用户名: 密码: 验证码:
沉默Ku-70基因对耐药性乳腺癌的治疗价值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳腺癌是危害妇女健康的主要恶性肿瘤,在全球范围内,每年超过100万妇女被诊断患有乳腺癌,占癌症的十分之一,占女性癌症病例的23%[1]。在美国,该疾病每年死亡人数为40,000人[2]。这已成为目前降低患者生存率的主要因素。解决肿瘤的多药耐药问题对多种肿瘤的治疗具有重要意义,因此,从事肿瘤治疗研究的学者们希望更为透彻的了解恶性肿瘤的多药耐药的原因及机制,为肿瘤的治疗提供新的靶点。
     Ku蛋白是一个异二聚体蛋白,由Ku70和Ku80两个亚单位组成。最早在自身免疫性疾病患者血清中被发现、鉴定,后来被证明是一个多功能的调节蛋白,参与DNA修复、端粒的维持、细胞凋亡。因此,Ku蛋白被认为在染色体的完整性及细胞存活中发挥重要的作用。近年来的报道提示Ku蛋白的表达与肿瘤的发展有关[3],该蛋白的高表达促进肿瘤表型的发生、诱导细胞高度增殖及凋亡抵抗,而该蛋白低表达则导致基因组的不稳定及肿瘤的发生,多种实验的结论指出Ku蛋白同时扮演着肿瘤抑制因子及肿瘤发生因子的双重角色,这使Ku成为抗肿瘤药物研究的一个重要的候选靶点,引起众多肿瘤治疗研究人员的关注。下调Ku70蛋白的表达促进宫颈癌细胞Hela对化疗的敏感性[4];Pim-1基因敲除通过下调Ku蛋白的表达及核定位,抑制Ku70,Ku80对非同源末端连接DNA修复,增强紫杉醇诱导激素难治性前列腺癌凋亡[5]。双调蛋白通过抑制吉西他滨诱导Ku70蛋白的乙酰化促进非小细胞肺癌对吉西他滨的抵抗[6]。上述材料提示,Ku70在多种肿瘤化疗耐药的治疗中扮演重要的角色。但是Ku70蛋白在乳腺癌中的表达及与乳腺癌耐药的相关性还没有报道。
     本实验的目的就是为了揭示Ku70蛋白在乳腺癌中的表达及其在乳腺癌耐药治疗中的作用,具体研究如下:
     1实验路线
     1.1耐表阿霉素乳腺癌细胞系MCF7-ADR细胞耐药性检测
     1.1.1MTS法检测MCF7、MCF7-ADR增殖活性差异。
     1.1.2倒置相差显微镜观察MCF7、MCF7-ADR细胞形态差异。
     1.1.3不同浓度表阿霉素刺激MCF7、MCF7-ADR细胞,计算药物半数抑制率(IC50)及MCF7-ADR对表阿霉素耐药指数。
     1.2RT-PCR检测乳腺癌细胞系MCF7及耐表阿霉素乳腺癌细胞系MCF7-ADR细胞Ku-70mRNA水平。
     培养人乳腺癌细胞系MCF7、耐表阿霉素乳腺癌细胞系MCF7-ADR细胞至对数生长期,收细胞,提取总RNA,通过RT-PCR检测两种肿瘤细胞Ku-70mRNA水平。
     1.3Western blot检测MCF7、MCF7-ADR细胞Ku-70蛋白表达水平
     培养人乳腺癌细胞系MCF7、耐表阿霉素乳腺癌细胞系MCF7-ADR细胞至对数生长期,收细胞,提蛋白,垂直电泳后转膜,抗Ku70单克隆抗体杂交,ECL化学发光、成像系统成像,检测MCF7、MCF7-ADR细胞Ku70蛋白表达水平。
     1.4向MCF7-ADR细胞中转染Ku70SiRNA片段,RT-PCR、Western blot检测Ku70基因沉默效果。
     1.5不同浓度表阿霉素刺激MCF7、MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞, MTS法检测上述细胞增殖活性差异,计算表阿霉素对不同细胞的半数抑制量,比较Ku70沉默前后MCF7-ADR耐药指数的变化。
     1.6普通光学显微镜、Hochest-33258染色观察表阿霉素诱导MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞凋亡时细胞形态、细胞核形态差异。
     1.7Annexin V-PI染色、流式细胞术检测表阿霉素诱导MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞凋亡能力差异。
     1.8PCR-array检测Ku70基因沉默前后MCF7-ADR细胞凋亡相关基因变化,探讨Ku70基因沉默逆转MCF7-ADR耐药性的可能机制。
     2结果
     2.1耐表阿霉素乳腺癌细胞系MCF7-ADR细胞耐药性检测
     MTS法检测MCF7、MCF7-ADR增殖活性差异,结果显示,两种细胞增殖活性无显著差异,MCF7、MCF7-ADR细胞大小、形态相似,近圆形,细胞核较大,胞浆丰富。采用不同浓度表阿霉素刺激MCF7、MCF7-ADR细胞,表阿霉素对二者的半数抑制量(IC50)分别为4.16+0.72ug/ml和34.38+6.75ug/ml,MCF7-ADR细胞对表阿霉素的耐药指数为8.26。
     2.2MCF7、MCF7-ADR细胞Ku-70mRNA表达水平差异
     RT-PCR检测乳腺癌细胞系MCF7及耐表阿霉素乳腺癌细胞系MCF7-ADR细胞Ku-70mRNA水平,结果显示,二者Ku-70mRNA表达水平无明显差异。
     2.3MCF7、MCF7-ADR细胞Ku-70蛋白表达水平差异
     Westernblot检测MCF7、MCF7-ADR细胞Ku-70蛋白表达水平,结果显示,二者Ku-70蛋白表达水平亦无明显差异。
     2.4MCF7-ADR细胞转染Ku70SiRNA片段效果检测
     RT-PCR、Westernblot检测转染Ku70SiRNA片段24h后MCF7-ADR细胞Ku-70mRNA及蛋白表达水平变化,结果显示,转染Ku70SiRNA片段24h后MCF7-ADR细胞Ku-70mRNA及蛋白水平较非特异SiRNA片段转染组显著降低,说明Ku-70基因沉默效果良好,可以进行后续试验。
     2.5Ku70沉默对MCF7-ADR耐药性的影响
     MTS法检测不同浓度表阿霉素作用后MCF7、MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞增殖活性,结果显示,表阿霉素对3组细胞的半数抑制量分别为4.16+0.72ug/ml、34.38+6.75ug/ml、13.06+2.62ug/ml。MCF7-ADR细胞对表阿霉素的耐药指数由Ku70沉默前的8.26下降为Ku70沉默后的3.14,提示沉默Ku70能够逆转MCF7-ADR对表阿霉素的耐药性。
     2.6形态学比较Ku70沉默前后MCF7-ADR对表阿霉素诱导凋亡敏感性变化
     普通光学显微镜观察10ug/ml表阿霉素处理48h后MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞形态差异,结果显示Ku70沉默组细胞数量较空白对照组、阴性对照组显著减少,细胞体积缩小,边缘皱缩,折光度差,部分细胞呈圆球形漂浮于培养液中;Hochest-33258染色后蓝色激发光下观察细胞核,可见无药物处理组MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞核大小无明显差异,均呈长椭圆形,染色质疏松、均匀一致蓝染;MCF7-ADR细胞经表阿霉素作用48h后较无药物处理组细胞核体积缩小,染色质浓集呈亮蓝色,MCF7-ADR/Ku70-SiRNA经表阿霉素作用48h后较无药物处理组细胞核体积明显缩小、染色质固缩呈亮蓝色团块,部分细胞可见明显的凋亡小体。
     2.7流式细胞术比较Ku70沉默前后MCF7-ADR对表阿霉素诱导凋亡敏感性变化
     Annexin V-PI染色、流式细胞术检测10ug/ml表阿霉素处理24h后MCF7-ADR、MCF7-ADR/Ku70-SiRNA细胞凋亡水平差异,结果表明,Ku70沉默后MCF7-ADR对表阿霉素诱导凋亡敏感性较沉默前明显增加,经10ug/ml表阿霉素处理后空白对照组、阴性对照组、Ku70沉默组AnnexinⅤ阳性染色比例依次为4.72+0.56%、4.63+0.78%,16.76+2.93%。
     2.8Ku70基因沉默后MCF7-ADR细胞凋亡相关基因APAF1、BBC3、BCL2、BCL2、BIRC6、CASP3、DAPK1、TNFRSF10A表达增加,NAIP、CHUK基因表达减少。
     3结论
     3.1MCF7-ADR细胞与MCF7细胞相比,其Ku70mRNA及蛋白水平均无明显变化,Ku70不能成为乳腺癌耐药标志物。
     3.2Ku70基因沉默能够逆转MCF7-ADR细胞对表阿霉素的耐药性。
     3.3Ku70基因沉默能够增强表阿霉素诱导MCF7-ADR细胞凋亡能力,提示Ku70-SiRNA能够作为乳腺癌化疗的增敏剂。
     3.4沉默MCF7-ADR细胞Ku70基因后,凋亡相关基因APAF1、BBC3、BCL2、BIRC6、CASP3、DAPK1、TNFRSF10A表达增加,NAIP、CHUK基因表达减少,提示Ku70基因沉默后大部分凋亡信号分子表达增加,说明Ku70基因沉默活化耐表阿霉素乳腺癌细胞中的凋亡信号,从而增加其对表阿霉素的敏感性,逆转其耐药性。
Breast cancer is the major malignant tumour that endangers the health of women,in worldwide, more than100million women are diagnosed with breast cancer,accounting for10%of the patients with cancer, accounting for23%of the femalecancer cases every year[1]. In the United States,40,000people died of breast cancerone year[2]. Breast cancer is one of the most sensitive tumor to chemotherapy in solidtumors, but tumor multidrug resistance (MDR) often leads to the failure ofchemotherapy, which has become a major factor for the lower survival rate ofpatients. Solve the MDR problem of the tumor is important for the treatment of avariety of tumors, therefore, scholars hope to understand more of cancer causes andmechanisms of multidrug resistance in tumor therapy, to provide a new target forcancer treatment.
     Ku protein is a heterodimeric protein, composed by Ku70and Ku80two-subunit,and was found and identified earliest in the serum of patients with autoimmunediseases, later proved to be a versatile regulatory protein involved in DNA repair,telomere maintenance, apoptosis. Thus, Ku protein is considered to play an importantrole in the chromosomal integrity and cell survival.
     Reports in recent years suggested that the Ku protein expression was associatedwith tumor development[3], the more expression of Ku protein promoted tumorphenotype occurred, induced cell proliferation and apoptosis resistance, on the otherhand, less expression of Ku protein leaded to genomic instability and the occurrenceof tumors, a variety of experiments concluded that Ku protein also plays dual role-atumor suppressor and tumor factors. Ku becomes an important anticancer drugcandidate targets, causing attentions of many cancer treatment researchers. rapysensitivity of cervical carcinoma cell line, Hela[4]; Pim-1gene knockout enhanced
     Down-regulating Ku70protein expression could promote chemothepaclitaxelinduced hormone-refractory prostate cancer apoptosis by down-regulating the expression and nuclear localization of Ku protein, inhibiting of Ku70, Ku80pairof non-homologous end-joining DNA repair[5]. Amphiregulin promoted non-smallcell lung cancer resistante to gemcitabine through inhibitiing gemcitabine-inducedacetylation of Ku70protein[6]. The materials above prompts, Ku70play an importantrole in a variety of tumor resistance to chemotherapy treatment. Ku70proteinexpression in breast cancer and correlations with breast cancer resistance has not beenreported.
     The purpose of this experiment is to reveal the Ku70protein expression in breastcancer and its role in the treatment of breast cancer resistance, details are as follows:
     1The experimental route
     1.1Drug resistance test of MCF7-ADR–a breast cancer cell line whichresistant epirubicin.
     1.1.1MTS assay detected MCF7, MCF7-ADR proliferative activity.
     1.1.2Observed MCF7, MCF7-ADR cell morphological differences via invertedphase contrast microscope.
     1.1.3Stimulated MCF7, MCF7-ADR cells with different concentrations ofepirubicin and calculated the drugs half fatality rate (IC50) and drug resistance indexof MCF7-ADR to pharmorubicin.
     1.2RT-PCR detected Ku-70mRNA levels in breast cancer cell line MCF7andMCF7-ADR cells
     Cultured human breast cancer cell line MCF7and breast cancer cell lineMCF7-ADR which resistance to epirubicin to logarithmic phase, extracted total RNA,then detected Ku-70mRNA of the two tumor cells by RT-PCR.
     1.3Western blot detected Ku-70protein levels of MCF7and MCF7-ADR cells.
     Cultured human breast cancer cell line MCF7and breast cancer cell lineMCF7-ADR which resistance to epirubicin to logarithmic phase, extracted totalprotein, transferred to a membrane after vertical electrophoresis, hybridized withanti-Ku70antibody, observed Ku70protein expression levels of MCF7ofMCF7-ADR cells via chemiluminescence imaging system after ECL.
     1.4Transfected Ku70SiRNA fragment into MCF7-ADR cells, RT-PCR, Westernblot analysis Ku70gene silencing results.
     1.5Stimulated MCF7, MCF7-ADR, MCF7-ADR/Ku70-SiRNA with differentconcentration epirubicin, MTS assay tested cell proliferative activity, then calculated the median lethal dose of epirubicin to different cell lines, compared resistant indexchanges of MCF7-ADR after Ku70silenced.
     1.6Observed apoptosis morphological differences of MCF7-ADR cells andMCF7-ADR cells knoched out Ku70gene cultured with doxorubicin via opticalmicroscopy and Hochest-33258staining.
     1.7Compared the apoptosic cells number of MCF7-ADR cells andMCF7-ADR cells knoched out Ku70gene treated with doxorubicin via flowcytometry after Annexin V-PI staining.
     1.8PCR-array detected apoptosis-related gene changes in MCF7-ADR cellsafter knoched out Ku70gene to investigate the possible mechanisms of Ku70genesilence reversed drug resistance of MCF7-ADR to doxorubicin.
     2Results
     2.1Drug resistance test of MCF7-ADR–a breast cancer cell line whichresistant epirubicin.
     MTS assay tested MCF7, MCF7-ADR cells proliferative differences, the resultsshowed no significant proliferative difference between MCF7and MCF7-ADR. Therewere no significant different between MCF7and MCF7-ADR cells as far as cell sizeand shape concernd. The two kinds of cells were nearly round, nuclei were large, andhad abundant cytoplasm. Using different concentrate epirubicin to stimulate MCF7and MCF7-ADR cells, the median inhibitory concentration (IC50) were4.16+0.72ug/ml and34.38+6.75ug/ml individely. The resistance index of MCF7-ADR cellsto epirubicin was8.26.
     2.2Ku-70mRNA levels in breast cancer cell line MCF7and MCF7-ADR cells.
     RT-PCR detected Ku-70mRNA levels of MCF7and MCF7-ADR cells, theresults showed no significant difference between two cell lines.
     2.3Expression difference of Ku-70protein in MCF7and MCF7-ADR cells
     Analysis Ku-70protein expression of MCF7and MCF7-ADR cells via Westernblot, the results showed there was no significant difference between two cell lines.
     2.4Analysised Ku70gene silencing results after transfected with Ku-70SiRNA
     Analysis Ku70gene silencing results via RT-PCR and Western blot assay aftertransfected Ku70SiRNA fragment into MCF7-ADR cells24h, the results showedKu-70expression was significately less than the cells that transfected control SiRNA fragment. The results indicated that Ku-70silencing result was good and followed testcould be carried out.
     2.5The effect of Ku70silencing on drug resistance of MCF7-ADR
     MTS assay tested cell proliferative activity of MCF7, MCF7-ADR,MCF7-ADR/Ku70-SiRNA stimulated with different concentration epirubicin, theresults showed that MCF7-ADR drug resistance to epirubicin was reversed aftertransfected Ku70-SiRNA, the IC50of the three cell lines was4.16+0.72ug/ml、34.38+6.75ug/ml、13.06+2.62ug/ml individely. Epirubicin resistance index of MCF7-ADRcells decreased from8.26to3.14Ku70after transfected Ku70SiRNA.
     2.6Analysis epirubicin-induced apoptosis sensitivity change of MCF7-ADRafter Ku70silence through morphology observe.
     Observed morphology changs of MCF7-ADR, MCF7-ADR/Ku70-siRNA treatedwith10ug/ml epirubicin via Hochest-33258staining, the results showed that thenumber of MCF7-ADR transfected Ku70SiRNA decreased than the control group,MCF7-ADR transfected Ku70SiRNA was smaller and cells edge shrinked, chromatincondensated or pyknosis, obvious apoptotic bodies could be found in some cells.
     2.7Analysis epirubicin-induced apoptosis sensitivity change of MCF7-ADRafter Ku70silence through flow cytometry. Epirubicin-induced apoptosis sensitivityof MCF7-ADR increaced significately after transfected Ku70SiRNA, AnnexinⅤpositvie stained rate of MCF7-ADR, MCF7-ADR transfected contol SiRNA,MCF7-ADR transfected Ku70SiRNA was4.72+0.56%,4.63+0.78%and16.76+2.93%.
     2.8In MCF7-ADR/Ku70SiRNA cells apoptosis-related genes APAF1, BBC3,BCL2, BCL2, BIRC6, CASP3, DAPK1, TNFRSF10A expression increased andapoptosis-related genes NAIP, HUK expression decreased.
     3Conclusions
     3.1Ku70mRNA and protein levels had no significant diference betweenMCF7-ADR cells and MCF7cells, that indicated Ku70can not be a marker of breastcancer drug resistance.
     3.2Ku70gene silencing was able to reverse epirubicin resistance ofMCF7-ADR cells.
     3.3Ku70gene silencing enhanced epirubicin induced MCF7-ADR apoptosis, suggesting that Ku70-SiRNA might work as breast cancer chemotherapy sensitizer.
     3.4In MCF7-ADR/Ku70SiRNA cells apoptosis-related genes APAF1, BBC3,BCL2, BCL2, BIRC6, CASP3, DAPK1, TNFRSF10A expression increased andapoptosis-related genes NAIP, HUK expression decreased. Ku70gene silencingprompted expression of most apoptosis signaling molecules, indicating that Ku70gene silencing activated apoptotic signaling in breast cancer cells which resistedepirubicin, thereby increased the sensitivity ofMCF7-ADR to epirubicin and reversedthe resistance to epirubicin.
引文
[1] Parkin DM, Bray F, Ferlay J,et al. Global cancer statistics,2002. CA Cancer JClin.2005;55(2):74-108.
    [2] Surveillance epidemiologyand end results (SEER) cancer statistics review1975–2002.[EB/OL]. National Cancer Institute (NCI),[08.01.08] http://seer.cancer.gov/publicdata/.
    [3] Gullo C, Au M, Feng G, et al. The biology of Ku and its potential oncogenic rolein cancer[J]. Biochim Biophys Acta,2006,1765(2):223-34.
    [4] Tian X, Chen G, Xing H, et al. The relationship between the down-regulation ofDNA-PKcs or Ku70and the chemosensitization in human cervical carcinomacell line HeLa[J].Oncol Rep,2007,18(4):927-32.
    [5] Hsu JL, Leong PK, Ho YF, et al. Pim-1knockdown potentiates paclitaxel-induced apoptosis in human hormone-refractory prostate cancers throughinhibition of NHEJ DNA repair[J].Cancer Lett,2012,319(2):214-22.
    [6] Busser B, Sancey L, Josserand V, et al. Amphiregulin promotes resistance togefitinib in nonsmall cell lung cancer cells by regulating Ku70acetylation [J].Mol Ther,2010,18(3):536-43.
    [7] Coughlin SS, Ekwueme DU. Breast cancer as a global health Concern [J]. CancerEpidemiol,2009,33:315-8.
    [8] Stebbing J, Glassman R. Breast cancer (metastatic)[J]. Clin Evid,2004,11:2266–99.
    [9] Nabholtz JM, Reese DM, Lindsay MA, et al. Combination chemotherapy formetastatic breast cancer [J]. Exp Rev Anticancer Ther,2002,2:169–80.
    [10] Gralow JR. Optimizing the treatment of metastatic breast cancer[J]. BreastCancer Res Treat2005;89(Suppl.1):S9–S15.
    [11] Marty M, Cognetti F, Maraninchi D, et al. Randomized Phase II trial of theefficacy and safety of trastuzumab combined with docetaxel in patients withhuman epidermal growth factor receptor2-positive metastatic breast canceradministered as first-line treatment: the M77001study group [J]. J Clin Oncol,2005,23:4265–74.
    [12] Longley DB, Johnston PG. Molecular mechanisms of drug resistance[J]. JPathol2005;205:275-92.
    [13] Bonneterre J, Dieras V, Tubiana-Hulin M, et al. Phase II multicentrerandomised study of docetaxel plus epirubicin vs5-fluorouracil plus epirubicinand cyclophosphamide in metastatic breast cancer[J]. Br J Cancer2004;91:1466-71.
    [14] Berry DA, Cirrincione C, Henderson IC, et al. Estrogenreceptor status andoutcomes of modern chemotherapy for patients with node-positive breastcancer[J]. JAMA2006;295:1658-67.
    [15] Nagengast W, Oude Munnink T, Dijkers E, et al. editor. Multidrug resistance inoncology and beyond: from imaging of drug efflux pumps to cellular drugtargets[J]. Methods Mol Biol2010;596:15-31.
    [16] Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice[J]. Oncologist2003;8:411-24.
    [17] Ejendal K F,&Hrycyna C A. Multidrug resistance and cancer: The role of thehuman ABC transporter ABCG2[J]. Current Protein&Peptide Science,2002;3:503–11.
    [18] Loebinger M R, Giangreco A, Groot K R, et al. Squamous cell cancers contain aside population of stem-like cells that are made chemosensitive by ABCtransporter blockade [J]. British Journal of Cancer,2008;98:380–7.
    [19] Keshet G I, Goldstein I, Itzhaki O, et al. MDR1expression identifies humanmelanoma stem cells [J]. Biochemical and Biophysical ResearchCommunications,2008;368:930–6.
    [20] Borst P, Evers R, Kool M, et al. A family of drug transporters: the multidrugresistance-associated proteins [J]. J Natl Cancer Inst,2000;92:1295–302.
    [21] Lockhart A, Tirona L, Kim R. Pharmacogenetics of ATP-binding cassettetransporters in cancer and chemotherapy [J]. Mol Cancer Ther2003;2:685-98.
    [22] Dizdarevic, Peters A M. Imaging of multidrug resistance in cancer [J].CancerImaging,2011;11:1-8.
    [23] Baguley B C. Novel strategies for overcoming multidrug resistance in cancer [J].BioDrugs,2002;16:97-103.
    [24] Zhi Shi, Wei-Min Yang, Li-Pai Chen, et al. Enhanced chemosensitization inmultidrug-resistant human breast cancer cells by inhibition of IL-6and IL-8production [J]. Breast Cancer Res Treat,2012;135:737-47.
    [25] Sharom F. ABC multidrug transporters: structure, function and role inchemoresistance [J]. Pharmacogenomics2008;9:105-27.
    [26] Bruce C, Baguley. Multiple Drug Resistance Mechanisms in Cancer [J]. MolBiotechnol,2010;46:308-16.
    [27] Baguley B C, Marshall E S. The use of human tumour cell lines in the discoveryof new cancer chemotherapeutic drugs[J]. Expert Opinion on Drug Discovery,2008;3:153-61.
    [28] Meads M B, Hazlehurst L A, Dalton, W. S.. The bone marrow microenvironment as atumor sanctuary and contributor to drug resistance[J]. Clinical CancerResearch,2008;14:2519-26.
    [29] Parmar K, Mauch P, Vergilio J,et al. Distribution of hematopoietic stem cells inthe bone marrow according to regional hypoxia[J]. Proceedings of the NationalAcademy of Sciences of the United States of America,2007;104:5431-6.
    [30] Huls M, Russel F G, Masereeuw R. The role of ABC transporters in tissuedefense and organ regeneration[J]. Journal of Pharmacology and ExperimentalTherapeutics,2009;328:3-9.
    [31] Turco M C, Romano M F, Petrella A, et al. NF-kappaB/Rel-mediated regulationof apoptosis in hematologic malignancies and normal hematopoietic progenitors[J]. Leukemia,2004;18:11-7.
    [32] Suzuki E, Kapoor V, Jassar A S, et al. Gemcitabine selectively eliminatessplenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals andenhances antitumor immune activity [J]. Clinical Cancer Research,2005;11:6713–21.
    [33] Aller S, Yu J, Ward A, et al. Structure of P-glycoprotein reveals a molecularbasis for poly-specific drug binding [J]. Science2009;323:1718-22.
    [34] Sailaja K, Surekha D, Nageswara Rao D, et al. ABCB1(MDR1, P-glycoprotein)C3435T gene polymorphism and its possible association with chronic myeloidleukemia prognosis [J]. Curr Trends Biotechnol Pharmacy,2008;2:514-22.
    [35] Mizutani T, Masuda M, Nakai E, et al. Genuine functions of Pglycoprotein(ABCB1)[J]. Curr Drug Metab,2008;9:167-74.
    [36] Trock BJ, Leonessa F, Clarke R. Multidrug resistance in breast cancer: ameta-analysis of MDR1/gp170expression and its possible functionalsignificance [J]. J Natl Cancer Inst1997;89:917-31.
    [37] Leonessa F, Clarke R. ATP binding cassette transporters and drug resistance inbreast cancer [J]. Endocr Relat Cancer2003;10:43-73.
    [38] Mechetner E, Kyshtoobayeva A, Zonis S, et al. Levels of multidrug resistance(MDR1) P-glycoprotein expression by human breast cancer correlate with invitro resistance to Taxol and doxorubicin [J]. Clin Cancer Res1998;4:389-98.
    [39] Davies G, Salter J, Hills M, et al. Correlation between cyclooxygenase-2expression and angiogenesis in human breast cancer [J]. Clin Cancer Res2003;9:2651-6.
    [40] Surowiak P, Materna V, Matkowski R, et al. Relationship between theexpression of cyclooxygenase2and MDR1/Pglycoprotein in invasive breastcancers and their prognostic significance [J]. Breast Cancer Res2005;7:R862-70.
    [41] Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role ofATP-dependent transporters [J]. Nat Rev Cancer2002;2:48-58.
    [42] Rudas M, Filipits M, Taucher S, et al. Expression of MRP1, LRP and Pgp inbreast carcinoma patients treated with preoperative chemotherapy [J]. BreastCancer Res Treat2003;81:149-57.
    [43] Filipits M, Pohl G, Rudas M, et al. Clinical role of multidrug resistance protein1expression in chemotherapy resistance in early-stage breast cancer: theAustrian Breast and Colorectal Cancer Study Group[J]. J Clin Oncol2005;23:1161-8.
    [44] Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated bythe multidrug resistance proteins MRP1and MRP2[J]. Cancer Res1999;59:2532-5.
    [45] Hirohashi T, Suzuki H, Sugiyama Y. Characterization of the transportproperties of cloned rat multidrug resistance-associated protein3(MRP3)[J]. JBiol Chem1999;274:15181-5.
    [46] Zeng H, Rea PA, et al. MRP subfamily transporters and resistance to anticanceragents[J]. J Bioenerg Biomembr2001;33:493-501.
    [47] Ni Z, Bikadi Z, Rosenberg MF, et al. Structure and function of the human breastcancer resistance protein (BCRP/ABCG2)[J]. Curr Drug Metab,2010,11(7):603-17.
    [48] Assaraf YG. The role of multidrug resistance efflux transporters in antifolateresistance and folate homeostasis[J]. Drug Resistance Updates.2006;9(4-5):227–46.
    [49] Imai Y, Asada S, Tsukahara S, et al. Breast cancer resistance protein exportssulfated estrogens but not free estrogens [J]. Mol Pharmacol2003;64:610–8.
    [50] Imai Y, Ishikawa E, Asada S, et al. Estrogen-mediated post transcriptionaldown-regulation of breast cancer resistance protein/ABCG2[J]. Cancer Res2005;65:596–604.
    [51] Ding XW, Wu JH, Jiang CP. ABCG2: a potential marker of stem cells and noveltarget in stem cell and cancer therapy [J]. Life Sci,2010,86(17-18):631-7.
    [52] Sarkadi B, Homolya L, Szakács G, et al. Human multidrug resistance ABCBand ABCG transporters: participation in a chemoimmunity defense system[J]. Physiological Reviews.2006;86(4):1179-236.
    [53] Liu FS. Mechanisms of chemotherapeutic drug resistance in cancer therapy—aquick review [J].Taiwanese Journal of Obstetrics and Gynecology.2009;48(3):239-44.
    [54] Robey RW, Polgar O, Deeken J, et al. ABCG2: determining its relevance inclinical drug resistance [J]. Cancer and Metastasis Reviews.2007;26(1):39-57.
    [55] Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties ofmammary epithelial stem cells[J]. Nature.2006;439(7079):993-7.
    [56] Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2isexpressed in a wide variety of stem cells and is a molecular determinant of theside-population phenotype[J]. Nature Medicine.2001;7(9):1028-34.
    [57] Kamath K, Wilson L, Cabral F, et al. BetaIII-tubulin induces paclitaxelresistance in association with reduced effects on microtubule dynamicinstability[J]. J Biol Chem2005;280:12902-7.
    [58] Hasegawa S, Miyoshi Y, Egawa C, et al. Prediction of response to docetaxel byquantitative analysis of class I and III betatubulin isotype mRNA expression inhuman breast cancers[J]. Clin Cancer Res2003;9:2992-7.
    [59] Kavallaris M, Tait AS, Walsh BJ, et al. Multiple microtubule alterations areassociated with Vinca alkaloid resistance in human leukemia cells[J]. CancerRes2001;61:5803-9.
    [60] Wang Y, Cabral F. Paclitaxel resistance in cells with reduced beta-tubulin[J].Biochim Biophys Acta2005;1744:245-55.
    [61] Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutationsinduced by desoxyepothilone B: implications for drug-target interactions[J].Chem Biol2003;10:597-607.
    [62] Zhang CC, Yang JM, White E, et al. The role of MAP4expression in thesensitivity to paclitaxel and resistance to vinca alkaloids in p53mutant cells[J].Oncogene1998;16:1617-24.
    [63] Rouzier R, Rajan R, Wagner P, et al. Microtubule-associated protein tau: amarker of paclitaxel sensitivity in breast cancer[J]. Proc Natl Acad Sci USA2005;102:8315-20.
    [64] Lee F, Castaneda S, Inigo I, et al. Ixabepilone (BMS-247550) plus trastuzamabcombination chemotherapy induces synergistic antitumor efficacy in HER2dependent breast cancers and is accompanied by modulation of molecularresponse markers[J]. ASCO2005;2005(abstract561).
    [65] Onyenadenum A, Gogas H, Markopoulos C, et al. Mitoxantrone plusvinorelbine in pretreated patients with metastatic breast cancer [J]. J Chemother2007;19:582-9.
    [66] Lewis LJ, Mistry P, Charlton PA, et al. Mode of action of the novel phenazineanticancer agents XR11576and XR5944[J]. Anticancer Drugs2007;18:139-48.
    [67] Sladek NE. Aldehyde dehydrogenase-mediated cellular relative insensitivity tothe oxazaphosphorines[J]. Curr Pharm Des1999;5:607-25.
    [68] Zhang J, Tian Q, Chan SY, et al. Insights into oxazaphosphorine resistance andpossible approaches to its circumvention[J]. Drug Resist Updat2005;8:271-97.
    [69] O’Connor PM, Jackman J, Bae I, et al. Characterization of the p53tumorsuppressor pathway in cell lines of the National Cancer Institute anticancer drugscreen and correlations with the growth-inhibitory potency of123anticanceragents[J].Cancer Res1997;57:4285-300.
    [70] Gasco M, Yulug IG, Crook T. TP53mutations in familial breast cancer:functional aspects[J]. Hum Mutat2003;21:301-6.
    [71] Aas T, Borresen AL, Geisler S, et al. Specific P53mutations are associated withde novo resistance to doxorubicin in breast cancer patients[J]. Nat Med1996;2:811-4.
    [72] Barton MC, Akli S, Keyomarsi K. Deregulation of cyclin E meets dysfunctionin p53: closing the escape hatch on breast cancer [J]. J Cell Physiol2006;209:686-94.
    [73] Bernstein C, Bernstein H, Payne CM, et al. DNA repair/proapoptotic dual-roleproteins in five major DNA repair pathways: fail-safe protection againstcarcinogenesis[J]. Mutat Res2002;511:145-78.
    [74] Son BH, Ahn SH, Ko CD, et al. Significance of mismatch repair proteinexpression in the chemotherapeutic response of sporadic invasive ductalcarcinoma of the breast [J]. Breast J2004;10:20-6.
    [75] Fedier A, Schwarz VA, Walt H, et al. Resistance to topoisomerase poisons dueto loss of DNA mismatch repair [J]. Int J Cancer2001;93:571-6.
    [76] Simstein R, Burow M, Parker A, et al. Apoptosis, chemoresistance, and breastcancer: insights from the MCF-7cell model system [J]. Exp Biol Med(Maywood)2003;228:995-1003.
    [77] Vegran F, Boidot R, Oudin C, et al. Overexpression of caspase-3s splice variantin locally advanced breast carcinoma is associated with poor response toneoadjuvant chemotherapy[J]. Clin Cancer Res2006;12:5794-800.
    [78] Ogier-Denis E, Codogno P. Autophagy: a barrier or an adaptive response tocancer[J]. Biochim Biophys Acta2003;1603:113-28.
    [79] Keane MM, Ettenberg SA, Lowrey GA, et al. Fas expression and function innormal and malignant breast cell lines [J]. Cancer Res1996;56:4791-8.
    [80] Shitashige M, Toi M, Yano T, et al. dissociation of Bax from a Bcl-2/Baxheterodimer triggered by phosphorylation of serine70by Bcl-2[J]. J Biochem2001;130:741-8.
    [81] Tanaka K, Iwamoto S, Gon G, et al. Expression of survivin and its relationshipto loss of apoptosis in breast carcinomas [J]. Clin Cancer Res2000;6:127-34.
    [82] Hanahan D, Weinberg R A. The hallmarks of cancer [J]. Cell,2000;100:57-70.
    [83] Sharma S V, Gajowniczek P, Way I P, et al. A common signaling cascade mayunderlie ‘‘addiction’’ to the Src, BCR-ABL, and EGF receptor oncogenes [J].Cancer Cell,2006;10:425-35.
    [84] Danial N N. BCL-2family proteins: Critical checkpoints of apoptotic cell death[J]. Clinical Cancer Research,2007;13:7254-63.
    [85] Forte M, Bernardi P. The permeability transition and BCL-2family proteins inapoptosis: Co-conspirators or independent agents [J]. Cell Death andDifferentiation,2006;13:1287-90.
    [86] Pham C G, Bubici C, Zazzeroni F, et al. Upregulation of twist-1by NF-kappaBblocks cytotoxicity induced by chemotherapeutic drugs [J]. Molecular andCellular Biology,2007;27:3920-35.
    [87] Osford S M, Dallman C L, Johnson P W, et al. Current strategies to target theanti-apoptotic Bcl-2protein in cancer cells [J]. Current Medicinal Chemistry,2004;11:1031-9.
    [88] Parmar K, Mauch P, Vergilio J, et al. Distribution of hematopoietic stem cellsin the bone marrow according to regional hypoxia [J]. Proceedings of theNational Academy of Sciences of the United States of America,2007;104,5431-6.
    [89] Finlay G J, Baguley B C. Effects of protein binding on the in vitro activity ofantitumour acridine derivatives and related anticancer drugs [J]. CancerChemotherapy and Pharmacology,2000;45,417-22.
    [90] Hicks K O, Pruijn F B, Baguley B C, et al. Extravascular transport of the DNAintercalator and topoisomerase poison N-[2-(dimethylamino) ethyl]acridine-4-carboxamide (DACA): Diffusion and metabolism in multicellularlayers of tumor cells [J]. Journal of Pharmacology and ExperimentalTherapeutics,2001;297,1088-98.
    [91] Nakagawa T, Inoue Y, Kodama H, et al. Expression of copper-transportingPtype adenosine triphosphatase (ATP7B) correlates with cisplatin resistance inhuman non-small cell lung cancer xenografts[J]. Oncology Reports,2008;20,265-70.
    [92] Chen K G, Valencia J C, Lai B, et al. Melanosomal sequestration of cytotoxicdrugs contributes to the intractability of malignant melanomas [J]. Proceedingsof the National Academy of Sciences of the United States of America,2006;103,9903-7.
    [93] Bomken S, Fiser K, Heidenreich O, et al. Understanding the cancer stem cell[J].Br J Cancer,2010,103(4):439-45.
    [94] Bortolomai I, Canevari S, Facetti I, et al. Tumor initiating cells: Developmentand critical characterization of a model derived from the A431carcinoma cellline forming spheres in suspension [J]. Cell Cycle,2010,9(6):1194-206.
    [95] Oliveira LR, Jeffrey SS, Ribeiro-Silva A. Stem cells in human breast cancer [J].Histol Histopathol,2010;25(3):371-85.
    [96] Sengupta A, Cancelas JA. Cancer stem cells: a stride towards cancer cures [J]. JCell Physiol,2010;225(1):7-14.
    [97] Li L, Clevers H. Coexistence of quiescent and active adult stem cells inmammals [J]. Science,2010;27:542-5.
    [98] Massague J. TGF beta in cancer [J]. Cell,2008;134:215-30.
    [99] MacKie R M, Reid R, Junor B. Fatal melanoma transferred in a donated kidney16years after melanoma surgery [J]. New England Journal of Medicine,2003;348:567-8.
    [100] Aguirre-Ghiso J A. Models, mechanisms and clinical evidence for cancerdormancy [J]. Nature Reviews Cancer,2007;7:834-46.
    [101] Demicheli R, Retsky M W, Hrushesky W J,et al. Tumor dormancy andsurgery-driven interruption of dormancy in breast cancer: Learning fromfailures [J]. Nature Clinical Practice Oncology,2007;4:699-710.
    [102] Koebel C M, Vermi W, Swann J B, et al. Adaptive immunity maintains occultcancer in an equilibrium state [J]. Nature,2007;450:903-7.
    [103] Kortylewski M, Komyod W, Kauffmann M E, et al. Interferon-gammam ediatedgrowth regulation of melanoma cells: Involvement of STAT1-dependent andSTAT1-independent signals [J]. Journal of Investigative Dermatology,2004;122:414-22.
    [104] Muller-Hermelink N, Braumuller H, Pichler B, et al. TNFR1signaling andIFN-gamma signaling determine whether T cells induce tumor dormancy orpromote multistage carcinogenesis [J]. Cancer Cell,2008;13:507-18.
    [105] Kramer A, Lukas J, Bartek J. Checking out the centrosome [J]. Cell Cycle,2004;3:1390-3.
    [106] Loeb L A, Bielas J H, Beckman R A. Cancers exhibit a mutator phenotype:Clinical implications [J]. Cancer Research,2008;68:3551-7.
    [107] Kuilman T, Michaloglou C, Vredeveld L C, et al. Oncogene-inducedsenescence relayed by an interleukin-dependent inflammatory network [J]. Cell,2008;133:1019-31.
    [108] Smyth M J, Godfrey D I, Trapani J A. A fresh look at tumor immunosurveillanceand immunotherapy[J]. Nature Immunology,2001;2:293-9.
    [109] Zitvogel L, Apetoh L, Ghiringhelli,F, et al. Immunological aspects of cancerchemotherapy[J]. Nature Reviews Immunology,2008;8:59-73.
    [110] Chen R, Alvero A B, Silasi D A, et al. Cancers take their Toll—the functionand regulation of Toll-like receptors in cancer cells[J]. Oncogene,2008;27:225-33.
    [111] Hicks A M, Riedlinger G, Willingham M C, et al.Transferable anticancerinnate immunity in spontaneous regression/complete resistance mice[J].Proceedings of the National Academy of Sciences of the United States ofAmerica,2006;103:7753-8.
    [112] Panaretakis T, Joza N, Modjtahedi N,et al. The co-translocation of ERp57andcalreticulin determines the immunogenicity of cell death[J].Cell Death andDifferentiation,2008;15:1499-509.
    [113] Ozben T. Mechanisms and strategies to overcome multiple drug resistance incancer[J]. FEBS Letters,2006;580:2903-9.
    [114] Szakacs G, Paterson J K, Ludwig J A,et al. Targeting multidrug resistance incancer[J]. Nature Reviews Drug Discovery,2006;5:219-34.
    [115] Dubikovskaya E A, Thorne S H, Pillow T H, et al. Overcoming multidrugresistance of small-molecule therapeutics through conjugation with releasableoctaarginine transporters [J]. Proceedings of the National Academy of Sciencesof the United States of America,2008;105:12128-33.
    [116] Thomas H, Coley HM. Overcoming multidrug resistance in cancer: an updateon the clinical strategy of inhibiting Pglycoprotein[J]. Cancer Control2003;10:159-65.
    [117] Solary E, Witz B, Caillot D, et al. Combination of quinine as a potentialreversing agent with mitoxantrone and cytarabine for the treatment of acuteleukemias: a randomized multicenter study[J]. Blood1996;88:1198-205.
    [118] Smith L, Watson M, O’Kane S, et al. The analysis of doxorubicin resistance inhuman breast cancer cells using antibody microarrays[J]. Mol Cancer Ther2006;5:2115-20.
    [119] Menefee M, Fan C, Edgerly M, et al. Tariquidar (XR9576) is a potent andeffective P-glycoprotein (Pgp) inhibitor that can be administered safely withchemotherapy[J]. J Clin Oncol2005;23.[abstract3093].
    [120] Pusztai L, Wagner P, Ibrahim N, et al. Phase II study of tariquidar, a selectiveP-glycoprotein inhibitor, in patients with chemotherapy-resistant, advancedbreast carcinoma[J]. Cancer2005;104:682-91.
    [121] Abraham J, Edgerly M, Wilson R, et al. A phase I study of the P-glycoproteinantagonist tariquidar in combination with vinorelbine[J]. Clinical CancerResearch,2009;15:3574-82.
    [122] Ruff P, Vorobiof D A, Jordaan J P, et al. A randomized, placebo-controlled,double-blind phase2study of docetaxel compared to docetaxel plus zosuquidar(LY335979) in women with metastatic or locally recurrent breast cancer whohave received one prior chemotherapy regimen[J]. Cancer Chemotherapy andPharmacology,2009;64:763-8.
    [123] Limtrakul P, Khantamat O, Pintha K. Inhibition of P-glycoprotein function andexpression by kaempferol and quercetin[J]. J Chemother2005;17:86-95.
    [124] Saeki T, Nomizu T, Toi M, et al. Dofequidar fumarate (MS-209) incombination with cyclophosphamide, doxorubicin and flurouracil for patientswith advanced or recurrent breast cancer[J]. J Clin Oncol2007;25:411-7.
    [125] Molnar J, Gyemant N, Tanaka M, et al. Inhibition of multidrug resistance ofcancer cells by natural diterpenes, triterpenes and carotenoids[J]. Curr PharmDes2006;12:287-311.
    [126] Serra V, Markman B, Scaltriti M, et al. NVP-BEZ235, a dual PI3K/mTORinhibitor, prevents PI3K signaling and inhibits the growth of cancer cells withactivating PI3K mutations[J]. Cancer Research,2008;68:8022-30.
    [127] Nguyen M, Marcellus R C, Roulston A, et al. Small molecule obatoclax(GX15-070) antagonizes MCL-1and overcomes MCL-1-mediated resistance toapoptosis[J]. Proceedings of the National Academy of Sciences of the UnitedStates of America,2007;104:19512-7.
    [128] Nakanishi C, Toi M. Nuclear factor-kappaB inhibitors as sensitizers toanticancer drugs[J]. Nature Reviews Cancer,2005;5:297-309.
    [129] Wang W, McLeod H L, Cassidy J. Disulfirammediated inhibition ofNF-kappaB activity enhances cytotoxicity of5-fluorouracil in human colorectalcancer cell lines[J]. International Journal of Cancer,2003;104:504-11.
    [130] Bunney T D, Katan M. Phosphoinositide signaling in cancer: Beyond PI3Kand PTEN[J]. Nature Reviews Cancer,2010;10:342-52.
    [131] Cleary J M, Shapiro G I. Development of phosphoinositide-3kinase pathwayinhibitors for advanced cancer[J]. Current Oncology Reports,2010;12:87-94.
    [132] Hersey P, Zhuang L, Zhang X D. Current strategies in overcoming resistanceof cancer cells to apoptosis melanoma as a model[J]. International Review ofCytology,2006;251:131-58.
    [133] van’t Veer LJ, Dai H, van de Vijver MJ, et al. Gene expression profilingpredicts clinical outcome of breast cancer[J]. Nature2002;415:530-6.
    [134] Cleator S, Tsimelzon A, Ashworth A, et al. Gene expression patterns fordoxorubicin (Adriamycin) and cyclophosphamide (Cytoxan)(AC) response andresistance[J]. Breast Cancer Res Treat2006;95:229-33.
    [135] Zhang J, Tian Q, Chan SY, et al. Insights into oxazaphosphorine resistance andpossible approaches to its circumvention[J].Drug Resist Updat2005;8:271-97.
    [136] Chin K, deVries S, Fridyland J, et al. Genomic and transcriptional abberationslinked to breast cancer pathophysiologies[J].Cancer Cell2006;10:529-41.
    [137] Hodgkinson VC, Eagle GL, Drew PJ, et al.Biomarkers of chemotherapyresistance in breast cancer identified by proteomics: current status[J]. Cancerletters2010;294:13-24.
    [138] Chuthapisith S, Layfield R, Kerr I, et al.Proteomic profiling of MCF-7breastcancer cells with chemoresistance to different types of anti-cancer drugs[J]. IntJ Oncol.2007;30:1545-51.
    [139] Victoria C, Vijay A, Dalia E, et al, Pilot and feasibility study: comparativeproteomic analysis by2-DE MALDI TOF/TOF MS reveals14-3-3proteins asputative biomarkers of response to neoadjuvant chemotherapy in ER-positivebreast cancer[J], Journal of proteomics,2012;75:2745-52
    [140] Vecchio SD, Ciarmiello A, Potena MI, et al. In vivo detection ofmultidrug-resistant (MDR1) phenotype by technetium-99m sestamibi scan inuntreated breast cancer patients[J]. Eur J Nucl Med1997;24:150-9.
    [141] Sun SS, Hsieh JF, Tsai SC, et al. MIBI scintimammography results[J]. CancerLett2000;153:95-100.
    [142] De Soto JA, Deng CX. PARP-1inhibitors: are they the longsought geneticallyspecific drugs for BRCA1/2-associated breast cancers[J]. Int J Med Sci2006;3:117-23.
    [143] Wong VK, Chiu P, Chung SS, et al. Pseudolaric acid B, a novelmicrotubule-destabilizing agent that circumvents multidrug resistancephenotype and exhibits antitumor activity in vivo[J].Clin Cancer Res2005;11:6002-11.
    [144] Wartmann M, Altmann KH. The biology and medicinal chemistry ofepothilones[J]. Curr Med Chem Anti–Canc Agents2002;2:123-48.
    [145]Lin X, Zhang X, Wang Q, et al. Perifosine downregulates MDR1gene expressionand reverses multidrug-resistant phenotype by inhibiting PI3K/Akt/NF-KB signalingpathway in a human breast cancer cell line[J]. Neoplasma2012;3:248-56.
    [146] Sen Li, Yu Lei, Yingjie Jia,et al.Piperine, a piperidine alkaloid from Pipernigrum re-sensitizes P-gp, MRP1and BCRP dependent multidrug resistantcancer cells[J]. Phytomedicine2011;19:83–7.
    [147] Ai S, Jia T, Ai W, et al. Targeted delivery of doxorubicin through conjugationwith EGF receptor-binding peptide overcomes drug resistance in human coloncancer cells[J]. Br J Pharmacol.2012;12:12.
    [148] Amsel AD, Rathaus M, Kronman N, et al. Regulation of the proapoptoticfactor Bax by Ku70-dependent deubiquitylation[J]. Proc Natl Acad Sci USA2008;105:5117-22.
    [149] Karran P. DNA double strand break repair in mammalian cells[J]. Curr OpinGenet Dev2000;10:144-50.
    [150] Kanaar R, Hoeijmakers JH, van Gent DC. Molecular mechanisms of DNAdouble strand break repair[J]. Trends Cell Biol1998;8:483-9.
    [151] Kobayashi J, Iwabuchi K, Miyagawa K,et al. Current topics in DNAdouble-strand break repair[J]. J Radiat Res2008;49:93-103.
    [152] Uziel T, Lerenthal Y, Moyal L,et al. Requirement of the MRN complex forATM activation by DNA damage[J]. EMBO J2003;22:5612-21.
    [153] Aylon Y, Kupiec M. Cell cycle-dependent regulation of double-strand breakrepair: a role for the CDK[J]. Cell Cycle2005;4:259-61.
    [154] Paull TT, Gellert M. The3' to5' exonuclease activity of Mre11facilitatesrepair of DNA double-strand breaks[J]. Mol Cell1998;1:969-79.
    [155] Helleday T, Lo J, van Gent DC,et al. DNA double-strand break repair: frommechanistic understanding to cancer treatment[J]. DNA Repair2007;6:923-35.
    [156] Jeggo PA. DNA breakage and repair[J]. Adv Genet1998;38:185-218.
    [157] Chappell C, Hanakahi LA, Karimi-Busheri F, et al. Involvement of humanpolynucleotide kinase in double-strand break repair by non-homologous endjoining[J]. EMBO J2002;21:2827-32.
    [158] Ma Y, Pannicke U, Schwarz K, et al. Hairpin opening and overhangprocessing by an Artemis/DNA-dependent protein kinase complex innonhomologous end joining and V(D)J recombination[J]. Cell2002;108:781-94.
    [159] Wright WE, Shay JW. Telomere-binding factors and general DNA repair[J].Nat Genet2005;37:116-8.
    [160] Celli GB, Denchi EL, de Lange T. Ku70stimulates fusion of dysfunctionaltelomeres yet protects chromosome ends from homologous recombination[J].Nat Cell Biol2006;8:885-90.
    [161] Porter SE, Greenwell PW, Ritchie KB, Petes TD. The DNA-binding proteinHdf1p(a putative Ku homologue) is required for maintaining normal telomerelength in Saccharomyces cerevisiae[J]. Nucleic Acids Res1996;24:582-5.
    [162] Polotnianka RM, Li J, Lustig AJ. The yeast Ku heterodimer is essential forprotection of the telomere against nucleolytic and recombinational activities[J].Curr Biol1998;8:831-4.
    [163] Hsu HL, Gilley D, Galande SA, et al. Ku acts in a unique way at themammalian telomere to prevent end joining[J]. Genes Dev2000;14:2807-12.
    [164] Chai W, Ford LP, Lenertz L, et al. Human Ku70/80associates physically withtelomerase through interaction with Htert[J]. J Biol Chem2002;277:47242-7.
    [165] Zimmermann KC, Bonzon C, Green DR. The machinery of programmed celldeath[J].Pharmacol Ther2001;92:57-70.
    [166] Brill A, Torchinsky A, Carp H, et al. The role of apoptosis in normal andabnormal embryonic development[J]. J Assist Reprod Genet1999;16:512-9.
    [167] Vicencio JM, Galluzzi L, Tajeddine N, et al. Senescence, apoptosis orautophagy? When a damaged cell must decide its path—a mini-review[J].Gerontology2008;54:92-9.
    [168] Cohen HY, Lavu S, Bitterman KJ, et al. Acetylation of the C terminus of Ku70by CBP and PCAF controls Bax-mediated apoptosis[J]. Mol Cell2004;13:627-38.
    [169] Reed JC. Proapoptotic multidomain Bcl-2/Bax-family proteins: mechanisms,physiological roles and therapeutic opportunities[J]. Cell Death Differ2006;13:1378-86.
    [170] Antignani A, Youle RJ. How do Bax and Bak lead to permeabilization of theouter mitochondrial membrane[J]. Curr Opin Cell Biol2006;18:685-9.
    [171] Zhang H, Kim JK, Edwards CA, et al. Clusterin inhibits apoptosis byinteracting with activated Bax[J]. Nat Cell Biol2005;7(9):909-15.
    [172]赵博,黎瀚,王知勇.乳腺癌化疗药物耐药性的机制浅析.中国当代医药,2011,18(17):9–10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700