用户名: 密码: 验证码:
长江三角洲大气颗粒物理化特征与远源物质识别研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长江三角洲位于我国东部沿海,属亚热带海洋性季风气候,是当今海陆交互作用最为敏感和复杂地带。在大气环流作用下,古冬季风、西风携带的粉尘在黄土高原地区、中国东部平原(包括长江三角洲地区)和海域陆续沉积下来,形成了风尘堆积体,记录下了地质历史时期的古气候、古环境演变过程。而在现代沙尘暴期间,冬季风在蒙古、西伯利亚高压作用下,从西北、北方沙漠地区向中国东部及东部海域输送粉尘物质,使中国东部大气颗粒物中的化学和矿物成分等理化特性改变,记录下了粉尘源区及季风强度的信息。分析现代大气颗粒物的理化特征,是论证风尘黄土物质来源的一个新视角,并可为解析长江三角洲乃至全球古气候变化信息提供重要的线索和参考资料。
     本文以长江三角洲、沙尘输沙沿途地区的大气颗粒物和风尘黄土为研究对象,分别从颗粒物浓度、地球化学、色度、磁学、矿物组成等几方面研究长江三角洲、沙尘输沙沿途地区沙尘暴、非沙尘暴期间大气颗粒物与黄土堆积物理化特征,分析沙尘暴与非沙尘暴期间大气颗粒物与黄土理化特征的异同点,探索长江三角洲大气颗粒物中具有远源指示作用的指标和方法。
     对大量实测数据的综合分析,本文主要得到以下几点结论:
     (1)长江三角洲各采样点大气颗粒物质量浓度较低,呈冬高夏低的趋势,受沙尘暴事件、气象要素和污染控制投入的影响。上海市近地表大气颗粒物中,所测三个采样点的大气颗粒物(TSP、PM10、PM2.5)质量浓度顺序分别是:普陀>青浦>闵行、青浦>普陀>闵行、青浦>普陀>闵行;大气颗粒物质量浓度四季变化规律是秋、冬季最高,春季次之,夏季最低。空气质量评价发现,2009-2010年上海市大气颗粒物环境质量总体无污染,只有2009年12月下旬普陀、青浦、闵行三个采样点颗粒物污染程度为轻微污染。大气颗粒物中PM10占总悬浮颗粒物65-73%,PM2.5占40-50%,其中细颗粒污染物浓度较高,对城市居民的身体健康存在危害。质量浓度受气象要素、沙尘暴事件及污染排控等因素的影响。气温较低、湿度较小时,颗粒物浓度较大,反之则较小;沙尘暴使上海市大气颗粒物质量浓度明显增加,且在沙尘暴期间颗粒物中含有较多的粗颗粒物质。
     (2)上海市闵行、普陀、青浦区三个区同一时间的大气颗粒物元素体积浓度大小排列顺序及各元素随时间变化曲线均基本一致,表明三个区的大气颗粒物的化学成分非常相似,表明物源相似规律。其中,元素Zn、Cu、Mn、Ni、Cr、Ti、 Fe、Na富集在粗颗粒中;Ca, Mg, Si, Al富集在细颗粒中。Pb、Sr在粗细颗粒中富集程度相当。
     (3)富Na、Mg,贫Si, Al的特征以及Mg/Al比值可作为北方远源物质示踪的特征指标。上海市三个采样点大气颗粒物元素富集因子分布特征一致,研究显示Ni、Zn、Pb属于人为源污染,Sr、Cu、Mn、Cr、Ti、Ca、Al、Mg、Fe、Na等元素为地壳源物质。沙尘输沙沿途样品Pb、Zn、Ni元素来自人为源排放;Sr、Cu、Cr、Ti、Ca、Na元素的EF值较上海市大气颗粒物各元素EF值均有增加,属部分人为源物质,部分壳源物质;Mg、Al、Mn、Fe、K元素为壳源物质。沙尘暴、非沙尘暴和黄土的主量元素UCC标准化分布图显示,沙尘暴样品主量元素含量均比非沙尘暴样品更接近于黄土的主量元素含量,表明沙尘暴样品主要物质来源与黄土相似,可能与黄土物质具有同源性,即主要来源于西部沙漠,部分物质为局地源。因此,富Na、Mg而贫Si、Al的特征以及Mg/Al比值可作为北方远源物质示踪的特征指标。
     (4)稀土元素地球化学特征显示沙尘暴样品物质来源与黄土接近以壳源物质为主,非沙尘暴样品与沙尘暴样品、黄土物质来源不同,有非壳源物质的混合。稀土元素配分模式中,不同地点的沙尘暴颗粒物配分模式相似,且与北方黄土相似;不同地点的非沙尘暴颗粒物稀土元素配分模式间差异较大,与沙尘暴及黄土的配分模式差异也较大。稀土元素(La/Yb)CH vs.LaCH散点图显示,大部分黄土样品与沙尘暴样品落于同一区域。稀土元素三角图显示,沙尘暴样品与黄土Ce-La-Sm组成接近于UCC,说明沙尘暴样品物质来源与黄土接近,以壳源物质为主,但非沙尘暴样品与沙尘暴样品、黄土、UCC的Ce-La-Sm组成差别较大,说明非沙尘暴样品与沙尘暴样品、黄土物质来源不同,有非壳源物质的混合。因此推断,对比稀土元素配分模式及稀土元素(La/Yb)CH vs. LaCH散点图也可作为沙尘暴颗粒物物源示踪方法。
     (5)沙尘暴大气颗粒物与黄土的黄度特征非常接近,黄度可作为指示沙尘暴颗粒物源的有效指标。2009年10月至2010年10月间,上海市大气颗粒物明度、红度值总体呈增加趋势,黄度值仅在沙尘暴期间明显增加,其余则相对较小。北方城市春季大气颗粒物色度变化规律与上海市大气颗粒物黄度变化特征一致,说明在各采样点沙尘暴期间大气颗粒物的物质来源相似。沙尘暴大气颗粒物的色度特征介于非沙尘暴大气颗粒物和黄土之间,指示沙尘暴期间大气颗粒物与黄土具有相同的物源联系,部分物质来源于人为源污染。沙尘暴大气颗粒物与黄土的黄度特征非常接近,黄度可作为指示沙尘暴颗粒物源的有效指标。
     (6)环境磁学特征显示沙尘暴沙尘与黄土具有相似的物源联系,沙尘暴沙尘在输沙沿途吸附污染物,并带入长江三角洲地区。上海市沙尘暴期间TSP、PM10的χ1f及SIRM值升高,说明沙尘暴带来了污染物含量较高的粉尘,PM25的χ1f、SIRM值降低,说明污染元素富集于TSP、PM10颗粒上。北方城市沙尘暴大气颗粒物中污染物含量较小,沙尘暴粉尘比较清洁,但经过长距离输送,中途吸附了人为活动排放的污染产物。χfd值在冬季相对较高,超顺磁颗粒的贡献较大,表明质量浓度较高的非沙尘暴期间,颗粒物中所含颗粒粒径较细。χARM值与颗粒物质量浓度、元素质量浓度均在冬季升高,说明冬季颗粒物以单筹铁磁性矿物为主导,污染物质较易富集于细颗粒的单畴颗粒上。χIf-SIRM散点图显示,黄土样品点在沙尘暴样品点的延长线上,且黄土磁化率值较沙尘暴低,黄土、沙尘暴样品以亚铁磁性矿物及不完整反铁磁性矿物为主,且物源相近;非沙尘暴期间颗粒物中除了亚铁磁性矿物及不完整反铁磁性矿物外,还有其他磁性矿物存在。黄土、沙尘暴沙尘的χIf、SIRM与χARM均具有明显的相关性,揭示了黄土、沙尘暴沙尘物源的相似性。沙尘暴样品的χIf-SIRM明显高于黄土,说明在沙尘暴沙尘中不仅含有壳源物质,还有来自人为源的污染物。非沙尘暴样品与前二者不同,在xIf-χARM散点图与SIRM-χARM散点图中线性关系不明显,指示大气颗粒物除受非滞后剩磁贡献外,主要受其它颗粒影响,人为源污染物是大气颗粒物的主要物质组成。
     (7)上海市及北方输沙沿途城市大气颗粒物中主要矿物类型主要有:石英(Q)、石膏(G)、方解石(Cal)、白云石(Dol)、赤铁矿(Hem)、钠长石(Alb)、斜绿泥石(Clc)、蒙脱石(S)、高岭石(K)、伊利石(Ⅰ)、石盐(Hl)、菱铁矿(Sd)、黑云母(Bio)、白云母(Ms)等,沙尘暴期间大气颗粒物中矿物组成与黄土中矿物组成相似,代表二者具有物源联系。大气颗粒物中矿物组成在一年中变化明显,即秋、冬季和春季的沙尘暴时期矿物种类较多,春、夏季节的非沙尘暴期间矿物种类较少,这一四季变化规律与颗粒物浓度、颗粒物中元素浓度四季变化特征基本一致。沙尘暴时期大气颗粒物中石英、白云母、黑云母、蒙脱石、斜绿泥石的平均百分含量均大于非沙尘暴期间样品的矿物平均百分含量,石膏、方解石、白云石、高岭石、菱铁矿、伊利石平均百分含量均小于非沙尘暴期间样品中该矿物的平均百分含量。沙尘暴期间大气颗粒矿物组成较接近于黄土,说明二者物源相似。扫描电子显微镜观察发现,上海市大气颗粒物中不规则颗粒主要为矿物集合体,规则气溶胶小颗粒为球状燃煤颗粒、细小椭球形颗粒组成的汽车尾气絮状集合体等。能谱分析显示,沙尘暴样品中所含元素有O、C、Si、Al、K、Ca、 Fe、Mg、S、Na、Cl等元素;非沙尘暴期间大气颗粒物中所含元素有O、C、Si、 Al、Mg、Ni、Na、Cl、Ca、S、Fe、K等,除少量人为源污染元素外,推测矿物成分与XRD研究结果相似。南通、郑州、北京、西安沙尘暴期间的总悬浮颗粒物能谱分析显示,各采样点样品中所含元素相似,推测主要矿物与上海市沙尘暴期间矿物组成相似,指示它们之间存在物源联系。
     (8)色度、地化特征、磁学参数的二元Logistic回归模型显示,黄度b的系数最高,高达0.96,表明黄度b是指示远源物质的优良指标,磁学参数χ1f次之,是指示远源物质的良好指标,元素Al和Na体积浓度则可以作为指示远源物质的参考指标。用二元Logistic回归方法建立沙尘暴、非沙尘暴期间上海市大气颗粒物色度及磁学参数之间的数学模型;对沙尘暴、非沙尘暴期间上海市大气颗粒物元素的体积浓度运用灰熵关联度法,筛选出与因变量y关联更为密切的元素:Al、Si、Na、Mg作为自变量,并运用Logistic回归方法建立回归模型。从所建的三个回归模型来看,黄度b、磁学参数χ1f、元素Al和Na体积浓度的回归系数依次为0.96>0.003>3.3*104,其中,黄度b的系数最高,高达0.96,表明黄度b是指示远源物质的优良指标,磁学参数χ1f次之,是指示远源物质的良好指标,元素Al和Na体积浓度则可以作为指示远源物质的参考指标。
     在今后的研究中,应加强和改进黄土和大气颗粒物的采集和测试方法,获得足够多的大气颗粒物样品和更准确的实验数据。从黄土角度,详细分析同一时期的长江三角洲地区黄土与北方黄土高原黄土之间的区别与联系,结合大气颗粒物理化特征研究,更好地运用“将今论古”方法探讨远源示踪指标。
The Changjiang river delta is located at the east coasts of China, where belong to Subtropical maritime monsoon climate, and it is the most sensitive and complex area of east China.Under the action of atmospheric circulation, particulate matters were trasported by paleo-winter monsoon and westlies to the Loess plateaus, East China plain respectively, including Changjiang river delta and Sea area, forming aeolian deposit, and recorded the process of paleo-environmental evolutions. Biside it, during the time of dust storm, winter monsoon transported dust materials from desert of Northwest and North area of China to East China and east areas by the action of Mongolia and Siberian high pressure, changing the Chemical and mineral compositons of aeolian dust of East China, and recorded the information of the dust sources and the intensity of monsoon. Comparative analysising of the physicochemical characteristics of atmospheric particle matters and aeolian loess is the new angle of view to study the material origin, and it can provide important reference data for the Changjiang river delta and even global paleo-climat changing research.
     In this paper, the atmospheric particle matter and aeolian loess of Changjiang river delta and the areas on the way of dust transporting were used as study objects, and studied the Physicochemical characteristics of atmospheric particle matter of dust storm and non-dust storm periods and aeolian loess in Changjiang river delta and the areas on the way of dust transporting on the aspects of concentration, cheminstry, color index, magnetic characters, mineral compositon, etc., and analyzed the similarities and differences of the physicochemical characteristics and the distan-origin indicating indexes and methods of atmospheric particle matters of dust storm and non-dust storm periods and aeolian loess. Through analysis by synthesis of abundance data, several main conclusions come into being:
     (1) The order of mass concentrations of different grain sizes-atmospheric particulate matters in Shanghai city is TSP> PM10>PM2.5.The order of mass concentrations of TSP, PM10and PM2.5from three different sampling points are Putuo>Qingpu>Minhang, Qingpu>Putuo> Minhang, Qingpu>Putuo>Minhang. The seasonal order of mass concentration of atmospheric particulate matters is that the autom and winter are higher than spring, the spring is higher than summer. The assessment of air quality shows that the environments of atmospheric particulate matters in shanghai city has no pollution from2009to2010, except for the slight pollution of three sampling points of Putuo, Qingpu and Minhang districts in Dec.2009. The percent of PM10is65-73%in TSP, and PM2.5is40-50%, therefore, the fine particle pollution is high and harmful to health of city residents. The main effect factors of mass concentration of air quality are climate, dust storm and orgnation's pollution controll. Their relationships are that lower temperature and humidity is match along with higher concentration, on the contrary, higher temperature and humidity is match along with the lower concentration. The dust storm event will make the mass concentration to increase obviously, and there will be more coarse particles in dust storm.
     (2) The order of element volume concentrations and their seasonal changes of atmospheric particulate matters are probably identical in Putuo, Qingpu and Minhang districts of Shanghai, which show that the element compositions of atmospheric particulate matters in these three districts are exactly similar. This indicates the same sources of the atmospheric particulate matters. The elements of Zn, Cu, Mn, Ni, Cr, Ti, Fe, Na are easy to be absorbed in coarse particles, and Ca, Mg, Si, Al in fine particles, Pb, Sr in both grain sizes particles.
     (3) The distributions of enrichment factors (EF) values of elements in atmospheric particulate matters from the three sampling points in Shanghai are identical, which shows that elements of Ni, Zn, Pb belong to anthropogenic pollutions, Sr, Cu, Mn, Cr, Ti, Ca, Al, Mg, Fe, Na belong to crust original materials. In the samples from the sampling points along aeolian dust transporting ways, the elements of Pb, Zn, Ni come from anthropogenic source pollutions, and the EF values of Sr, Cu, Cr, Ti, Ca, Na in them are higher than the one in atmospheric particulate matters of Shanghai, which indicates that part of these elements come from anthropogenic materials, part of them from crustal materials. The elements of Mg, Al, Mn, Fe, K are from crustal materials.The standarded major elements by UCC in dust storm, non-dust storm and loess show that, the advantage concentrations of major elements in dust storm dusts are more closed to them in loess than in non-dust storm dusts, which indicates that the material origin of the dust storm dust is indentical to the source of loess, which mainly come from the deserts in western China,only part of them come from located places. The chemical characteristic of rich Na, Mg but poor Si, Al and the Mg/Al ratio can be used as indexs to indicat far source materials.
     (4) The rare element patterns of dust storm dust from all sampling points are similar to loess's of northern China, however, the rare element patterns of non-dust storm dust from different places are obviously different with each other and are different with dust storm dust and loess. Most of the loess and dust storm samples fall in the same field of scatter diagram of (La/Yb)CH vs. LaCH. The Ce-La-Sm compositions of loess and dust storm in triangular plot are close to UCC that indicates the origin of dust storm dust is identical to loess, which is mainly crust original material. However, the Ce-La-Sm compositions of non-dust storm dusts are different with the dust storm dust, loess, UCC, which indicates the material origin of non-dust storm dust is different with the dust storm dust and loess, and the dusts mixed with non-crust original material. Therefore, the dust storm dust has the same origin with the northern loess.
     (5) From Oct.2009to Oct.2010, the seasonal variations of color indexes of atmospheric particulate matters from three sampling points are consilient with each other, the rightness and redness of atmospheric particulate matters increased with time lapes, yellowness increased obviously during the time of dust storm, and decreased during the time of non-dust storm. The color indexes of atmospheric particulate matters in spring from the Northern cities changes with time lapes, and its variation of yellowness has good correlation with atmospheric particulate matters from Shanghai, which indicate that the source region of atmospheric particulate matters in spring from different places are similar to each others.The characteristics of color indexes of atmospheric particulate matters during the time of dust storm fall in between the characteristics of non-dust storm and loess, which indicates that part of the materials in atmospheric particulate matters during the time of dust storm have the same source relation with the loess, part of the materials comes from artifical sources. Therefore, color indexes especially yellowness are the effective indexes of source region indicating for atmospheric particulate matters during the time of dust storm.
     (6) High χlf and SIRM values of TSP, PM10in period of dust storm infor that high concentrations of pollution were carried from Northern by dust storm dust. Low χlf and SIRM values of PM2.5indicates that the contamination elements are enriched in TSP and PMio-The pollution concentration of dust storm particulate matters from Northern cities is low, so the dust storm dust is clean. But during the long way of transportation, many anthropogenic pollutions were absorbed on the dust, χlf value is relatively higher in winter than other seasons, and the superparamagnetic particles do contribution to the values, which indicate that high mass concentration of atmospheric particulate matters in non-dust storm period are mianly fine grain particles.χARM and particle's mass concentration, elements'mass concentrations all maintain at high value in winter, which indicates the SD ferromagnetizm dominants magnetic minerals in atmospheric particulate matters, and the pollution material is easy to be absorbed in SD particles. The dust storm samples fall in the extended line of loess in χ1f-SIRM scatter diagram, and it's magnetic susceptibility is higher than loess's, which suggests that the loess and dust storm samples are dominated by ferrimagnetism minerals and incompleted anti-ferromagnetism minerals, the non-dust storm dust contents not only ferrimagnetism minerals and incompleted anti-ferromagnetism minerals, but also other magnetic minerals. The obvious correlation of χ1f、SIRM,and χARM between loess and dust storm dust reveals the similar sources of loess and dust storm dust. The χ1f and SIRM value of dust storm dust are higher than loess, which indicates that there are not only crust original materials,but also anthropogenic pollutions in dust storm dusts. Non-dust storm dusts are different with loess and dust storm dusts, and there is no clear correlation in χ1fχARM and SIRM-χARM scatter diagrams, which suggests that the atmospheric particulate matters are effected by other particles except for ARM'S contribution, and the main compositions of the atmospheric particulate matters are anthropogenic pollutions.
     (7) The main minerals in atmospheric particulate matters of shanghai and northern cities are Q,G,Cal, Dol, Hem, Alb, Clc, S, K, I, H1, Sd, Bio, Ms, etc. Mineral composition in atmospheric particulate matters changes in different periods. More kinds of minerals are found in autumn, winter samples and dust storm dusts, and less in non-dust storm of spring and summer samples.This seasonal changing discipline is similar with the particle concentration and elements'concentrations.
     The average percentage concentrations of Q, Ms, Bio, S, Clc in atmospheric particulate matters of dust storm period are greater than that of non-dust storm period, G, Cal, Dol, K, Sd, I in in atmospheric particulate matters of dust storm period are less than that of non-dust storm period. The mineral compositions of atmospheric particulate matters in dust storm period are closed to loess, which suggests the resemble material sources of them.Watching by scanning electron microscope (SEM), we find that the irregular atmospheric particulate matters from Shanghai are mainly mineral combinations, the regular particles in them are globular fire coal,the cotton shaped combinations are wee ellipsoidal vehicle exhuast. Researched by EDS, the dust storm samples contain elements of O, C, Si, Al, K, Ca, Fe, Mg, S, Na, Cl,etc., the non-dust storm samples contain elements of O,C,Si,Al, Mg, Ni, Na, Cl, Ca, S, Fe, K, ect. Excepting for a little anthropogenic pollutions, the result of mineral compostions of samples studied by EDS are similar with the result studied by XRD. The study results by EDS of TSP sampled from Nantong, Zhengzhou, Beijing, Xi'an in dust storm period show that the element compositions of samples from every sampling point are similar with each other. Therefore, the mineral compostions of these sampling points are limilar with the samples from Shanghai in dust storm period, which infor the source relation of these tow kinds of samples.
     (8) Using the method of Binary Logistic Regression to build chroma and magnetic mathematical models of atmospheric particulate matters of shanghai during dust storm and non-dust storm period. Using the method of Ash grey relation entropy to screen out the elements whose volume concentrations of atmospheric particulate matters during dust storm and non-dust storm period have closer relations with dependent variable y. These elements are Al, Si, Na, Mg, which will be used as independent variable, and to build Logistic Regression model. Seen from these three regressions, the regression coefficient of Yellowness (0.96) is the highest one among them, and the regression coefficient of the magnetic parameter χlf (0.003) take the second place, the last one is the regression coefficient of Al, Si (3.3*10-4). Therefore, if to indicate far source materials, Yellowness b is the excellent index,χlf is the good index, and volume concentrations of Al, Si are the reference indexs for us.These conclusions are mainly identical with the above paragraphs.
     In the future research, we should enhance sampling frequency, improve sampling methods, and get enough samples of atmospheric particulate matters and more accurate sampling data. Combining with the physicochemical characteristics of the atmospheric particulate matters, analyze the differences and relations between loesses from Changjiang river delta and the Northern China of the same period, and discuss the tracing index of far source materials using the method of "present being a key to past".
引文
安芷生,吴锡浩,汪品先.最近130ka中国的古季风—古季风变迁[J].中国科学B辑,1991,11:1209-1215
    安俊岭,张仁健,韩志伟.2000.北方15个大型城市总悬浮颗粒物的季节变化[J].气候与环境研究,5(1):25-29
    柴育成,田兴有,马福臣.居世界前列的我国“过去全球变化”研究[J].中国科学基金,1998:134-136
    陈昌国,詹忻,李纳,等.重庆市区大气颗粒物的物相组成分析[J].环境化学,2002,21(3):207-208
    陈长和,黄建国,程麟生,等.复杂地形大气边界层和大气扩散研究[M].北京:气象出版社,1993
    陈立奇.中国沙漠尘土向北太平洋的长距离大气输送[J].海洋学报,1985,7(5):554-560
    程道远.大气尘埃来源与尘暴[J].世界沙漠研究,994,(1):10-16
    邓聚龙.灰色系统理论教程[M].华中理工大学出版社,1990
    杜刚,张见听.辽宁省典型城市大气颗粒物污染状况及分布特征研究.现代科技情报,2006,2:67-68
    冯军会,张宇,等.合肥市大气颗粒物组成及其环境指示意义[J].岩石矿物学杂志,2001,20(2):433-436
    高庆先,李令军,张运刚,等.我国春季沙尘暴研究[J].中国环境科学,2000,20(60):495-500
    韩力慧,庄国顺,孙业乐,等.北京大气颗粒物污染本地源与外来源的区分——元素比值Mg/Al示踪法估算矿物气溶胶外来源的贡献[J].中国科学B辑,化学,2005,35(3):237-246
    贺克斌,贾英韬,马永亮,等.北京大气颗粒物污染的区域性本质[J].环境科学学报,2009,29(3):482-487
    黄姜侬,方家骅,邵家骥,等.南京下蜀黄土沉积时代的研究[J].地质论评,1988,34(3):240-247
    环境保护部.中华人民共和国国家标准——环境空气质量标准(GB3095-1996)[M],北京:环境科学出版社,1996
    胡良军,邵明安.从沙尘暴看黄土的沉积及黄土高原的形成[J].安徽师范大学学报(自然科学版),2001,24(2):148-152
    侯圣山,杨石龄,孙继敏等.风成沉积物4-16um石英氧同位素记录及其物质来源意义[J].中国科学(D辑),2003,33(6):535-542
    郭治龙.兰州地区沙尘暴微量元素示踪及其环境意义[J].兰州大学博士论文,2004:1-99
    郭正堂.约0.85Ma前后黄土高原区季风强度的变化[J].科学通报1993,38(2):143-143
    季廷安,付光.北京城区大气中可吸入颗粒物的分布特征[J].环境污染治理技术与设备,1986,7(3):51-53
    姬亚芹,朱坦,白志鹏,等.天津市土壤风沙尘元素的分布特征和来源研究[J].生态环境,2005,14(4):518-522
    姬亚芹,朱坦,冯银厂,等.用富集因子法评价我国城市土壤风沙尘元素的污染[J].南开大学学报(自然科学版),2006,39(2):94-99
    姬洪亮,赵宏,孔少飞,等.天津近岸海域大气颗粒物无机组分季节变化及源析[J].中国环境科学,2011,31(2):177-185
    荆俊山,傅刚,陈栋,等.北京市大气悬浮颗粒物TSP和PM1o的季节变化特征[J].中国海洋大学学报,2008,38(4):539-541
    贾耀锋,黄春长,毛龙江.全球变暖背景下中国北方沙尘暴变化及其对黄土高原成壤的影响研究[J].干旱区资源与环境,2006,20(5):78-83
    廖立兵,李国武.X射线衍射方法与应用基础[M],北京:地质出版社,2008:1-196
    刘昌岭,张经,刘素美.我国不同矿物气溶胶源区物质的物理化学特征[J].环境科学,2002,23(4):28-32
    刘咸德,贾红,齐建兵,等.青岛大气颗粒物的扫描电镜研究和污染源识别[J].环境科学研究.1994,7(3):10-17
    刘东生等.黄土与环境[M].北京:科学出版社,1985:1-312
    刘明哲,魏文寿.周宏飞,等.中国西北沙尘源区与日本沉降区大气气溶胶粒子理化特征及对比[J].中国沙漠,2003,23(4):408-414
    刘田,裴宗平.枣庄市大气颗粒物扫描电镜分析和来源识别.环境科学与管理,2009,34(2):151-174)
    吕森林,邵龙义,吴明红,等.北京城区可吸入颗粒物(PMlo)的矿物学研究[J].中国环境科学,2005,25(2):129-132
    李福春,潘根兴,谢昌仁,等.南京下蜀黄土—古土壤剖面的不同粒组稀土元素地球化学分布[J].第四纪研究,2004,24(4):477-478
    李娟.中亚地区沙尘气溶胶的理化特性、来源、长途传输及其对全球变化的可能影响[D].复旦大学博士学位论文,2009:24-26
    李晓庆,胡雪峰,孙为民,等.城市土壤污染的磁学监测研究[J].土壤,2006,38(1):66-74
    李徐生,杨达源,鹿化煜.镇江下蜀黄土粒度特征及其成因初探[J].海洋地质与第四纪地质,2001,21(1):25-32
    李徐生,杨达源.镇江下蜀黄土—古土壤序列磁化率特征与环境记录[J].中国沙漠,2002,22(1):27-32
    罗扎诺夫.土壤形态学[M].北京:科学出版社.1998:223-240
    全浩.关于中国西北地区沙尘暴及其黄沙气溶胶高空传输路线的探讨[J].环境科学,1993,14(5):60-65
    钱鹏,郑祥民,王晓勇,张卫国.江苏南通黄泥山黄土的粒度、环境磁学特征及成因分析[J].海洋地质与第四纪地质,2010,30(1):109-114
    任阵海,万本太,苏福庆,等.当前我国大气环境质量的几个特征[J].环境科学研究,2004:17(1):1-6
    上海市环境监测中心(Shanghai Environmental Monitoring Center):http:// www.semc.gov.cn/home/index.aspx###
    上海气象信息网(Shanghai Meteorological Information):http:// soweather.com/pubweb/Index.aspx
    师育新,戴雪荣,宋之光,等.上海春季沙尘与非沙尘天气大气颗粒物粒度组成与矿物成分[J].中国沙漠,2006,26(5):780-785
    史培军,严平,高尚玉,等.我国沙尘暴灾害及其研究进展与展望[J].自然灾害学报,2000,9(3):71-77
    宋春青,邱维理,张振春.地质学基础(第四版)[M].北京:高等教育出版社,2006,9:111
    宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源分析[J].环境科学,2002,23(6):11-16
    孙继敏.中国黄土的物质来源及其粉尘的产生机制与搬运过程[J].第四纪研究,2004,24(2):176-783
    唐孝炎.大气环境化学[M].北京:高等教育出版社,1991:164
    王京丽,刘旭林.北京市大气细粒子质量浓度与能见度定量关系初探[J].气象学报,2006,64(2):221-228
    王式功,董光荣,陈惠忠,等.沙尘暴研究的进展[J].中国沙漠,2000,20(4):349-356
    王淑英,张小玲.北京地区PM10污染的气象特征[J].应用气象学报,2002,13:177-185
    王晓燕,张爱东,修光利.上海市中心城区空气中可吸入颗粒物污染水平和变化状况[J].环境科学与管理,2006,31(7):43-47
    王晓蓉.环境化学[M],南京:南京大学出版社,1993:1-357
    魏复盛,陈静生,吴燕玉,等.中国土壤元素背景值(2版)[M],北京:中国环境科学出版社,1990:1-501
    文倩,戴君峰,崔卫国,等.关于现代浮尘研究与进展[J].干旱区研究,2001,18(4):68-71
    武春林,朱诚,鹿化煜等.南京地区下蜀黄土磁性地层年代与古环境变化[J].地层学杂志,2006,30(2):116-123
    吴艳宏,李世杰.湖泊沉积物色度在短尺度古气候研究中的应用[J].地球科学进展,2004,19(5):789-792
    肖正辉,邵龙义,孙珍全,等.兰州市取暖期可吸入颗粒物中单颗粒矿物组成特征[J].矿物岩石地球化学通报,2007,26(1):64-96
    肖正辉,邵龙义,张宁,等.兰州市一次沙尘暴期间PM10的矿物组成特征[J].矿物岩石地球化学通报,2009,28(2):177-182
    谢静,吴福元,丁仲礼.浑善达克沙地的碎屑锆石U-Pb年龄和Hf同位素组成及其源区意义[J].岩石学报,2007,23(2):523-528
    熊毅,李庆逵.中国土壤[M],北京:科学出版社,1987:20
    熊尚发,丁仲礼,刘东生.第四纪气候变化机制研究的进展与问题[J].地球科学进展,1998,13(3):265-272
    徐志伟,鹿化煜,赵存法,等.库姆塔格沙漠地表物质组成、来源和风化过程[J].地理学报,2010,65(1):53-64
    徐宏辉,王跃思,杨勇杰,等.泰山顶夏季大气气溶胶中水溶性离子的浓度及其粒径分布研究.环境科学,2008,29(2):305-309
    徐建华.现代地理学中的数学方法(第2版)[M].北京:高等教育出版社,2002:1-458
    许峰宇.下蜀土剖面磁化率反映古气候变化机制的探讨.徐州师范学院学报(自然科学版),1995,13(2):39-40
    颜明,许炯心,王宁.黄土高原沙尘暴时空分布格局及变化趋势分析.水土保持研究,2009,16(6):6-9
    杨传俊,张元勋,陆文忠,等.上海大气纳米颗粒物粒径分布研究,过程工程学报,2006,6(增刊2):105-109
    杨守业,李从先,李徐生等.长江下游下蜀黄土化学风化的地球化学研究.地球化学,2001,30(4):403-407
    杨达源.中国东部的第四纪风尘堆积与季风变迁.第四纪研究,1994,4,354-360
    姚檀栋,焦克勤,皇翠兰,等.冰芯所记录的环境变化及空间耦合特征[J].第四纪研究,1995,15(2):23-30
    叶汝求,王家贞,任宇征.应用扫描电镜研究沈阳地区气溶胶颗粒特征[J].环境化 学.1987,6(2):1-7
    叶汝求,李永泉,王家贞.扫描电镜-聚类分析研究广州地区气溶胶颗粒特征[J].环境化学.1992,11(6):14-20
    尹娟,卓知学.一种分析沥青混合料的强度因素的新方法——灰色关联熵分析法[J].东北公路.1998,21(3):4144
    张德二.历史时期“雨土”现象剖析[J].科学通报,1982,27(5):294-297
    张国琏,甄新蓉,谈建国,等.影响上海市空气质量的地面天气类型及气象要素分析[J].热带气象学报,2010,26(1):124-128
    张宁等.沙尘暴降尘在甘肃的沉降状况研究[J].中国沙漠,1998,18(1):31-32
    张宁,张武平,张萌.沙尘暴降尘对甘肃大气环境背景值的影响研究[J].环境科学研究,2005,18(5):6-10
    张学磊,邬光剑,岳雅慧,等.拉萨市夏季大气降尘单颗粒矿物组成及其形貌特征明.岩石矿物学杂志,2011,30(1):127-134
    张小曳.亚洲粉尘的源区分布、释放、输送、沉降与黄土堆积[J].第四纪研究,2001,21(1):29-40
    张小曳,安芷生,张光宇,等.中国内陆大气颗粒物的搬运、沉积及反映的气候变化-Ⅱ.黄土高原中部晚第四纪大气矿物气溶胶沉积[J].中国科学B辑,1994,24(12):1314-1322
    张兴赢,庄国顺,陈建民,等.沙尘暴颗粒物表面的元素存在形态和组成[J].科学通报,2004,49(24):2544-2550
    张秀芝,鲍征宇,唐俊红.富集因子在环境地球化学重金属污染评价中的应用[J].地质科技情报,2006,25(1):65-72
    张卫国,俞立中,许羽.环境磁学研究简介[J],地球物理学进展,10(3):95-105
    张文彤SPSS统计分析高级教程[M].高教出版社,2004
    郑乐平,胡雪峰,方小敏.长江中下游地区下蜀黄土成因研究的回顾[J].矿物岩石地球化学通报,2002,21(1):54-57
    郑海飞,郝瑞霞.普通地球化学[M],北京:北京大学出版社,2007,9:1-258
    郑祥民.末次冰期苏北平原和东延海区的风尘黄土沉积[J].第四纪研究,1995,(3):258-266
    郑祥民.长江三角洲及海域风尘沉积与环境[M].上海:华东师范大学出版社,1999:1-174
    中央气象台网站http://www.nmc.gov.cn/publish/observations/weatherchart-h000. htm
    周自江.近45年中国扬沙和沙尘暴天气.第四纪研究,2001,21(1):9-17
    朱先磊,张远航,曾立民,王玮.北京市大气细颗粒物PM25的来源研究[J].环境科学研究,2005,18(5):1-5
    朱而勤,余联生,李建华,等.东海北部表层沉积物的颜色[J].海洋地质与第四纪地质.1983(3):1
    An,Z.S. The history and variability of the East Asian paleomonsoon climat[J].Quaternary Science Reviews,2000,19(1-5):171-187
    Arao.K.,Ishizaka,Y. Volume and mass of yellows and dust in the air over Japan as estimated from atmospheric turbidity[J]. J. Meteorol. Soc. Jap.,1986,1:79-94
    Arnold, E., Merril,J, Leinen, M., King,J. The effect of source area and atmospheric transporton minerala erosol collected over the North Pacific Ocean[J]. Global Planet Change,1998,18:137-159
    Balsam, W.L., Deaton, B.C., Damuth, J.E. Evaluating optical lightness as a proxy for carbonate content in marine sediment cores[J]. Marine Geology,1999 (161): 141-153
    Barrack, F.T., Balsam, W.L., and Deaton, B.C. Quantative reassessement of brick red lutites:Evidence from reflectance spectrophotometry[J]. Marine Geology, 1989,(89):299-314
    Bergametti,G.,Gomes,L.,Coude-Gaussen,G.,Rognon,P., & Le Costumer,M..African dust over Canary Islands:Source regions,identification and transport pattern for some summer situations[J].J.Geophysical Research,1989,94(D12),14855-14864
    Biscaye P E, Grousset F E, Revel S, et al. Asian provenance of glacial dust (stage 2) in the Greenland Ice Sheet Project 2 ice core, Summit, Greenland[J]. Journal of Geophysical Research,1997,102 (C12):26765-26781
    Brankov E, Rao S T, Porter P S. A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants[J]. Atmospheric Environment, 1998,32,9:1525-2534
    Chen,F.H., Qiang,M.R., Feng,Z.D., et al. Stable East Asian monsoon climate during the Last Interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau[J]. Global and Planetary Change,2003,36(3):171-179
    CIE. Recommendations on Uniform Color Spaces, Color-Difference Equations, and Psychometric Color Terms [J]. Supplement No.2 to Publication CIE No.15 (E-1,3.1). Paris,1978:152-179
    David M. Dobson, Gerald R. Dickens, David K. Rea. Terrigenous sedimentation at Ceara rise[J]. Proceedings of the Ocean Drilling Program, Scientific Results,1997 (154):464-473
    Davis,B.L..X-ray diffraction analysis and source apportionment of Denver aerosol[J].Atmospheric Environment,1984,18(10),2197-2208
    Dearing, J.A.,Dann, R.J, L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A., O'Grady, K., Frequency-dependent susceptibility measurements of environmental materials[J],Geophys.Res.Lett.,1996,20,228-240
    Ding Z.L., Derbyshire E., Yang S.L., et al. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters,2005,237(2):45-55
    Ding Z L, Yu Z, Rutter N W, Liu T. Towards an orbitaltime scale for Chinese loess deposit s[J]. Quaternary Science Reviews,1994,13:39-70
    Draxler, R R. Meteorological factors of ozone predictability at Houston, Texas[J]. Air and Waste Manaagement Assoc,2000,50:259-271
    Dockery D W, PopeⅢ C A,Xu X.An association between air pollution and mortality in six US cities[J]. N.Eng.J.Med.,1993,329:1753-7159
    Duce R A, Unni C K, Ray B J et al. Long-rang atmospheric transport of soil dust from Asia to the tropical North Pacific:temporal variability [J].Science,1980, 209:1522-1524
    Duce R A. Sources, distributions and fluxes of mineral aerosols and their relationship to climate[M]. In:Heintzenberg J, ed. Aerosol Forcing of Climate. New York: John Wiley & Sons Ltd,1995.43-72
    Duce R A,Hoffmann G L, Zoller W H. Atmospheric trace metals at remote northern and southern hemisphere sites:pollution or natural [J]. Science,1975,187:59-61
    Englert N. Fine particles and human health:a review of epidemiological studies [J].Toxicology Letters,2004,1-3(149):235-242
    Evans, M.E., Heller, F. Magnetism of loess/paleosol sequence:recent developments[J]. Earth Science Review,2001,54:129-144
    Fang X M, Ono Y, Fukusawa H, et al. Asian summer monsoon instability during the past 60,000 years:Magnetic susceptibility and pedogenic evidence from the Chinese western Loess Plateau[J]. Earth Planet Sci Lett,1999,168:219-232
    Fernandez R N, Schulze D G Color, organic matter, and pesticide adsorption relationships in a soil landscape[J]. Soil Sci Soc Am J,1988,52:1023-1026
    Gao S, Collins M. Net sediment transport patterns inferred from grain size trends, based upon definition of "transport vectors" [J]. Sedimentary Geology,1992,81: 47-60
    Gallet SJahn B M,Torii M,et al.Geochemical characterization of the luochua Loess-paleosol sequence,China and paleoclimatic implications[J]. Chemical Geology,1996,133:67-88
    Guo Jixiang.Airborne particulate study in five cities of China[J]. Atmoshperic Environment,2000,34:2703-2711
    Guo.Z.T., Ruddiman, W.F., Hao,Q.Z.,et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China[J]. Nature,2002,416(6877):159-163
    Hays J D, Imbrie J,Shackleton N J. Variations in t he Eart h'sorb it:Pacemakers of t he ice ages[J]. Science,1976,194:1121-1132
    Hanesch,M.,Scholger,R. and Rey,D., Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves[J]. Atmospheric Environment.2003,37:5125-5133
    Hansen L D, Silberman D, Fisher G L. Crystalline components of stack-collected size-fractionated coal fly ash[J]. Environ Sci Technol,1981,15:1057-1062
    Helmut M. Helmut M.Air pollution in cities[J].Atmospheric Environment, 1999,33:4029-4037
    J.Cyrys,M.Stolzel,J.Heinrich,et al. Elemental composition and sources of fine and ultrafine ambient particles in Erfurt,Germany. The Science of the Total Environment,2003,305:143-156
    J.L.Colin, B.Lim, E.Herms, F.Genet, E.Drab, et al. Air to snow mineral transfer—crustal elements in aerosols, fresh snow and snowpits on the Greenland ice sheet[J].Atmospheric Environment,1997,31(20)-.3395-3406
    Kakoli Karar, A.K.Gupta. Source apportionment of PM10 at residential and industrial sites of an urban region of Kolkata,india.Atmospheric Research,2007,84:30-41
    Kemp,A.I.;Hawkesworth,C.J.Granitic perspectives on the generation and secular evolution of the continental crust[M]. In Treatise on Geochemistry; Holland,H., Turekian,K., Eds.; Elsevier. Amsterdam,2004,3:349-410
    Lauf R J, Harris L A, Rawiston S S. Pyrite framboids as the source of magnetic spheres in fly ash[J]. Environ Sci Technol,1982,16:218-220
    Li Fuchun, Jin Zhangdong, Xie Changren,et al. Roles of sorting and chemical weathering in the geochemistry and magnetic susceptibility of Xiashu loess,East China[J]. Journal of Asian Earth Sciences,2007,29:813-822
    L.Y.Chan,W.S.Kwok,S.C.Lee,et al,Spatial variation of mass concentration of roadside suspended particulate matter in metropolian Hong Kong.Atmospheric Environment,2001,35:3167-3176
    Lu H.Y., Wang X.Y., Ma,H.Z., et al. The plateau monsoon vairiations during the past 130 Kyr revealed by loess deposit at Northteast Qinghai-Tibet, China[J].Global and Planetary Change,2004,41:207-214
    Lu H Y, Vandenberche J, An Z S. Aeolion origin and palaeoclimatic implications of the "Red Clay" (north China) as evidenced by grain-size distribution [J]. Journal of Quaternary Science,2001,16(1):89-97
    L. Schutz* and M. Sebert. Mineral aerosols and source identification [J]. Journal of Aerosol Science,1999,18(1):1-10
    Maher,B.A., Magnetic propertities of some synthetic sub-micron magnetities[J],Geophys.J.,1988,94:83-96
    Merrill,Arnold,Leinen & Weaver,Mineralogy of Aeolian dust reaching the North Pacific Ocean, Ⅱ.Relationship of mineral assemblages to atmospheric transport patterns[J]. Journal of Geophysical Research,1994,99(D10),21025-21032
    Meng Ziqiang, Zhang Quanxi. Damage effects of dust storm PM2.5 on DNA in alveolar macrophages and lung cells of rats [J].Food and Chemical Toxicology, 2007,45:1368-1374
    Micha J.A. Rijkenberg, Claire F. Powell, Manuel Dall'Osto. Changes in iron speciation following a Saharan dust event in the tropical North Atlantic Ocean[J]. Marine Chemistry,2008,11056-67
    Moreno,E.,Sagnotti,L.,Dinares-Turell,J.,Winkler,A. and Cascella.Biomonitoring of traffic air\pollution in Rome using magnetic properties of tree leaves[J].Atmospheric Environ.2003,37:2967-2977
    Oi K, Fukusawa H, Iwata S, et al. Last 2.4 Ma changes of monsoon and westerly actibvities in the East Asia, detected by clay mineral composition in loess-paleosol sequences at the inland area of China and deep-sea sediments of the Japan Sea[J]. J Geogr,1997,106:249-259
    Oldfield F. Environmental magnetism—A personal perspective [J]. Quat Sci Rev, 1991,10:73-85
    Paul N. Pearson, Nicholas j. Shackleton, Graham P. Weedon, Mike A. Hall. Multispecies planktonic foraminifer stable isotope stratigraphy through Oligocene/Miocene boundary climatic cycles, Site 926. Proceedings of the Ocean Drilling Program[J]. Scientific Results,1997(154):441-449
    Pedro A.de P.Pereira, Wilson A.Lopes,Luiz S.Carvalho,et al,Atmospheric concentrations and dry deposition fluxes of particulate trace metals in Salvador,Bahia,Brazil. Atmospheric Environment,2007,41:7837-7850
    Reggie R. China's Dust Storms Raise Fears of Impending Catastrophe [J].National Geographic News, USA,2001,1
    Peter C.Chu,Yuchun Chen,Shihua Lu,et al.Particulate air pollution in lanzhou China.Environment International,2008,34:698-713
    R. Chester, K.J.T. Murphy, F.J. Lin, et al., Factors controlling the solubilities of trace metals from non-remote aerosols deposited to the sea surface by the'dry' deposition mode [J],Marine Chemistry,1993,42(2):107-126
    Ravindra K, Mittal A K, Grieken R V. Health risk assessment of urban suspended particulate matter with special reference to polycyclic aromatic hydrocarbons:A review [J]. Reviews on Environmental Health,2001,16 (3):169-189
    Robertson A R. The CIE 1976 color-difference formulae[J]. Color Research and Application,1977,2:7-11
    Seaton A, Godden D, Macnee W, et al. Particulate air pollution and acute health effects [J].The Lancet,1995,345(8943):176-178
    Shields J A.Paul E A. Spectrophotometric measurement of soil color and its relationship to moisture and organic matter. Can J Soil Sci,1968,48:271-280
    Shinji Kanayama, Sadayo Yabuki, Fumitaka Yanagisasa, et al. The chemical and strontium isotope composition of atmospheric aerosols over Japan:the contribution of long-range-transported Asian dust(Kosa).Atmospheric Environment,2002,36:5159-5175
    S.Hellebust,A.Allanic,I.P.O'Connor,et al.Sources of ambient concentations and chemical composition of PM2.5-0.1 in Cork Harbour,Ireland. Atmospheric Research,DOI:10.1016/j.atmosres.2009.09.006
    Sims Z R, Nielsen G A. Division S-5—oil genesis, morphology, and classification: Organic carbon in Montana soils as related to clay content and climate. Soil Sci Soc AmJ,1986,50:1269-1271
    Singh B, Gilkes R J. Properties and distribution of iron oxides and their association with minor elements in the soils of south-western Australia[J]. J Soil Sci,1992,43: 77-98
    Stohl A, et al. A backward modeling study of intercontinental pollution transport using aircraft measurements [J]. Journal of Geophysical Research,2003,108,D12, 4370,doi:10.1029/2002JD002862
    S.Moreno-Grau,A.Perez-Tornell,J.Bayo,et al,Particulate matter and heavy metals in the atmospheric aerosol from Cartagena,Spain.Atmospheric Environment,2000, 34:5161-5167
    Sun Jimin. Nd and Sr isotopic variations in Chinese eolian deposits during the past8Ma:Implications for provenance change.Earth and Planetary Science Letters, 2005,240 (2):454-466
    Sun Jimin. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau.Earth and Planetary Science Letters,2002,203 (3-4):845-859
    Sun Youbin,Tada R, Chen Jun et al. Distinguishing the sources of Asian dust based on electron spin resonance signal intensity and crystallinity of quartz. Atmospheric Environment,2007,41 (38):8537-8548
    Taylor, S. R. & McLennan, S. M. The Geochemical Evolution of the Continental Crust. Rev. Geophy.,1995,32 (2):241-265
    Teresa Moreno,Xavier Querol,Andres Alastuey,Jorge Pey, Maria Cruz Minguillon, Noemi Perez,et al.,Lanthanoid geochemistry of Urban atmospheric particulate matter.Environmental Science Technology,2008,42:6502-6507
    Thompson R., Oldfield, F. Environment Magnetism, Allen and Unwin, London, 1986,Chapter 11
    Thurston G D,Ito K.Hayes C G,et al. Respiratory hospital admissions and summertime haze air pollution in metropolian Toronto,Ontario.Environmental Research,1994, 65:271-290
    Uematsu M,Duce R A,Prospero J M et al.Transport of mineral aerosol from Asia over the North Pacific Ocean.J.Geophys.Res.,1983,88:5343-5352
    Usanee Vinitketkumnuen,Kittiwan Kalayanamitra,Teera Chewonarin,et al.Particulate matter,PM10&PM2.5 levels,and airborne mutagenicity in Chiang Mai, Thailand. Mutation research,2002,519:121-131
    Vandenberghe J, Lu H Y, Sun D H, et al. The late Miocene andPliocene climate in East Asia as recorded by grain size and magneticsusceptibility of the Red Clay deposits (Chinese Loess Plateau).Palaeogeography, Palaeoclimatology, Palaeoecology,2004,204:239-255
    Yang S L. Chen S Y. Soil color: A new sensitive indicator for climatic change [J]. Chinese Science Bulletin,1999,44(Suppl) 1:282
    Yang S.Y., Li C.X., Yang D.Y., et al. Chemical weathering of the loess deposits in the lower Changjiang Valley, China, and paleoclimatic implications.Quaternary International,2004,117:27-34
    Ying Wang, Guoshun Zhuang, Yele Sun. Water-soluble part of the aerosol in the dust storm season—evidence of the mixing between mineral and pollution aerosols. Atmospheric Environment.2005,39:7020-7029
    Zhang X Y, A rimoto R, An Z S et al. Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmospheric Environment,1993,27A:2051-2067
    Zhang X Y, Arimoto R, An Z S. Dust emission from Chinese desert sources linked to variations in atmospheric circulation. Journal of Geophysical Research,1997, 102:28041-28047
    Zhang X Y, Arimoto R A, An Z et al. Late Quaternary records of the atmospheric input of eolian dust to the center of the Chinese Loess Plateau. Quaternary Research,1994,41:35-43
    Zhang Weiguo, Yu Lizhong, Lu Min, et al. Magnetic properties and geochemistry of the Xiashu Loess in the present subtropical area of China,and their implications for pedogenic intensity. Earth and Planetary Science Letters.2007,260:86-97
    Zhuang G S, Guo J H, Yuan H, et al. Coupling and feedback between iron and sulphur in air-sea exchange. Chinese Science Bulletin,2003,48(8):1080-1086
    Zoller W H,Glandney E S,Duce R A. Atmospheric concentrations and sources of trace metals at the south pole.Science,1974,183:199-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700