用户名: 密码: 验证码:
光催化水还原CO_2制取甲醇的量子化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用溶胶凝胶法合成Nd/TiO2首次用于紫外光照射下光催化水还原二氧化碳制取甲醇。此处最好的光催化活性响应的钕负载量是0.2wt.%。8小时紫外光照射后甲醇的收率为184.8μmol/g-cat, Nd/TiO2比纯二氧化钛明显增强了光催化的性能。在B3LYP水平上对钕原子在金红石型110面和锐钛矿型101面的吸附性质进行了研究。在反应体系中水分子捕捉催化剂表面光生空穴进而离解为氢离子和羟基自由基的反应过渡态也进行了理论计算。光生电子和空穴在晶格中被TiO2合适的位分开并捕获而避免复合。C02分子和激发态表面(Ti3+-O-)*的相互作用形成了CO;-自由基。溶剂中水分子被光照射半导体催化剂产生的带隙空穴光氧化形成了羟基自由基和氢离子。Nd/TiO2能使甲醇产率在短的照射时间和无空穴牺牲剂的情况下高达184.8μimol/g-cat。Ce4+因其f轨道的特殊性增强光催化效率。据我们所知,该领域选择Ce02作为助剂很少见。首次进行了初湿法合成Cu和Ce共同负载Ti02光催化水还原CO2制取甲醇的实验和理论研究。催化剂进行了XRD, Raman, BET和电化学分析。催化性能由水溶液中还原CO2制取甲醇来检验。大多数研究都是关于p区和d区元素的,而f区元素的研究很少见,本文进行了Cu和Ce共负载Ti02光催化水还原CO2制取甲醇的实验和理论研究。Ti02表面上Cu和Ce的不同作用在B3LYP水平上进行了计算。计算结果表明Ce对催化剂表面的影响比Cu深刻。而且Ce活化了H20和C02分子,而Cu作为光生电子的通道而及时运走它们从而阻止光生电子和空穴的复合。
     在水还原C02的反应体系中,个物种之间的相互作用实验中难以捕捉,在B3LYP水平上模拟了H20和C02与几种金属离子在基态时的相互作用,发现相对高价的金属离子对水和二氧化碳分子有较强的活化作用,为TiO2负载金属离子作为光催化剂的筛选和反应过程的理论分析提供了一定的依据,而且负载的
     金属离子除了在反应体系中活化反应物分子外,还起到疏导光生电子的作用,从而抑制其与空穴的复合。
     光生电子和空穴与反应物的相互作用是很主要的或者说是有必要引起注意的。我们计算了反应物与光生电子和空穴的作用,即其与H2O/CO2形成的配合物。据我们所知此类配合物鲜见报道。采用MP2和B3LYP方法结合NBO分析研究了体系中的配合物(H2O/CO2, e-(H2O/CO2),和h+-(H2O/CO2)). e-(H2O/CO2)和h+-(H2O/CO2)分别是H2O/CO2捕捉了光生电子和空穴形成的配合物,每种配合物有两种异构体。光生电子和空穴的加入,使得CO2和水分子均被活化,e-(H2O/CO2)中碳上的电荷降低,C-O键被拉长增长,CO2的键角变大,h+-(H2O/CO2)倾向于形成CO和-OH。
     另外对于产物的脱附影响因素也进行了理论研究。采用量子化学的DFT理论,在B3LYP水平上模拟了光催化H2O还原CO2的目标产物CH3OH与几种金属离子在基态时的相互作用情况,研究发现相对高价的金属离子在基态低配位数时会使甲醇分子离解,而高配位且电荷被大部分中和后就不会使其离解,中间价态的离子配位数达到4(含)以上就不会使其离解,低价离子不会使其离解。在实际的反应过程中,由于羟基和大量水分子的存在,金属离子几乎没有机会以高价态和低配位数与产率很低的甲醇接触,因而使其离解的几率极小,所以负载在TiO2上的金属离子不会影响目的产物甲醇脱附。反应体系中还可能存在的其他相互作用也进行了理论模拟研究,在理论上说明了缺电子物种(类似空穴牺牲剂)对CO2的光催化还原有利。
Nd3+-doped TiO2 synthesized via the sol-gel method, was used as catalyst for photoreduction carbon dioxide into methanol in an aqueous solution under UV
     irradiation firstly. Herein the maximum photocatalytic activity corresponds to 0.2 wt.%Nd3+-doped TiO2 nanopowders, which suggests that the Nd/TiO2 can enhance the efficiency of photocatalytic reduction. Furthermore, the adsorption properties of Nd atom on the regular (110) surface of rutile and (101) surface of anatase have been studied under B3LYP level with less report about it has been found. H2O molecule caught the photo-induced hole in the reaction system into H2O+which inclines to dissociate into H+and OH radical on the catalyst surface, the transition state of which has been found by calculation also, and the amount of the OH radicals effect the selectivity of CH3OH.
     The interaction of CO2 molecules with the excited state of (Ti3+-O-)* lead to the formation of CO2- radicals. The photooxidation of water, the solvent, leads to the formation of hydroxyl radicals OH-and H+through water oxidation by the valance band holes produced due to laser irradiation of the semiconductor catalyst.
     Most theoretical studies focused on p and d areas, whereas metals in f area are rarely involved. In this work, the catalytic activities of Cu and Ce co-doped TiO2 were studied experimentally and theoretically in the synthesis of methanol by photoreduction of CO2 and H2O firstly. Photocatalysits Cu and Ce co-doped TiO2 were prepared via the equivalent-volume incipient wetness impregnation method. The catalytic properties were determined in the synthesis of methanol from CO2 in the aqueous solution. The different effects of Cu and Ce on the surface of T1O2 have been calculated at B3LYP level. It revealed that Ce atoms effect the reaction more profoundly than Cu atoms do. Ce atoms activated H2O and CO2 molecules, while Cu atoms act as the channel of photoelectrons in real time and prevent the recombination of electrons with holes.
     The interaction between reactants in the reduction system is difficult to capture experimently, therefore, the interaction between several different metal ions and reactants has been simulated under B3LYP level. The computational results revealed that relative high valence metal ions loaded on TiO2 activated the H2O and CO2 consumingly, and it might be looked as some proof for loaded photocatalysts selecting, in addition, the metal ions conducted photoelectrons to prevent the recombination of the photoelectrons and holes during the reaction process.
     Complexes (H2O/CO2, e-(H2O/CO2), and h+-(H2O/CO2)) in the reaction system have been researched by MP2 and B3LYP along with NBO analysis. Geometries of these complexes have been optimized and frequencies analysis performed. e-(H2O/CO2) and h-(H2O/CO2) were products of the photo-induced electron and the hole captured by H2O/CO2, respectively, and each of the complex has two isomers. The results revealed that CO2 and H2O molecule became activated after the joining of the electron and the hole into the H2O/CO2, and e-(H2O/CO2) lowered the charge on C, lengthened the C-0 bond length and changed the bond angle in CO2, and h+-(H2O/CO2) tends to form CO and-OH.
     In addition the effect of catalysts to the desorption of the product CH3OH has also been researched theoretically. The interaction between several kinds of metal ions loaded on TiO2 and CH3OH in the reaction system has been calculated at B3LYP level. The results revealed that metal ions at the ground state and low coordinate number dissociated CH3OH by seized its hydroxyl radicals, while metal ions at hyper coordinate number and the most part of charge neutralized affected the geometry structure of CH3OH little. Low valence metal ions and intermediate valence metal ions which coordinate number is 4 or upwards have no much effect to CH3OH. In the practical reaction, there is almost no opportunity for hyper valence and low coordinate number metal ions to touch low yield CH3OH, therefore the probability for dissociation of CH3OH is minimal and metal ions loaded on TiO2 have no resistance to the desorption of CH3OH. At last the other interaction in the reaction system has been simulated theoretically, which indicates that the electron deficient species is helpful to the photoreduction of CO2.
引文
[1]谢克昌《甲醇及其衍生物》[M].北京:化学工业出版社2004.1
    [2]2007年度的诺贝尔奖化学公报
    [3]Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders [J]. Nature,1979,277:637-638.
    [4]Yoneyama H. Photoreduction of carbon dioxide on quantized semiconductor nanoparticles in solution. Catal. Today,1997,39 (3):169-175.
    [5]Anpo M, Yamashita H, Ikeue K., et al. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts. Catalysis Today,1998,44 (1-4): 327-332.
    [6]Yamashita H, Fujii Y, Ichihashi Y, et al. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves. Catalysis Today,1998,45 (1-4):221-227.
    [7]Guan G, Kida T, Harada T, lsayama M, Akira Yoshida. Photoreduction of carbon dioxide with water over K2Ti6013 photocatalyst combined with Cu/ZnO catalyst under concentrated sunlight. Applied Catalysis A:General,2003,249 (1):11-18.
    [8]Guan G, Kida T, Yoshida A. Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst. Applied Catalysis B: Environmental,2003,41 (4):387-396.
    [9]王建伟,钟顺和。CO2吸附活化研究进展[J].化学进展,1998,10(2):374-380.
    [10]陈崧哲,钟顺和.Cu/TiO2-NiO上光促表面催化CO2和H2O合成CH3OH反应规律[J].物理化学学报,2002,18(12):1099-1103.
    [11]陈崧哲,钟顺和,Cu/ZnO-NiO上光促表面催化二氧化碳和水反应规律的研究[J].高等学校化学学报,2003,24(1):135-139.
    [12]陈崧哲,钟顺和,肖秀芬.Cu/WO3-NiO上光促表面催化二氧化碳与水合成甲醇反应的规律[J].催化学报,2003,24(1):67-72.
    [13]李萍,钟顺和,光催化材料Cu/Fe2O3-TiO2的结构和性能[J].应用化学,2006,23(6):586-590.
    [14]桑丽霞,钟顺和,钟亮.(MoO3,ZnO)-TiO2/SiO2上光催化甲烷和水的反应性能[J].应用化学,2005,22(3):331-333.
    [15]赵春,钟顺和.Cu/ZnO-TiO2复合半导体光催化材料的制备与表征[J].无机化学学报,2004,20(9):1131-1136.
    [16]Tseng I-Hsiang, Chang W C, Wu J C S. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts[J]. Applied Catalysis B:Environmental,2002,37 (1): 37-48.
    [17]Tseng I-Hsiang, Wu J C S, Chou H Y. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction. Journal of Catalysis,2004,221 (2):432-440.
    [18]Wu J C S, Lin H M, Lai C L. Photo reduction of CO2 to methanol using optical-fiber photoreactor [J]. Applied Catalysis A:General,2005,296 (2):194-200.
    [19]Slamet, Nasution H W, Purnama E. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method [J]. Catalysis Communications,2005,6(5): 313-319.
    [20]C.T. Au, M.D. Chen, A density functional study of CO2 adsorption on the (100) face of Cu(9,4,1) cluster model. Chemical Physics Letters 278,1997,238-244:243.
    [21]J. Ahdjoudj, A. Markovits, C. Minot, Hartree-Fock periodic study of the chemisorptionof small molecules on TiO2 and MgO surfaces. Catalysis Today 50,1999,541-551:544.
    [22]S. Picaud, S. Briquez, A. Lakhlifi, C. Girardet, J. Chem. Phys.102,1995,7229.
    [23]V. Panella, J. Suzanne, P.N.M. Hoang, C. Girardet, J. phys. I France 4,1994,905.
    [24]Xunlei Ding, V. Pagan, M. Peressi, F. Ancilotto, Modeling adsorption of CO? on Ni(110) surface Materials Science and Engineering C.27,2007,1355-1359:1359
    [25]M.D. Ganji, Theoretical study of the adsorption of CO2 on tungsten carbide nanotubes. Physics Letters A 372,2008,3277-3282.
    [26]Indrakanti V. P., Kubicki J. D, Schobert H. H.,Quantum Chemical Modeling of Ground States of CO2 Chemisorbed on Anatase (001), (101), and (010) TiO2. Energy& Fuels.2008, 22:2611-2618.
    [27]D.F. Plant, G. Maurin, I. Deroche, L. Gaberova, P.L. Llewellyn, Chemical modification of rutile TiO2(110) surface by ab initio calculations for the purpose of CO? adsorption, Fluid Phase Equilibria 194-197,2002,153-160.
    [28]Yoshiya Inokuchi, Azusa Muraoka, Takashi Nagata, and Takayuki Ebata. J. Chem. Phys.129, 2008,044308:1-9.
    [29]Zheng Li, Lecheng Wang, Hong Ran, Daiqian Xie, N. Blinov, P.-N. Roy, and Hua Guo. J. Chem. Phys.128,2008,224513:1-7.
    [30]Allen Bard. Photoelectrochcmistry [J] Science,1980,207(4427):139-144.
    [31]Andrew Mills,Stephen Le Hunte.[J]. J Photochem and Photobiol A:Chemistry,1997,108: 1-35.
    [32]G A SomorJai, M Hendeweerk, I E Turner.The catalyzed P hotodissociation of water [J]. Catal Rev-Sci Eng,1984,26(3&4):683-708.
    [33]Khan M, Chatterjee D,et al. Photosenitized reduction of N2 byRuⅡ(biby)2+3 adsorbed on the surface of Pt/TiO2/RuO2 Semiconductor particulate system containing RuⅢ-EDTA COMPLEX AND L-ascorbic acid. J Mol Catal,1992,72:13-18.
    [34]Maskazu Anpo, Hiromi Yamashita, et al. Photocatalytic reduction of CO2 with H2O on titanium oxide anchored within micro-pores of Zeolites:Effect of Pt. J. phys Chem B1997, 101:2632-2636.
    [35]Masamichi Fujihira,et al. Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2[J]. Nature,1982,193:206-207.
    [36]Marye Anne Fox, Maria T Dulay. Heterogeneous photocatalysis [J]. Chem Rev.,1993,93: 341-357.
    [37]O Legrini, E oliveros, A M Braum. Photochemical process for Water t reatment [J]. Chem rev,1993,93:671-698.
    [38]Michael R Hoffmann,Scot T martin,et al. Environmental applications of semiconductor photocatalysis [J]. Chem Rev,1995,95:69-96.
    [39]David F Ollis, Ezio Pelizzetti, Nick Serpone. Dest ruction of water contaminats [J]. Environ. Sci Technol,1991,25 (9):1523-1529.
    [40]Andrew Mills et al. Water purification bysemiconductor photocatalysis [J]. Chemsoc Rev., 1993, (2):417-425.
    [41]刘平,林华香等.掺杂TiO2光催化膜材料的制备及其灭菌机理[J].催化学报.1999,20(3):325-328.
    [42]FUJ 1SHIMA A, HONDA A. Electrochemical photolysis of water at a semiconductor elect rode [J]. Nat ure,1972,238:37-38.
    [43]KO HN W. Nobel lect ure:elect ronic st ruct ure of matter-wave functions and density functionals [J]. Rev Mod Phys,1999,71:1253-1266.
    [44]HO H ENBER G P, KO HN W. Inhomogeneous elect ron gas [J]. Phys Rev B,1964, 136:864-871.
    [45]J ANA K J F, MORRU ZI L. Ground-state thermomechanical properties of some cubic elements in the local-density formalism [J]. Phys Rev B,1975,12:1257-1261.
    [46]MO S D, CHIN G W Y. Elect ronic and optical properties of threephases of titanium dioxide: rutile, anatase and brookite[J]. PhysRev B,1995,51(19):13023-13032.
    [47]SE GALL M D, L 1NDAN P J. First2principles simulation:ideas, illustrations and the CASTEPcode [J]. J. Phys-condens Mat,2002,14:2717-2744.
    [48]SCHWARZ P F, TU RRO N J, BOSSMANN S H, et al. A new method to determine generation of hydroxyl radicals in illuminated TiO2 suspensions. J. Phys Chem B,1997, 101:7127-7134.
    [49]GL ASSFORD K M, CH EL I KOWS KY J R. Electronic structure of TiO2:Ru [J]. Phys Rev B,1993,47 (19):12550-12553.
    [50]MUSCA T J, HARRISON N M. The physical and elect ronicst ruct ure oft he rutile (001) surface [J]. Surf. Sci,2000,446:119-127.
    [51]CH EN Qiang, CAO Hong-hong. Ab initio calculations of electronic structure of anatase TiO2 [J]. Chinese Phys,2004,13 (12):2121-2125.
    [52]NA-P HA T TAL UN G, SMIT H M F, KIM K, et al. First-principles study of native defects in anatase TiO2 [J]. Phys. Rev B,2006,73:125-205.
    [53]SAMBRANO J R, MAR TINS J, ANDRES J, et al. Theoretical analysis on TiO2 (110)/V surface [J]. J Quant um Chem,2001,85 (1):44-51.
    [54]OSHI KIRI M, BO ERO, M YE J, et al. The electronic structures of the thin films of InVO4 and TiO2 by first principles calculations[J]. Thin Solid Films,2003,445 (2) 168-174.
    [55]曹红红,黄海波.对锐钛矿相TiO2的第一原理计算[J].北京航空航天大学学报,2005,31(2):251-254.
    [56]J USTICIA I, ORDEJ ON P, CAN TO G, et al. Designed selfdoped titanium oxide t hin films for efficient visiblelight potocatalysis [J]. Adv. Mater,2002,14 (19):1399-1402.
    [57]ASA HI R, MORI KAWA T, O HWA KI. T., et al. Visiblelight photocatalysis in nitrogen-doped titanium oxides [J]. Science,2001,293:269-271.
    [58]龙明策,柴歆烨,周保学,等.不同掺杂二氧化钛的电子和晶体结构与光催化性能的关系[EB/OL]. http://www. paper, edu. cn,2006203222.
    [59]BANDU RA A V, SYKES D G. SHAPOVALOV V, et al. Adsorption of water on t he TiO2 (rutile) (110) surface:a comparison of periodic and embedded cluster calculations. J. Phys Chem B,2004,108 (23):7844-7853.
    [60]HARRIS L A, QUON G A A. Molecular chemisorption as the theoretically preferred pathway for water adsorption on ideal rutile TiO2 (110) [J]. Phys Rev Lett,2004,93 (8):086105.
    [61]T1LOCCA A, SELLONI A. Reaction pat hway and free energy barrier for defect2 induced water dissociation on the (101) surface of TiO2 anatase. J. Chem Phys,2003,119 (14): 7445-7450.
    [62]REGO L G C, BA TISTA V S. Quantum dynamics simulations of interfacial electron transfer in sensitized TiO2 semiconductors. J Am. Chem. Soc,2003,125 (26):7989-7997.
    [63]SAMBRANO J R, ANDRES J, BEL TRAN A, et al. An ab initio study of oxygen vacancies and doping process of Nb and Cr atoms on TiO2 (110) surface models. J. Quantum. Chem, 1997,65:625-631.
    [64]NISHI KAWA T, SH1NO HARA Y, NA KAJ IMA T, et al. Prospect of activating a photocatalyst by sunlight:a quantumchemical study of isomorphically substituted titania [J]. Chem. Lett,1999,65:1133-1134.
    [65]TSU TOMU U, TE TSU YA Y, HISA YOSHI I, et al. Analysis of electronic structure of 3d transition metal-doped TiO2based on band calculations. J. Phys. Chem. Solids,2002,63: 1909-1920.
    [66]曹茂盛,蒋成禹,田永君.现代材料设计理论与方法[M].哈尔滨:哈尔滨工业大学出版社.2002.
    [67]D iebold U. Structure and p roperties of TiO2 surfaces:a brief review [J]. APPL IED PHYSICS A-MATER 12 ALS SC IENCE& PROCESSING 2003,76 (5):681-687. MAR.
    [68]Sambrano JR, Martins JBL, Andres J, Longo E, Theoretical analysis on TiO2 (110)/V surface [J]. INTER2 NATIONAL JOURNAL OF QUANTUM CHEM ISTRY 2001,85 (1):44-51 OCT5.
    [69]O shikiriM, Boero M, Ye J, A ryassetiawan F, Kido G The electronic structures of the thin film s of InVO4 and TiO2 by first p rincip les calculations [J]. Thin Solid Films,445,2003: 168-174.
    [70]Bandura AV, Sykes DG Shapovalov V, Troung TN, Kubicki JD, Evarestov RA. Adsorption of water on the TiO2 (rutile) (110) surface:Acomparison of periodic and embedded cluster calculations [J]. JOURNAL OFPHYSICAL CHEM ISTRY B.2004108 (23): 7844-7853.
    [71]Harris LA, Quong AA. Molecular chemisorption as thetheoretically preferred pathway for water adsorption on ideal rutile TiO2 (110) [J]. PHYSICAL REV IEWLETTERS 2004, 93 (8):20.
    [72]Shapovalov V, W ang Y, Truong TN. Theoretical analysis of the electronic spectra of water adsorbed on therutile TiO2 (110) and MgO (100) surfaces [J]. CHEM ICAL PHYSICS LETTERS 2003,375 (3-4):321-327.
    [73]Alexis Markovits, Adil Fahmi, Christian Minot, A theoretical study of CO2 adsorption on TiO2, Journal of Molecular Structure (Theochem) 1996,371,219-235.
    [74]R. Dovesi, C. Pisani, C. Roetti and M. Causl, cRysT-L88, QCPE Program No.1989,577, Bloomington, IN.
    [75]C. Pisani, R. Dovesi and C. Roetti, in Hartree-Fock Ab Initio Treatment of Crystalline Systems, Lecture Notes in Chemistry.48, Springer, Heidelberg,1988.
    [76]R. Lindsay, A. Wander, A. Ernst, B. Montanari, G. Thornton, N.M.Harrison, Phys. Rev. Lett. 2005,94,246102.
    [77]J. Scaranto, A. Pietropolli Charmet, P. Stoppa, S. Giorgianni, J. Mol.Struct.741 (2005) 213.MONSTERGAUSS Adil Fahmi a,l, Christian Minot,Patrick Fourr6, Patrice Nortier, A theoretical study of the adsorption of oxalic acid on TiO2 Surface Science 1995,343, 261-272:271.
    [78]Eugene V. Stefanovich, Thanh N. Truong, Ab initio study of water adsorption on TiO2 (110): molecular adsorption versus dissociative chemisorption, Chemical Physics Letters 299, 1999623-629.
    [79]Gianfranco Pacchioni, Anna Maria Ferrari, Paul S. Bagus, Cluster and band structure ab initio calculations on the adsorption of CO on acid sites of the TiO2(110) surface, Surface Science 350,1996,159-175.
    [80]Sambrano JR, Vasconcellos LA, Martins JBL, et al. A theoretical analysis on electronic structure of the (110) surface of TiO2-SnO2 mixed oxide [J]. JOURNAL OF MOLECULAR. STRUCTURE-THEO2CHEM 2003,629:307-314.
    [81]Thomas Bredow, Gianfranco Pacchioni, A quantum-chemical study of Pd atoms and dimers supported on TiO2(110) and their interaction with CO, Surface Science.426,1999, 106-122.
    [82]M.J. Frisch, G.W. Trucks, H.B. Schlegel, P.M.W. Gill, B.G. Johnson, M.A. Robb, J.R. Cheeseman, T.A. Keith, G.A. Petersson, J.A. Montgomery, K. Ragavachari, M.A. Al-Laham, V.G. Zakrewski, J.V. Ortiz, J.B. Foresman, J. Cioslowsky, B.B. Stefanov, A. Nanayakkara, M. Challa-combe, C.Y. Peng, P.Y. Ayala, W. Chen, M.W. Wong, J.L. Andres, E.S. Replogle, R. Gomperts, R.L. Martin, D.J. Fox, J.S. Binkley, D.J. Defrees, J. Baker, J.P. Stewart, M. Head-Gordon, C. Gonzalez, J.A. Pople, Gaussian 94, Revision E.2, Gaussian, Inc., Pittsburgh, PA,1995.
    [83]Livia Giordano, Gianfranco Pacchioni, Thomas Bredow, Javier Fernandez Sanz, Cu, Ag, and Au atoms adsorbed on TiO2(110):cluster and periodic calculations, Surface Science 471, 2001,21-31.
    [84]Run Long, YingDai, BaibiaoHuang, Structural and electronic properties of iodine-doped anatase and rutile TiO2, Computational Materials Science xxx (2008) xxx-xxx.
    [85]M.D. Segall, P.J.D. Lindan, M.J. Probert, CJ. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Cond. Matt.14 (11),2002,2717.
    [86]LanMi, YuZhang, Pei-NanWang, First-principles study of the hydrogen doping influence on the geometric and electronic structures of N-doped TiO2, Chemical Physics Letters 2008,458:341-345.
    [87]G. Kresse, J. Hafner, Comput. Mater. Sci.1996,6:15.
    [88]XU Tian-hua, SONG Chen-lu, LIU Yong, HAN Gao-rong, Band structures of TiO2 doped with N, C and B, Xu et al./J Zhejiang Univ SCIENCE B,2006,7(4):299-303.
    [89]T. Umebayashi,T. Yamaki, S. Yamamoto, A. Miyashita, and S.Tanaka, T. Sumita, K. Asaia), Sulfur-doping of rutile-titanium dioxide by ion implantation:Photocurrent spectroscopy and first-principles band calculation studies, JOURNAL OF APPLIED PHYSICS.2003, 93:91.
    [90]M. Born, P. Oppenheimer, Zur Quantentheorie der Molekeln Ann. Phsik. (Quantum theory of the molecules Ann. Phys) 1927,84,457-484
    [91](a) W. J. Hehre, L. Radom, P. V. R. Schleyer. Ab initio molecular orbital theory. John Wiley & Sons, Inc.1986. (b) D. A. McQuarrie, Quantum chemistry university science books: Milly Vally. CA.1983
    [92](a)唐敖庆,杨忠志,李前树.量子化学.北京,科学出版社,1982(b)徐光兖,黎乐民,王德民.量子化学基本原理和从头计算法.北京,科学出版社.1985
    [93]P. O. Lowdin. Correlation Problem in many-electronic quantum mechanics. I. review of different approaches and discussion of some current ideas. Adv Chem Phys.1959,2, 207-322
    [94]J. A. Pople, R. Seeger, R. Krishnan. Variational configuration interaction Methods and comparison with Perturbation Theory, Int J Quant Chem Symp.1977,11,149-163
    [95]B. Foresman, M. Head-Gordon, J. A. Pople, M. J. Frisch. Toward a systematic molecular orbital theory for excited states. J Phys Chem.1992,96,135-149
    [96]R. Krishnan, H. B. Schlegel, J. A. Pople. Derivative studies in configuration-interaction theory. J Chem Phys.1980,72,4654-4655
    [97]B. R. Brooks, W. D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H. F. Schaefer. Analytic gradients from correlated wave functions via the two-particle density matrix and the unitary group approach. J Chem Phys.1980,72,4652-4653
    [98]E. A. Salter, G. W. Trucks, R. J. Bartlett. Analytic energy derivatives in many-body methods. I First derivatives. J Chem Phys.1989,90,1752-1766
    [99]K. Raghavachari, J. A. Pople. Complete basis set correlation energies. I. The asymptotic convergence of pair natural orbital expansions. Int J Quant Chem.1981,20,167-174
    [100]J. A. Pople, M. Head-Gordon, K. Raghavachari. Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys.1987,87, 5968-5975.
    [101]J. Cioslowski. Chem Phys Lett. A new robust algorithm for fully automated determination of attractor interaction lines in molecules 1994,219,151-154
    [102]H. B. Schlegel, M. A. Robb. MCSCF gradient optimization of the H2COH2+CO transition structure. Chem Phys Lett.1982,93,43-46.
    [103]R. H. Eade, M. A. Robb. Direct minimization in me scf theory, the quasi-newton method. Chem Phys Lett.1981,83,362-368
    [104]D. Hegarty, M. A. Robb. Principles of direct 4-component relativistic SCF:application to caesium auride. Mol phys.1979,38,1795-1798
    [105]W. Kohn, L. Shan. Self-Consistent Equations Including Exchange and Correlation Effects. J Phys Rev.1965,140, A1133112 J. C. Slater. Quantum Theory of Molecular and Solids. Vol.4:The Self-Consistent Field for Molecular and solids McGraw-Hill:New York, 1974.
    [106]D. E. Salahub, M. C. Zerner, Eds. The Challenge of d and f Electrons ACS:Washington D.C.1989.
    [107]R. G. Parr, W. Yang. Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford,1989.
    [108]J. A. Pople, P. W. M. Gill, B. G. Johnson. Kohn-Sham density-functional theory within a finite basis set. Chem Phys Lett,1992,199,557-560.
    [109]B. G. Johnson, M. J. Frisch. An implementation of analytic second derivatives of the gradient-corrected density functional energy. J Chem Phys,1994,100,7429-7442.
    [110]J. K. Labanowski, J. W. Andzelm. Density Functional Methods in Chemistry, Springer-Verlag:New York,1991.
    [111]黄美纯,密度泛函理论的若干进展,物理化学(A),2000,20,3:200-218.
    [112]Hybertsen MS, Louie SG. Phys. Rev.,1986,B34:5390;1987,B35:5585.谢希德,陆栋.固体能带理论.复旦大学出版社,1998,第七章.
    [113]Godby R W,Schluder M,Sham LJ.phys.Rev.,1988, B37:10159.
    [114]GodbyRW,etalphys.Rev.,1987,B35:4170;phys.Rev.,Lett,1989,62:1169.
    [115]Hamada N, Hwang M, Freeman A J. phys. Rev.,1990, B49,3620.
    [116]Shirley L,Louie SG. phys. Rev., Lett,1993,71:33.
    [117]Araysetianwan F,Gunnarsson O. Rep.Prog.phys.,1998,61:237-312.
    [118]Sharp RT, Horton GK. Phys.Rev.,1953,90:317; Talman JD, Shadwick WF. Phys.Rev.,1976. A14:36.
    [119]Burke K, Petersilka M, Gross E K U.cond-mat/000115312 Jan2000.
    [120]Petersilka M, Rossmann UJ, Gross EKU. phys.Rev.Lett.,1996,76:1212.
    [121]Runge E,Gross E K U. phys.Rev. Lett.,1984,52:997.
    [122]Gross E K U,Kohn W.Adv. Quant. Chem..,1990,21:255.
    [123]唐敖庆,李前树,高碳原子簇电子结构的计算方法及应用,科学通报,1997年06期.
    [124]任杰,陈志达,密度泛函理论在分子磁学中的应用,化学学报,2003年6卷第十期1537-1542.
    [125]郑青榕,顾安忠,杨晓东,鲁雪生碳纳米管低温吸附储氢特性的密度泛函理论(DFT)研究,低温与特气,Vol.19,No.6 Dec.,2001.
    [126]付 东 陆九芳刘金晨 李以圭,,用密度泛函理论研究二元体系的液液界面张力,化工学报2002,53,9.
    [127]李明,罗小玲,唐典永,铑催化烯烃氢甲酰化反应的密度泛函研究,化学学报,2004,62,12:1128-1133.
    [128]王彦华,孙元红,于传奎不同溶剂中硝基苯胺分子非线性光学性质的研究,化学物理学报,2004,17,5.
    [129]张梦军,孙立力,黄莺,李志良,以密度泛函理论及相关方法计算电负性标度X,TQ011(A)2002年5月重庆大学学报(自然科学版)2002,25,5.
    [130]V. G. Kunde, A. C. Aikin, R. A. Hanel, D. E. Jennings, W. C. Maguire, R. E. Samuelson. C4H2, HC3N and C2N2 in Titan's atmosphere. Nature(London).1981,292:686-688.
    [131]K. Hirano, K. Inoue, T. Yatsu, J. Photochem. Photobiol. A 64,1992,255-258.
    [132]K. Ikeue, S. Nozaki, M. Ogawa, M. Anpo, Catal. Today 74,2002,241-248.
    [133]H. Hori, Y. Takano, K. Koike, Y. Sanaki, Inorg. Chem. Commun.6,2003,300-303.
    [134]l.H. Tseng, J.C. S. Wu, H.Y. Chou, J. Catal.221,2004,432-440.
    [135]M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, Appl. Catal., B 1999,23:169-174.
    [136]J. F. Banfield, A. Navrotsky, Eds. Nanoparticles and the Environment (Mineralogical Society of America, Washington, DC,2001).
    [137]D. Huang, Z.D. Xiao, J.H. Gu, N.P. Huang, J.C.W. Yuan, Thin Solid Films 1997,305: 110-115.
    [138]W. Li, S.I. Shah, C.P. Huang, O. Jung, C. Ni, Mater. Sci. Eng., B 96,2002,247-253.
    [139]N. Sasirekha, S. J. S. Basha, K. Shanthi, Applied Catalysis B:Environmental 2006,62: 169-180.
    [140]I.H. Tseng, Jeffrey C.-S. Wu, Catalysis Today 97,2004,113-119.
    [141]M.A. San Miguel, J. Oviedo, J.F. Sanz, J. Mol. Struct. (THEOCHEM) 2006,769: 237-242.
    [142]J. Gerratt, I.M. Mills, J. Chem. Phys.1968,49:1719.
    [143]P. Pulay, J. Chem. Phys.1983,78:5043-5051.
    [144]C Lee, W. Yang, R.G. Parr, Phys. Rev. B 1988,37:785.
    [145]P. J. Hay, W. R. Wadt, J. Chem. Phys.1985,82:270; P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985,82:284; P. J. Hay, W. R. Wadt, J. Chem. Phys.1985,82:299.
    [146]J. D. Dill, J. A. Pople, J. Chem. Phys.1975,62:2921.
    [147]M. Dolg, H. Stoll, H. Preuss, R.M. Pitzer, J. Phys. Chem.1993,97:5852.
    [148]R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys.1980,72:650.
    [149]Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. A., Jr., Vreven T., Kudin K. N., Burant J. C, Millam J. M., lyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G, Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M, Nakajima T, Honda Y., Kitao O., Nakai H., Klene M., Li X., J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C, Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C, Ochterski J. W., Ayala P. Y., Morokuma K., Voth G A., Salvador P., Dannenberg J. J., Zakrzewski V. G, Dapprich S., Daniels A. D., Strain M. C, Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G, Clifford S., Cioslowski J., Stefanov B. B., Liu G, Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T, Al-Laham M. A., Peng C. Y, Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C, Pople J. A., Gaussian, Inc., Wallingford CT,2004.
    [150]A.L. Linsebigler, G. Lu, J.T. Yates Jr, Chem. Rev.1995,95:735-758.
    [151]T.A. Choiw, M.R. Hoffmamm J. Phys. Chem.1994,98:1369-1379.
    [152]A.D. Becke, J. Chem. Phys.1993,98:5648.
    [153]A.H. Yahaya, M.A. Gondal, A. Hameed, Chem. Phys. Lett.2004,400:206-212.
    [154]S.S. Tan, L.D. Zou, E. Hu, Catal. Today 2006,115:269-273.
    [155]A.W. Xu, Y. Gao, H.Q. Liu, J. Catal.2002,207:151-157.
    [156]H. Harada:Ultrasonics Sonochemistry,1998,73,5.
    [157]H. Yamashita, K. Ikeue, et al.:Topics in Catalysis.,2002,18:95-100.
    [158]M.Anpo, S.G Zhang, H.Yamashita:Stud. Surf. Sci. Catal.,1997,105:1587-1592.
    [159]K. Ikeue, H. Yamashita, M. Anpo:Chem. Lett,1999,28(11):1135-1137.
    [160]B.S. Chen, J.S. Zhao, Y. Zhang, F.G Xiong:Chineses Journal of Catalysis.,1990,11(4): 265-271.
    [161]Y. Liu, B. Zhong, Q. Wang, S.Y. Peng:Chineses Journal of Catalysis.,1995,16(6) 442-446.
    [162]Y.H. Zhang, H.X. Zhang, Y.X. Xu, Y.G. Wang:J. Solid State Chem.,2004,177:3490.
    [163]TagaawaT, PheizierG and Amenomiya Y. Applied Catal,1985,18:285.
    [164]徐州军,周定,罗中贯.二氧化钛负载型光催化剂的制备及光还原二氧化碳的研究.哈尔滨工程大学学报,1998,19(4):89.
    [165]M. Wen, et al.:Surface Technology 2004,33(1) 37.
    [166]J.P. Zhang, Y. Wang, H.X. Qi:Journal of Beijing Normal University (Nature Science)., 2001,37:668.
    [167]K. Porkodi, S. Daisy Arokiamary:Materials Characterization.,2007,6:495-503.
    [168]K.R. Zhu, M.S. Zhang, Q. Chen, et al.:Physic Letters A.,2005,340:222.
    [169]S. Kelly, F.H. Pollak, and M. Tomkiewicz:J. Phys. Chem. B.,2007,101:2731.
    [170]L.M. Abrantes and L.M. Peter:J. Electroanal. Chem. Interf. Electrochem..,1983,150:593.
    [171]L.M. Peter:Chem. Rev.,1990,90:753.
    [172]R. Beranek, H. Kisch:Electrochemistry Communications.,2007,4:763.
    [173]P. M. Jayaweera, T. Sanjeewa and K.. Tennakone:Solar Energy Materials and Solar Cells., 2007,91(10):944-950.
    [174]A.Di. Paola, L. Palmisano, A.M. Venezia, et al. Coupled Semiconductor Systems for Photocatalysis. Preparation and Characterization of Polycrystalline Mixed WO3/WS2 Powders. J. Phys Chem B,1999,39 (103):8236-8244.
    [175]O. Khaselev, J.A. Turner. A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production vie Water Splitting. Science,1998,280:425-427.
    [176]Mizuno T, Adachi K, Ohta K, et al. J. Photochem. Photobiol., A:chemistry 1996,98:87-90.
    [177]Kohno Y, Hayashi H, Takenaka S. et al. J. Photochem. Photobiol., A:chemistry,1999, (126):117-123.
    [178]Xie Teng feng, Wang De jun, Zhu Lian jie, et al. Mater. Chem. Phys.,2001,70:103-106.
    [179]Dey G R, Belapurkar A D, Kishore K. J. Photochem. Photobiol., A:chemistry 2004,163: 503-508.
    [180]Wang C M, Heller A, Gerscher H. J Am Chem Soc,1992,114:5230-5235.
    [181]Reeves, P., Ohlhausen, D., Sloan, K. P. Solar Energy,1992,48 (6):413-420.
    [182]Rasko Janos, Solymosi, Frigyes. J. Phys. Chem.,1994,98 (29):7147-7152.
    [183]Yamashita,H., Nishiguchi, H., Anpo, M. Research on Chemical Intermediates,1994,20 (8): 815-823.
    [184]Heleg V. and Willner I.. J. Chem. Soc, Chem. Commun.,1994,18:2113-2114.
    [185]Goren Z, Wikkner J, Nelson A. J. J. Phys. Chem.,1990,95:3784-3787.
    [186]陈静,刘引烽,华家栋,[J]化学通报,2003,3:184-191.
    [187]Kohn W. Rev. Mod. Phys.,1999,71:1253-1266.
    [188]H-He:Hehre W.J., Ditchfield R. and Pople J.A., J. Chem. Phys.1972,56, Li-Ne:2257.
    [189]薛卫东,朱正和,邹乐西,张广丰,原子与分子物理学报[J],2002,19(1):25-30.
    [190]Jaroslaw C, J. Chojnacki/Polyhedron.2008,27,969-976.
    [191]徐用军,周定,罗中贵,王艳玲,李向久,哈尔滨工程大学学报[J],1998,4:90-93.
    [192]吴树新,马智,秦永宁,齐晓周,梁珍成,[J]物理化学学报,2004,20(2):138-143.
    [193]Hemminger J. C, Carr R., Somorjai G. A.. Chem. Phys. Lett.,57(1978):100.
    [194]Xu Y. J., Chen F.M., Jiang L.L., Zhou D., Photogr. Sci. Photochem.,1999,17(1):61.
    [195]Banfield J., Navrotsky (Eds.) A. Mineralogical Society of America,44(2000):293.
    [196]Vosko S. H., L.Wilk, Nusair M., Can. J. Phys.,58(1988)1200.
    [197]Becke A. D. Phys. ReV. A.,38(1988)3098.
    [198]McLean A. D., Chandler G. S. J. Chem. Phys.72 (1980) 5639.
    [199]Moller C, Plesset M.S. Phys. Rev.46 (1934) 618.
    [200]Weast R. C, CRC Handbook of Chemistry and Physics (Chemical Rubber Company, Boca Raton, FL,1980).
    [201]DelBene,J. E. J. Phys. Chem.92 (1988) 2874.
    [202]Binkley J. S., Pople J.A., Int. J. Quantum Chem.9 (1975) 228.
    [203]Feller D. J., J. Chem. Phys.96 (1992) 6104.
    [204]Kim K. S., Mhin B.J., U.S. Choi, K.J. Lee, J. Chem. Phys.97 (1992) 6649.
    [205]Szalewicz K., Cole S. J., Kolos W., Bartlett R. J. J. Chem. Phys.89 (1988) 3662.
    [206]Frisch M. J., DelBene J. E., Binkley J. S., Schaefer III H.F. J. Chem. Phys.48 (1986) 2279.
    [207]Anpo M., Yamashita H., Ichihashi Y. et al. J. Electroanal. Chem.,1995,396:21-26.
    [208]Dongmei Luo, Chao Chen, Ning Zhang, Sanguo Hong, Huanwen Wu, Zhihua Liu., Z. Phys. Chem.,2009,223:1470.
    [209]Anpo M., Chiba K. J. Mol. Catal.,1992,74:207-212.
    [210]Yamashita H., Kamada N., He H. et al. Chem. Lett.,1994,23:855-858.
    [211]Ashokkumar M.//Int. J. Hydrogen Energy.,1998,23:427-438.
    [212]Bard A. J., Fox M.A. Acc. Chem. Res.,1995,28:141-145.
    [213]Takata T., Tanaka A., Hara M. et al. Catal.Today.,1998,44:17-26.
    [214]Gondal M.A., Hameed A., Yamani Z.H. et al. Chem. Phys. Lett.,2004,385:111-116.
    [215]Hameed A., Gondal M.A. J. Mol. Catal.,2004,219:109-119.
    [216]Yagi M., Kaneko M., Chem. Rev,2001,101:21-35.
    [217]Curtiss L. A., McGrath M. P., Blandeau J-P. et al. J. Chem. Phys.,1995,103:6104-6113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700