用户名: 密码: 验证码:
闭式空气冷却器结构优化与传热特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
闭式空气冷却器以以其节水节能的优点,已经成为工业中重要的换热设备之一,广泛应用于各个领域。本文总结了国内、外翅片热性能的研究现状和最新研究动态,对翅片外形尺寸提出优化。
     本文综合研究了翅片强化效率与翅片体积的关系;研究了翅片高度与翅片厚度的配比对翅片强化效率的影响,并得出翅片高度与翅片厚度的最佳配比;以及研究在不同的对流换热系数工况下与之相适应的翅片外型尺寸。
     ①翅片强化效率随着翅片体积的增加而增加。当翅片厚度较薄时,强化效率随着翅片体积的增加而增加的速率较大;当翅片厚度较厚时,薄强化效率随着翅片体积的增加而增加的速率较大。
     ②当翅高翅厚比Hδ= 30时,强化效果效果最佳。
     ③通过MATLAB软件用插值法求出,当翅片换热量3倍于光管换热量时,翅片高度与对流换热系数之间的数值解,再拟合出三倍的定强化效率时对流换热系数与翅片高度的关系式。
     ④当对流换热系数20.0≤αf≤50.0( )W m ? K时,选用翅厚δ= 0.5 mm,翅高H = 17.3 mm的翅片效果最佳,此时翅高翅厚比为34.6 ;当对流换热系数50.0 <αf≤93.3( )2W m ? K时,选用翅厚δ= 1.0 mm,翅高H = 30.0 mm的翅片效果最佳,此时翅高翅厚比为30.0;当对流换热系数93.3 <αf≤100.0( )2W m ? K时,选用翅厚δ= 2.0 mm,翅高H = 60.0 mm的翅片效果最佳,此时翅高翅厚比为30.0。
     ⑤而且当翅厚δ> 2.0 mm时,对强化效率的提高无明显影响。
     本文通过ANSYS软件模拟分析,根据低翅片、高翅片和优化结果建立五个实体模型在不同的工况下进行分析比较,结果表明由三组优化模型分别对应三组工况做出优化,翅片端面温度随对流强化传热系数的增大而逐步降低,强化效果明显。
Closed air cooler has become an important heat exchanger equipment and has been widely used in various fields, because of its conservation of energy and water. Generalized the research development and latest results about thermal performance of Closed air cooler, this paper is primarily made on the optimization of fin’s dimensions with combination of different air convection coefficient.
     This paper analyse the relationship between efficency of the fin and volume of fin, analyse the enhanced efficiency of fins between defferent the ratio of fin height and fin thickness, and optimize the fin dimensions convection at different operating conditions corresponding.
     ①Strengthening the efficiency of fin increases with the increase of fin volume. The more the tin thinner, the more increase rate of enhanced efficiency increases with the increase of fin volume.②The effect of fin strengthen is the best, when height thickness ratio of fin is 30.③by using the MATLAB software, when the fin heat transfer three times the heat transfer tubes, obtained the solution between the fin height and the convective heat transfer coefficient using interpolationthe numerical. And then, fitted the relationship between heat transfer coefficient and height of fin ,when three times the efficiency in value enhancement.
     ④When fin heat transfer coefficient between 20.0 to 50.0 ( )2W m ? K, using fin thickness is 0.5mm, fin height is 17.3mm, the effect of fin strengthen is the best. At this time height thickness ratio of fin is 34.6. When fin heat transfer coefficient between 50.0 to 93.3 ( )2W m ? K, using fin thickness is 1.0mm, fin height is 30.0mm, the effect of fin strengthen is the best. At this time height thickness ratio of fin is 30.0 . When fin heat transfer coefficient between 93.3 to 100.0 ( )2W m ? K, using fin thickness is 2.0mm, fin height is 60.0mm, the effect of fin strengthen is the best. At this time height thickness ratio of fin is 30.0.⑤And when the fin thickess Greater than 2.0mm, the effect of fin strengthen have no effection.
     In this paper, simulating by ANSYS software, set up, analyzed and compared five solid model based on aLow Fin, Hi Fin and the results of optimization in different operating conditions. The results shows that the optimal effection is obvious, which is based on the model by the three groups corresponding to three groups conditions, and end surface temperature of fin reduce with the increase of convective heat transfer enhancement factor gradually.
引文
[1]陈东景.中国工业水资源消耗强度变化的结构份额和效率份额研究[J].中国人口?资源与环境, 2008, 18(3): 211-214.
    [2]苗世蕾,艾景辉.石化空冷器的防腐蚀技术评述[J].腐蚀与防护, 2008, 29(6): 356-358.
    [3]马庆芳.换热器[M].北京:机械工业出版社, 1983: 34-78.
    [4]兰州石油机械研究所.换热器[M].北京:烃加工出版社,1990.
    [5]王福生.国内冷却塔现状及发展方向[J].制冷技术, 1997, (1): 30-31.
    [6]丁文斌,陈保东,庞铭.空气冷却器翅片管强化传热新途径[J].当代化工, 2004, 33 (2): 112-115.
    [7]朱冬生,涂爱民.闭式冷却塔直接供冷及其经济性分析[J].暖通空调, 2008, 38 (4): 61, 100-103.
    [8]庄琛,顾平道.纵向翅片热管在干式空气冷却塔中的应用[J].节能, 2004, (5): 22-25.
    [9]张璐璐,张欢,由世俊,等.闭式冷却塔用于冬季直接供冷的设计及节能分析[J].山东建筑大学学报, 2007, 22 (l): 65-69.
    [10]李永安,常静,徐广利,等.封闭式冷却塔供冷系统气象条件分析[J].暖通空调, 2005, 35 (6): 107-108.
    [11]马义伟,刘纪福,钱辉广.空气冷却器[M].北京:化学工业出版社, 1982.
    [12]王玉,于斐,翟守信,等.翅片管及其在管壳式换热器的使用[J].管道技术与设备, 2000, (3): 22-24.
    [13] Ganapathy V. Process - Design Critera[M]. Chemical Engineering, March 27, 1978.
    [14]刘占斌.翅片管换热过程的数值模拟及实验研究[D].西安理工大学, 2008.3 : 2-3.
    [15]马文昌.换热器内的对流传热[M].北京:科学出版社, 1986: 15-33.
    [16]马义伟.空冷器设计与应用[M].哈尔滨:哈尔滨工业大学出版社, 1998: 27.
    [17]中华人民共和国国家标准.空气式换热器(GB/T 15386-94). 1995, 8.
    [18]郭宏伟.单翅片管肋片结构的优化设计[J].化工时刊, 2001, (11): 25-28.
    [19]程菲,苏保玲.翅片管的传热分析及其表面几何参数的优化[J].建筑热能通风空调, 2003, 22 (4): 44-48.
    [20] Jaber. H, Webb R.L. Design of Cooling Towers by the Effeetiveness-NTU method [J]. ASME Journal of Heat Transfer, 1989, 111: 837-843.
    [21] Romero R, Sen Mayans K.T. Effect of Fin Spacing on Convection in a Plate Fin and Tube Heat Exchanger[J]. Heat Mass Transfer, 2000, 43(1): 39-51.
    [22] Leon O.A., De M.G., Dick Erik Vierendeels. Jan. Staggered heat sinks with sinks with aerodynamic cooling fins[J]. Microelectronics Reliability, 2004, 4(7): 1181-1187.
    [23] O'Brien J. E,Sohal M. S,Wallstedt P.C. Local heat transfer and pressure drop for finned-tube heat exchangers using oval tubes and vortex generators[J]. Journal of Heat Transfer, 2004, 126(5): 826-835.
    [24] Leon Octavio, De M.G., Dick Erik. Study of the optimal layout of cooling fins in forced convection cooling[J]. Microelectronics Reliability, 2002, 42(7): 1101-1111.
    [25] Kawaguchi Kiyoshi, Okui Kenichi, Kashi Takaharu. The heat transfer and pressure drop characteristics of finned tube banks in forced convection (Comparison of the pressure drop characteristics of spiral fins and serrated fins)[J]. Heat Transfer-Asian Research, 2004, l33(7): 431-444.
    [26] Chen H.T., Fang L.C. Simple computational method for conjugate conduction-natural convection along a vertical plate fin[J]. Engineering Analysis with Boundary Elements,1992, 10(2): 93-98.
    [27] Kayansayan N. Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection[J]. Experimental Thermal and Fluid Science, 1993, 7(3): 177-188.
    [28] Matos R.S, Vargas J.V.C, Laursen T.A,. Bejan, A. Optimally staggered finned circular and elliptic tubes in forced convection[J]. International Journal of Heat and Mass Transfer, 2004, l47(6-7): 134-135.
    [29]陈占秀.纵流式换热器流动与传热特性的研究[D].天津:天津大学, 2003.
    [30] Myers G., Miehell J.W., and Lindeman C.E. The Transient Response of Heat Exehangers Having an Infinite Capacitance Rate Fluid[J]. ASME. Journal of Heat Transfer, Vol.92, 1980.
    [31] Yamashite H., Izumi R., and Yamaguchi S. Analysis of the Dynamic Charaeteristic of crossflow Heat Exehangers with Both Fluids Unrmxed[J]. ASME Bulleton, Vol.21, 1987.
    [32] Tao W.Q., Qu Z.G., He Y.L. A novel segregated algorithm for incompressible fluid flow and heat transfer Problems[J]. Numerical Heat Transfer, PartB, 2004, 45: 1-17.
    [33] Hou Pingli, Tao Wenquan, Yu Maozheng. Refinement of the convective boundedness criterion of Gaskell and Lau[J]. Engineering ComPutations, 2003, 20(8): 1023 - 1043.
    [34] Liu X.L., Tao W.Q., He Y.L., Wang Q.W. Control of convergence in a computationalfluid dynamie simulations using fuzzy logic[J]. SCI CHINA SER E 45(5), OCT 2002.
    [35]商福民,张永. ANSYS有限元分析系统在数值传热中的应用[J].长春工程学院.长春工程学院报. 2004, 5 (1): 18-20.
    [36]马义韦,刘纪福,钱辉广.空气冷却器[M].化学工业出版社, 1982.
    [37]钱壬章,余昌铭,林文贵.传热分析与计算[M].高等教育出版社, 1987.
    [38]朱聘冠.换热器原理及计算[M].清华大学出版社, 1987.
    [39]张奕,郭恩震.传热学[M].东南大学出版社, 2004.
    [40]张靖周.高等传热学[M].科学出版社, 2009.
    [41]屠珊,杨冬,黄锦涛.椭圆翅片管空冷器流动传热特性的研究[J].热能动力工程, 2000, 15(5): 455-458.
    [42]施晨洁,陈亚平,施明恒.板翅式换热器空气冷却侧传热性能的数值模拟[J].工程热物理学报, 2007, 28(4): 664-666.
    [43] Larry G Berglund. Comfort and humidity[J]. ASHRAE Journal, 1998, (9): 428.
    [44]刘训海,张华.工程计算中关于翅片效率的一个问题[J].制冷与空调. 2008, 08(2):25-28.
    [45]薛覆中.工程最优化技术[M].天津:天津大学出版社, 1998.
    [46]刘乃玲,陈伟,邵东岳,等.闭式冷却塔的结构优化[J].工业用水与废水. 2007, 38(4): 114-117.
    [47] Ala Hasan, Kai Siren. Theoretical and computational analysis of closed wet cooling towers and its applications in cooling buildings[J]. Energy and Buildings, 2002, 34: 377-486.
    [48]林宗虎,汪军,李瑞阳,等.强化传热技术[M].北京:化学工业出版社, 2007, 12.
    [49]钟理,谭盈科.国外强化传热技术的研究与进展[J]化工进展, 1993, 4: 1~5.
    [50]崔海亭,彭培英.强化传热型新技术及其应用[M]北京:化学工业出版社, 2006, 1.
    [51] Garimella S, Ceistensen R.N. Heat transfer and pressure drop characteristics of spirally fluted annuli: Part I-Hydrodynamics[J]. Journal of Heat Transfer, February , 1995, 117: 54~60.
    [52]黄德斌,邓先和.螺旋椭圆扁管强化传热研究[J].油化工设备, 2003, 32 (3): 1~4.
    [53] Sahiti N, Durst F, Dewan A. Heat Transfer Enhancement by fin Elements[J]. International Journal of Heat and Mass Transfer, 2005, 48: 738~4747.
    [54] Lee S, Choi U.S. Measuring thermal conductivity of fluids containing oxide nanoparticals[J]. ASME J Heat Transfer, 1999, 121: 280~289.
    [55]夏清,陈常贵.化工原理[M].天津:天津大学出版社, 2005, 01: 221.
    [56]冯毅,李毅欣.环形翅片的分析模拟与优化设计[J].低温与超导. 2010, 38(1):53-55.
    [57]王福军.计算流体动力学分析[M].北京:清华大学出版社, 2004: 13-172.
    [58]吴德铭,郜冶.使用计算流体力学基础[M].哈尔滨:哈尔滨工程大学出版社, 2006: 66-73.
    [59]王建平.计算流体动力学(CFD)及其在工程中的应用[J].机电设备, 1994(5): 39-48.
    [60]王福军.计算流体动力学分析:CFD软件原理及应用[M].北京:清华大学出版社, 2004, 09: 2, 13-14.
    [61]王启东. CFD技术在板翅式换热器设计中的应用[J].低温与超导, 2002. 8(3):
    [62]张朝晖. ANSYS热分析教程与实例解析[M].中国铁道出版社, 2005, 06: 2-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700