进展,1998,17(2):71-77。
    [80] 陈述彭.遥感在农业科学技术中的应用[M].见:陈述彭.地学的探索(第三卷).遥感应用.北京:科学技术出版社.1990.20—32.
    [81] 陈仲新,刘海启,全国冬小麦面积变化遥感监测抽样外推方法的研究,农业工程学报.2000,16(5):126-129
    [82] 何国金,胡德永,刘喜珍等,面向农作物监测的遥感信息处理技术研究,2004(1):40-42。
    [83] 河北省栾城县统计局,2003年栾城县国民经济统计资料,2004年3月
    [84] 贾金生,李俊,张永强,夏玉米生长盛期农田土壤CO2排放的研究,中国生态农业学报,2003,11(3):1-4。
    [85] 焦险峰,杨邦杰,裴志远,全国棉花种植面积遥感监测抽样方法设计,农业工程学报.2002,18(4):159-162
    [86] 科学技术部基础研究司,http://www.br.gov.cn/shownews.asp?newsid=5520, 2004年11用2日。
    [87] 李强子,吴炳方,许文波,农作物分类成数的精度检验,遥感学报,2004,8(6):587-592。
    [88] 李树楷.全球环境资源遥感分析.北京:测绘出版社,1992.
    [89] 李小文,胡宝新,先验知识在遥感反演中的作用,中国科学:D辑,1998,28(1):67-72。
    [90] 刘海启.美国农业遥感技术应用现状简介[J],国土资源遥感.1997,(3):56—60.
    [91] 栾城县人民政府办公室,栾城政府网,www.zglc0net,2005-5-2
    [92] 莫兴国,刘苏峡等,华北平原玉米田能量平衡、水分利用效率和表面阻力分析, 应用生态学报.2002,13(5):551-554。
    [93] 彭成绩,钟明,林和兴,广东果树生产“九五”发展的对策探讨,广东农业科学,1996年第1期:14-16
    [94] 屈永华,刘素红,王锦地,李小文,苏理宏.中国典型地物波谱数据库的研究与设计,遥感信息,2004(2):5-8。
    [95] 全国冬小麦遥感综合测产协作组.冬小麦气象卫星遥感动态监测与估产[M],北京:气象出版社,1993
    [96] 邵美珍,徐希孺,基于主成分分析的混合象元分解,中国空间科学技术,1989(5):63-68。
    [97] 苏理宏,李小文等,典型地物波谱知识库建库与波谱服务的若干问题,地球科学进展,2003,18(2):185-191
    [98] 孙九林主编.中国农作物遥感动态监测与估产总论[M].中国科学技术出版社,1996.18-30,92-95.
    [99] 唐世沽,朱启疆等,遥感地表参量反演的理论与方法,北京师范大学学报:自然科学版,2001,37(2):266-273。
    [100] 唐云,鲍新毅,融入先验知识的贝叶斯神经网络分类器,物探化探计算技术,2003,25(1):-83-87。
    [101] 田庆久,宫鹏,地物波谱数据库研究现状与发展趋势,遥感信息,2002(3):2-6,46。
    [102] 童庆禧等编著,中国典型地物波谱及其特性分析,科学出版社,1990。
    [103] 王锦地,阎广建,王昌佐,遥感反演中不确定性信息处理的一种数学方法,遥感学报,2004,8(3):214-219。
    [104] 王乐新,贺传琴,地物复合光谱元组分比的确定,黑龙江八一农垦大学学报,2000,12(4):78-80。
    [105] 王松桂(2000),线性混合模型理论的新发展,北京工业大学学报.2000,26(3):73-81
    [106] 王喜鹏 张养贞,应用神经网络模型分解AVHRR混合像元,遥感学报,1998,2(1):51-56
    [107] 王宜礼,蔡伟,http://www.cast.cn/xwzx./display.asp?id=3707,2003-10-21
    [108] 吴炳方,全国农情监测与估产的运行化遥感方法[J],地理研究,第55卷第1期VoL 55,No.1,25-35。
    [109] 吴炳方.全国农情监测与估产的运行化遥感方法.地理学报,2000,55(1):25~35.
    [110] 吴全,杨邦杰等,大尺度作物面积遥感监测中小地物的影响与双重抽样,2002,18(4):130-133
    [111] 吴全等,大尺度作物面积遥感监测中小地物的影响与双重抽样[J],农业工程学报,2004年第20卷第3期:130-133
    [112] 肖乾广,用NOAA气象卫星的定量资料计算冬小麦种植面积的两种方法[J].环境遥感,1989,4(3):191—126.
    [113] 肖乾广,周嗣松,陈维英等.用气象卫星数据对冬小麦进行估产试验[J].环境遥感,1986,1(4):260—269.
    [114] 辛景峰,P.M.Driessen等,利用NOAA NDVI数据集监测冬小麦生育期的研究遥感学报,2001,5(6):442-447。
    [115] 邢素丽,李会龙,刘慧涛,张广录,华北平原极端气候条件对小麦产量影响研究,天津农学院学报,2004,11(1):14-17
    [116] 邢延,张天序复杂背景下基于知识的目标识别算法研究,模式识别与人工智能,1995,8(3):237-242。
    [117] 熊利亚主编.中国农作物遥感动态监测与估产集成系统[M].北京:中国科学技术出版社,1996.
    [118] 徐希孺,周莲芳,朱晓红.混合象元的因子分析方法及其在大范围冬小麦播种面积计算中的应用探讨.科学通报.1989,34(2):946—949
    [119] 许文波,大范围作物种植面积遥感监测方法研究,中国科学院研究生院博士论文,2004
    [120] 薛利红,罗卫红等,作物水分和氮素光谱诊断研究进展,遥感学报,2003,7(1):73-80。
    [121] 延昊 张国平,像元分解法提取积雪边界线,山地学报,2004,22(1):110-115
    [122] 阎广建,吴均,光谱先验知识在植被结构遥感反演中的应用,遥感学报,2002,6(1):1-6。
    [123] 杨邦杰,周清波等,我国农情遥感监测关键技术研究进展,农业工程学报,2002,18(3):191-194
    [124] 杨小唤,张香平,江东,基于MODIS时序NDVI特征值提取多作物播种面积的方法,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700