用户名: 密码: 验证码:
激光晶体热效应测算系统的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LD泵浦的全固态激光器(Laser diode pumped solid-state laser)具有效率高、寿命长、工作稳定、结构紧凑、可全固化等优点,是近年来国际上发展最快、最有潜力的激光器之一。在国防、军事、科研、光通讯、材料加工、医疗卫生、光电子产业等领域获得了广泛应用。但是,激光的工作物质吸收泵浦能量后会在激光晶体内产生不均匀的温度梯度,引起端面形变,并和热效应引起的激光晶体折射率的变化共同作用,产生热透镜效应,严重影响了激光光束的质量和激光效率的提高,给激光器的设计和应用带来了相当大的阻碍。所以,抑制和消除激光晶体的热效应就成为全固态激光器研究中的关键因素之一。本文以Yb:YAG晶体为例,通过建立激光晶体热传导模型,求解泊松方程,得到不同Yb~(3+)离子掺杂浓度的Yb:YAG晶体内温度场分布及由此引起的光程差和热焦距,并求出在不同泵浦半径下的端面温度分布。研究结果表明:随着Yb~(3+)离子掺杂浓度增加,Yb:YAG晶体端面中心温度升高,晶体中心轴温度衰减加快,热焦距则越小。而随着泵浦光斑半径的增大,晶体端面中心温度降低。
     由于激光晶体类型广泛,热效应的计算过程比较繁琐,计算热效应的程序和方法非常的混杂,一直以来都没有统一的要求或者规则。在计算、科研过程中难免会给使用者造成不必要的困扰,浪费大量宝贵的时间和精力,大大的降低了科研的效率。而且以往的计算都没有考虑晶体周边与冷却液之间的对流传热,这就大大影响了计算的精确度,对于激光器的稳定性非常的不利。在此,我们将更全面考虑影响晶体热效应的因素,并利用计算机混编语言建立一个以界面的形式测算激光晶体热效应的软件系统,为激光晶体的使用和科研提供一个更便捷方法。
     其主要内容如下:
     1.对全固体激光器的发展历史进行了回顾;分析了全固态激光器的主要特性;介绍了激光晶体热效应的产生原因及不良影响。
     2.根据激光晶体热效应的基本理论,建立了热效应的理论模型;介绍了几种常用的计算方法;找到了抑制和消除激光晶体热效应的不同因素。
     3.建立了矩形截面Yb:YAG晶体的热模型,通过求解热传导Possion方程,得到了不同Yb~(3+)离子掺杂浓度的Yb:YAG晶体内温度场分布以及由此引起的光程差和热焦距,并求出在不同泵浦半径下的端面温度分布。当泵浦功率为10W、泵浦光斑半径为320μm,Yb~(3+)掺杂浓度分别为5at.%、10at.%、20at%时,Yb:YAG晶体端面最高温度分别为67.7℃、147.8℃、247.7℃,即Yb~(3+)掺杂浓度越高,晶体端面中心温度越高,热透镜效应越严重;对于同一个Yb:YAG晶体,当泵浦半径分别为200μm、320μm、400μm,其端面中心温度分别为174.6℃、147.8℃、134.9℃。即泵浦光半径越小,其端面中心温度越高,这一结论对于改善Yb:YAG晶体热效应提供了理论依据。
     4.利用计算机混编语言,将完成的计算热效应的matlab程序联系起来,形成一个整体软件,以界面输入参数的形式,快速方便的完成对不同晶体热效应的计算和输出。
Diode-pumped solid-state laser is widely used in national defence, military, basic research, communication, material processing, medical therapeutics and sanitation, photoelectron industry etc. It has lots of advantages, such as high efficiency, long lifetime, stability, compactness and all solid-state construction. So, it has become the researching emphasis because unique merits. In the design of laser diode end-pumped all-solid state lasers,a temperature gradient is formed in the laser crystal and as a result of the absorption of the pump power, the temperature at the center of the laser crystal is higher than the edge, so a deformation of the surface appeared and a thin convex was formed. Moreover, the change of refractive index of the laser crystal devotes to the thermal lens effect and makes the designing of the laser cavity more difficult. The matter of hindering scaling of diode-pumped solid-state lasers is heat deposition within the laser medium. The thermal conduct model of laser crystal was established.Using Possion equation, the temperature distributionin, the OPD and focal length in Yb:YAG crystal were obstained with different Yb ions concentration. Based on the former calculation, we obtained the temperature distribution of end-face with different pumping radius. The study shows that in the same condition, when the Yb ions concentration increase, the central temperature of Yb:YAG crystal’s pumped face will rise and the temperature of crystal central axis will reduce-faster,and the focal length will lower.When the pumping radius increase,the central temperature of Yb:YAG crystal will reduce.
     As the laser crystal type of broad, the calculation of thermal effect of the process is relatively complicated to calculate thermal effects of the procedures and methods is very mixed, that has been no uniform requirements or rules.In the calculation, users of the research process will inevitably cause unnecessary distress, wasting valuable time and energy, greatly reduces the efficiency of scientific research. And the calculation did not take into account the past and cooling liquid crystal between the subordinate of the convective heat, which greatly affect the accuracy of the calculation for the stability of the laser is very negative. Here, we will be more fully into account the factors that affect the crystal thermal effects, and use the computer to build a mixed language interface in the form of specialized measurement systems thermal effect of laser crystals, laser crystals for the use and scientific research to provide a more comprehensive measurement system.
     The contents can be outlined as follows:
     1. Reviewed the history and progress of diode-pumped solid-state lasers; and analysed the characters of the diode-end-pumped solid-state laser; then presented the cause of engendering and the harmful effect of laser crystal.
     2. On the basis of the thermal effect theory of laser crystal. By using this theory, the thermal conduct model of laser crystal was established. Some considerations of useful methods were presented. And then found the difference elements of elimination and inhibition.
     3. The rectangle thermal conduct model of Yb:YAG laser crystal was established. Using Possion equation,the temperature distribution, the OPD and the thermal focal length in Yb:YAG laser crystal were obstained with different Yd ions concentration, and the temperature of pumped face distribution was obtained with different pumping radius. When the pumping power is 10W, the radius of pumping beam is 320μm, and the Yd ions concentration separately were 5at%, 10at%, 20at%, the central temperature of Yb:YAG crystral is 67.7℃,147.8℃,247.7℃. we obtained that , when the Yb ions concentration increase, the end-pumped central temperature of Yb:YAG crystal’s was higher, the thermal effect was aggravating. When the radius of pumping beam are 200μm, 320μm, 400μm, the central temperature of end-pump is 174.6℃,147.8℃and 134.9℃. When the pumping radius reduce, the central temperature of Yb:YAG crystal will higher. The conclusion will give a theoretical direction for improving the thermal effect of Yb:YAG crystal.
     4. Using the computer being enrolled together language, the computation thermal reaction matlab procedure association which will complete is, forms an over all software, by contact surface input parameter form, fast convenient completion to different crystal thermal reaction computation and output.
引文
[1] T. H. Maiman, Stimulated optical radiation in ruby. Nature, 1960, 187:493~494
    [2] R. Newman, Excitation of the Nd fluorescence in CaWO4 by recombination radiation in GaAs.J. Appl. Phys, 1963, 34:437
    [3] R.Newman, J Appl Phys., Vol 34, P 437(1963)
    [4] P.P. Sorokin, M.J. Stevenson Phys. Rev. Letters 5, 557 (1960); Advances in Quantum Electronics (Columbia University Press, New York, 1961), p. 65
    [5] E. Sniter Phys. Rev. Letters 7, 444 (1961)
    [6] L. F. Johnson, L. Nassau: Proc. IRE 49, 1704 (1961)
    [7] L.J.Rosenkrantz,“GaAs diode-pumped Nd:YAG laser’’,J. Appl. Phys., vol.43, pp.4603~4605, 1973.
    [8] L. C. Conant, etal, GaAs Laser Diode Pumped Nd:YAG Laser. Appl. Opt., 1974, 13(11):2457~2458
    [9] J. E. Jackson, etal, Theory of polymer crystal thickening during annealing.J. Appl. Phys., 1974, 45:(10):4216~4218
    [10] Y. R. Shen, The Principles of Nonlinear Optics,New York,John Wiley & Sons,Inc.,1984
    [11] H. Weber, Die Zukunft des Festkorplasers, Wiss.Magazin. 9 (1986) 17
    [12] H. J. Eichler, A.Haase, etal, High-repetition-rate continuously pumped solid state lasers with phase conjugation,SPIE, 1998, 200(3265):1117~1120
    [13] M. D.Perry,D. Pennington, et al, D. Pennington, BC Stuart et al. Petawatt laser pules. Opt. Lett., 1999, 24(3):160~162
    [14]戴厚梅,白晋涛, LD抽运Nd∶YAG/KTP腔内倍频16W连续波绿光激光器.激光技术,2008年6月,32(3): 312~313.
    [15]郑权,赵岭,钱龙生,大功率二极管泵浦固体激光器的应用和发展.光学精密工程,2001,9(1): 6~9.
    [16]施亚岭,严淑敏,杨光中等,二极管泵浦固体激光器的应用和发展.激光集锦,1999,9(3): 17~20.
    [17]张玲,硕士学位论文.北方交通大学, 2002. P1
    [18]于复生,陈江华,李树强等. LD泵浦的声光调Q腔内倍频固体激光器.半导体光电,2000, 21(4): 249~252
    [19] YHirano, N.Pavel, S.Yamamoto, et al. 100-w, 100-h external green generation with Nd:YAG rod master-oscillator power-amplifier system. Optics Communications, 2000,184:231~236
    [20]张玲硕士学位论文北方交通大学2002,1-2
    [21]李士杰,姜亚南,激光基础.机械工业出版社,1986: 214~222
    [22]李锋,刘蓉,白晋涛,侯洵, LD抽运复合YAG晶体温度场及热透镜效应研究.激光技术,2008年2月,32(1): 101-104
    [23] R.Burnham and A.D.Hays. High-power diode-array-pumped frequency-doubled cw Nd:YAG laser. Opt. Lett., 1989, 14-27
    [24] F.Hanson and D.Haddock, Laser diode side pumping of neodymium laser rods. Appl.Opt.,1988, 13:306
    [25] Hongrui Zhang, Mingju Chao, Mingyi Gao, et al., Optics&Laser Technology, 2003
    [26]刘树山,刘敏,李雷等, LD端面泵浦Nd:KGW激光器热效应的理论研究.红外, 2008. 29(6):31~35
    [27]林林,过振,王石语,蔡德芳,文建国,激光二极管侧面抽运激光器热效应的不均匀性.中国激光, 2009年7月,36(7): 1766-1771
    [28]高俊超硕士学位论文华中科技大学2004 P14
    [29]杜晨林,LD端面泵浦高功率Nd:GdVO4、Gd:YVO4固体激光器及其频率变频研究,博士论文,2003:2~3
    [30]友清,第二代飞秒激光器.激光与光电子学进展, 1995,7: 5-10
    [31]郑义,高明,姚建铨, LD泵浦各项异性激光介质的热效应研究,光电子·激光, 2003,14(10): 1094~1097
    [32]李隆,史彭,田来科等,高功率半导体激光端面泵浦掺Nd3+离子激光晶体热形变研究.光子学报, 2006, 35(4): 499~503
    [1] Ulrich Wittrock. High power rod, slab , and tube lasers.柏林工大光学研究所研究报告
    [2]高俊超,硕士学位论文,华中科技大学2004, P2
    [3] T.Y. Fan. Heat generation in Nd:YAG and Yb:YAG. IEEE J. Quantum Electron.,1993,29(6):1457~1459
    [4] T. Kimura, K.Otsuka . Thermal effects of a continuously pumped Nd3+:YAG Laser. IEEE J. Quantum Electron, 1971,7(8):403~407
    [5]吕百达,固体激光器件.北京邮电大学出版社, 2002年版, P92
    [6]高俊超硕士学位论文华中科技大2004 P2~3
    [7] METIN S. MANGIR AND DAVID A. ROCKWELL. Measurements of Heating and Energy Storage in Flashlamp-Pumped Nd:YAG and Nd-Doped Phosphate Laser Glasses. IEEE J. Quantum Electron, 1986, 22(4):574~580
    [8] D.C.Brown. Heat, fluorescence, and stimulated-emission power densities and fraction in Nd:YAG. IEEE J. Quantum Electron, 1998,(4): 560~572
    [9]刘均海,博士学位论文,山东大学. 1999, P7
    [10]高俊超,硕士学位论文.华中科技大, 2004, P5
    [11]吕百达,固体激光器件,北京邮电大学出版社, 2002, P93~108
    [12]李健,周芳,孙尧等.大功率LD脉冲泵浦Nd:YAG蓝光激光器研究,江西科学, 2005,23(4):349~352
    [13]李隆,田丰,赵致民等, LD端面泵浦折叠腔Nd:YVO4/LBO激光器.光子学报, 2004, 33(4): 96~399
    [14] Zhigang Li, Zhengjun Xiong, Weiling Huang et al., Study of High Power Laser Diode End-Pumped Composite Crystal Lasers. Chinese Laser, 2005, 32(3): 297~300
    [15] TsunekaneM, TaguchiN, lnabaH. Efficient 946nm laser operation of a composite Nd:YAG rod with undoped ends. Applied Optics, 1998, 37(24):5713~5719
    [16]史彭,李隆,甘安生,陈文,激光二极管端面抽运圆形截面Nd∶GdVO4晶体的热形变.中国激光, 2006年10月33(10): 1324~1328
    [17] Akira Sugiyama, Hiroyasu Fukuyama, Tsuneo Sasuga, Takashi Arisawa, and Hiroshi Takuma Direct bonding of Ti: sapphire laser crystals applied optics 1998,37(12) : 2407-2410.
    [18] C. Pfistner, R. Weber, H. P Weber, et al. Thermal Beam Distortions in End-Pumped Nd:YAG, Nd:GSGG, and Nd:YLF Rods. IEEE J. Quantum Electron, 1994, QE-30(7): 1605-1615
    [19] John H. Mathews, Kurtis D Fink. Numerical Methods,Using MATLAB Third Edition. Publishing House of Electronics Industry, 2001, 514~553
    [1]李隆,董武威,史彭,甘安生,激光二极管阵列侧泵浦Nd:YAG板条的热效应.光学精密工程,2008年11月,16(11): 2120~2126
    [2] Frauchiger J., Aalbers P, Weber H. P., Modeling of thermal lensing and higher order ring mode oscillation iend-pumped solid state laser. IEEE J. Quantum Electron, 1992, 26(4):1046~1056
    [3] Shi Peng, Li Long, Liu Xiaofang et al.. Influence of Eccentricity on Thermal Effect of Nd:GdVO4 Crystal eith Rectangle-section[J]. Journal of Optoelectronics Laser, 2005, 16(10):1187~1192史彭,李隆,刘小芳等.,偏心度对矩形截面Nd:GdVO4晶体热效应的影响[J].光电子·激光, 2005, 16(10):1187~1192
    [4] Tiao Li, Zhuang Zhuo, Xiao min Li et al..Study on optical characteristics of Nd:YVO4/:YVO4 composite crystal laser[J],CHINESE OPTICS LETTERS,2007,5(3):175~177
    [5]杨鸿儒,左铁钏,全固体小型Yb:YAG激光器热效应及输出特性研究.光子学报,2003,8,32(8):907~909
    [6]王永国,徐学珍,常米,朱建慧,莫小刚,桂尤喜,掺Yb3+钇铝石榴石晶体的生长和性能研究.人工晶体学报,2003,10,32(5): 442~445
    [7]杨培志,邓佩珍,徐军,黄国松,陈伟,乔景文, Yb:YAG晶体的光谱和激光特性.光学学报, 1999, 1, 19(1)132~135
    [8]宋晏蓉,胡江海,周劲峰,赵广军,严成锋,苏良碧,徐军,郭凯,张志钢,半导体可饱和吸收镜调Q的Yb:LSO激光器.中国激光, 2006, 10, 33(10):1297~1300
    [9] Frauchiger J., Aalbers P., Weber H. P., Modeling of thermal lensing and higher order ring mode oscillation iend-pumped solid state laser. IEEE J. Quantum Electron, 1992, 26(4):1064~1056
    [10] C. Pfistner, R. Weber, H. P Weber, et al. Thermal Beam Distortions in End-Pumped Nd:YAG, Nd:GSGG, and Nd:YLF Rods. IEEE J. Quantum Electron, 1994, QE-30(7): 1605-1615.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700