用户名: 密码: 验证码:
长江河口潮滩沉积物中砷的迁移转化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷(As)作为一种典型有毒元素,被认为是首要控制的污染物之一,其在不同环境介质中生物地球化学行为和生物可利用性成为当前科学研究热点之一。有报道长江河口砷已受到人类活动的影响,因此选择长江河口滨岸盐沼湿地(潮滩)这一特殊的海陆交互作用地带为研究对象,探讨砷在长江河口滨岸盐沼湿地上覆水体、表层沉积物及不同植被根际沉积物中的迁移转化,试图寻找沉积物中的砷在潮汐和植被等因素影响下的迁移转化规律。本工作重点分析了长江河口东滩湿地砷的来源、上覆水体溶解态砷及互花米草根际沉积物孔隙水中溶解态砷的季节变化,并采用改进的砷五步连续提取法,探讨了潮滩表层沉积物和三种主要植被芦苇、互花米草和海三棱藨草根际(<40cm)沉积物中砷的赋存相态,尤其是互花米草根际沉积物中不同结合态砷的季节变化和主要影响因子,以及这些变化对潮滩生态系统的潜在环境影响。结合室内模拟实验探讨了在不断变化的氧化还原条件下,沉积物中砷迁移转化过程与铁、硫迁移转化过程的关系,这进一步验证了野外实地调查。基于以上的研究分析,主要得出以下几点结论:
     (1)长江河口水体溶解态砷含量很低(<10μg/L),不会对水生生物产生危害作用。相当一部分溶解态砷可能形成悬浮颗粒态砷,随径流向海输送,或在一定条件下随泥沙在潮滩上沉积下来。河口水体颗粒态砷含量高低,在一定程度上能够反映河口砷向海输送状况,目前流域人类活动对砷向海输送的影响可能是微弱的。
     (2)沉积物中<16μm粒径的细颗粒物与总砷的显著正相关关系,表明了<16μm粒径的细颗粒物空间分异决定了沉积物中总砷的空间分异。表层沉积物和根际沉积物中不同结合态砷含量及占总砷的比例,大小顺序依次为:残渣态>非晶形铝、铁、锰氧化物结合态(非晶形结合态)>晶形铝、铁、锰氧化物结合态(晶形结合态)>强交换态>弱交换态,这表明潮滩表层沉积物及根际沉积物中的砷,以非活性砷为主(残渣态),富集于<16μm粒径的颗粒物中。
     (3)根际沉积物孔隙水中溶解态砷含量往往大于10μg/L,呈现出明显时空变化,而且与溶解态铁含量变化有较好的正相关关系,这主要源于潮汐、植物生长及微生物作用的时空变化。春冬季节,沉积物中氧化条件往往增强,而还原条件减弱,导致孔隙水中溶解态砷被铁/锰氧化物所吸附,而迁移能力降低。夏秋季节,沉积物中还原条件往往增强,导致砷的迁移能力增强,释放进入孔隙水。采用修正的菲克第一定律估算表明,潮滩沉积物中砷向上覆水体扩散通量,可能因互花米草的入侵而显著增大。
     (4)根际沉积物中不同结合态砷含量及占总砷的比例,随季节变化而变化。非晶形、晶形结合态及残渣态砷随季节变化较大,而弱交换态和强交换态砷随季节变化较小,这些变化的主要影响因素是潮滩不断变化的氧化还原条件。当还原条件不断增强时,非晶形态砷可能向溶解态、弱交换态、强交换态、晶形结合态和残渣态砷转化,这样的情况往往发生在夏秋季节;当还原条件不断减弱,而氧化条件不断增强时,溶解态砷和强交换态可能向非晶形结合态砷转化,这样的情况往往发生在春冬季节。
     (5)根际沉积物中AVS (Acid Volatile Sulfide)含量的时空变化,很好地反映了沉积物中氧化还原条件的时空变化,其变化的原因主要是周期性潮水、植被生长及微生物作用的时空变化。植物生长季节,其根系产生了大量新鲜有机质,加之潮滩处于湿季阶段,随有机质降解的增强,铁/锰氧化物还原溶解作用增强,硫酸盐异化还原作用增强,同时砷的迁移能力增强。植物凋落季节,潮滩处于干季阶段,有机质降解减弱,沉积物中氧化作用增强,铁/锰被氧化,砷被铁/锰氧化物所吸附,而迁移能力降低,以上砷的迁移转化过程因植被种类的不同而有所差异,AVS分析表明互花米草对于其根际沉积物中硫酸盐异化还原有较为明显的影响,这意味着入侵物种互花米草可能改变了潮滩湿地沉积物中原有的硫酸盐异化还原循环过程,进而对潮滩沉积物中砷的迁移转化产生一定的影响。
     (6)模拟实验结果表明,在氧化还原条件不断变化过程中,铁的迁移转化对于砷的迁移转化有着十分重要的影响。当氧化条件由于新鲜有机质的降解转变为还原条件,并不断增强时,铁/锰氧化物一部分还原溶解,被吸附的砷,由于失去吸附主体而迁移能力增强;乙酸钠可提取铁和砷的显著正相关关系,表明还原条件下非晶形铁氧化物向铁的次生矿物及晶形氧化物(如:绿锈、磁铁矿、铁的硫化物、FeCO3等)转化,这一过程中有相当一部分溶解态砷被铁的次生矿物所吸附,而仍然保留在沉积物中;在强还原条件下(互花米草根际),溶解态砷可能与硫化物生成砷的硫化物沉淀,从而使其迁移能力降低,但潮滩沉积物中存在大量的活性铁,活性铁硫摩尔比值Fe:S>1,这意味着活性铁还原会产生大量的Fe(Ⅱ),其可能与硫酸盐还原生成的S(Ⅱ)优先结合,生成铁的硫化物,这会阻止砷硫化物的生成,而进一步促使砷的迁移能力增强。模拟实验结果有力支持了野外调查结果和推断。
     总之,模拟实验和野外调查结果表明,长江河口潮滩沉积物中的生物地球化学氧化还原反应十分迅速(几十分钟、几小时到几天),这使得沉积物中的氧化还原条件不断发生快速变化,导致孔隙水中砷的含量及砷释放通量等都发生快速而明显的时空变化。在潮汐和植被等因素共同作用下,潮滩沉积物中砷的迁移转化主要受控于铁的迁移转化,而且因季节和不同植被带的变化而变化。在夏秋季节,砷的迁移能力往往增强,沉积物孔隙水中砷的含量明显增高,可能会对底栖生物产生一定的毒害。在冬春季节,砷的迁移能力明显降低,以上这些过程均受到入侵物种互花米草的显著影响,即互花米草可能改变了潮滩湿地沉积物中砷的迁移转化,进而对潮滩沉积物中砷原有的生物地球化学循环过程产生了显著影响。
Arsenic (As) is now regarded as one of the most serious contaminants as a typical noxious element, which toxicity is growing concered by scientists and governments all over the world widely. As biogeochemistry behaviors (mobility and transformation) and bioavailabality in a wide variety of natural environment systems are becoming one of important issues in environment pollution researches. Biogeochemical redox processes are important for controlling the behaviors and bioavailabality of As in the waters and sediments.
     There are large areas of salt marsh in the intertidal zone of the Yangtze River Estuary, China. Studies have been undertaken and have shown that As in the estuarine sediments has been significantly impacted by anthropogenic activity and there was As pollution within the intertidal zone. As in surface water, pore water, surface sediments and the rhizosphere sediments were investigated in the salt marsh of Dongtan wetland of the Yangtze River Estuary. The motivation of this study is to:(i) examine the aqueous and solid phases of As in sediments of the different rhizospheres, and (ii) evaluate the influence of temperature, tide and plants, especially the effects of Spartina alterniflora on the dynamics of As in salt marsh sediments. Our researches mainly focus on the resources of As in sediments; the seasonal changing of dissolved As in surface water and pore water; the seasonal changing of solid phases of As in sediments, particularly in the rehizophere sediments, and the potential effects of As biogeochemical behavior on the salt marsh ecosystem. Furthermore, the geochemical conditions and processes were investigated by the microcosm experiments in changing redox conditions (flooding conditions) to examine As dynamics that occurred during changing redox conditions and validate our field observations. Based on our results we get some conclusions as follows:
     (1) The concentrations of dissolved As in surface water is lower than10μg/L that is safe for aquatic organisms living in the Yangtze River Estuary. Dissolved As absorbed by phases of Fe(III) and Mn (IV, III)(hydr)oxides is important, forming suspended particulate, and tansports form esruray to sea or sediments with the tide at intertidal zones. The concentrations of total As in suspended sediment can reflect the potential quantity of As transport from the river to the sea. The transport of As form the esruray to the sea could be influenced by huaman activity slightly.
     (2) Pearson correlation analysis showed that there is a significant positive correlation between fine-grain particulate (<16μm) and total As, implying the spatial variations of fine-grain particulate controlls the spatial variations of total As in salt sediments. The adaptable sequential extraction procedures for arsenic in the surface and the rhizophere sediments showed that the decreasing order of the As-bearing solid fractions appeare to be residual phases> amorphous and poorly-crystalline (hydro)oxides of Fe, Mn and Al> well-crystallized (hydro)oxides of Fe, Mn and Al> specifically-sorbed> non-specifically sorbed. This indicates that the residual phases are primary As-bearing solid phases characterized by grain-size effect.
     (3) The dissolved As in pore water were significantly higher than that in surface water. The profiles of dissolved As and Fe in pore water showed highly spatial and seasonal variation among the different sites. Dissolved As and Fe concentrations in April and August are higher than that in December, and a positive correlation was found between of them. This indicates that As become mobilizing during sediment reduction with the development of anoxic condition in summer and autumn. Possibly it is due to that the reductive dissolution the host of Fe(III) and Mn(IV, III)(hydr)oxides that results in mobilization of As. However, when subsurface conditions changed from anoxic to progressively more oxidizing, dissolved As is removed from pore water by adsorption onto or co-precipitation with (hydr)oxides of Fe(Ⅲ) and Mn(Ⅳ, Ⅲ) again, resulting in immobilization of As. Diffusive fluxes were calculated by a modification of Fick's first law, revealing that the sediment-water exchange of As could be significantly mediated by S. alterniflora.
     (4) The percentage of As-bearing solid fractions to total As in the rhizophere sediments exhibited highly seasonal variation. The seasonal variation in the As-bearing phases of amorphous and poorly-crystalline and well-crystallized (hydro)oxides of Fe, Mn and Al, and residual phases were more significant compared to As-bearing phases of specifically-sorbed and non-specifically sorbed, duo to seasonal changes of redox conditions in salt-marsh sediemts. When subsurface conditions changed from oxidized to progressively more reduced, the transformation of poorly-crystalline phasaes to aqueous, non-specifically sorbed, specifically-sorbed sorbed, well-crystallized and residual phases occured, especially during summer and autumn. On the countary, when subsurface conditions changed from reduced to progressively more oxidized, the transformation of aqueous, non-specifically sorbed, specifically-sorbed sorbed to poorly-crystalline phasaes occured, especially during spring and winter.
     (5) The concentrations of acid volatile sulfide (AVS) in the rhizophere sediments exhibited major spatial and seasonal variations among different sites, especially in the rhizosphere of S. alterniflora. This finding could possibly be explained by the fact that temperature change, tidal flooding and seasonal growth of cycling of salt-marsh plants, these are regarded as major controlling processes for these changes. During growing season of plants, labile organic matter degradation and sulfate-reducing bacteria (SRB) activity are enhanced and lead to initially mobilise more As. However, under sulfate-reduced conditions, the sulfide is produced by bacteria, which can reduce As(V) to As(Ⅲ) and may also enable formation of As sulfide or As-Fe sulfide phases, thus promoting dissolved As sequestrated within anoxic environments. These biogeochemical redox processes of As could be significant influenced by growth of cycling of plants. Fox example, more sulfate is reduced in the rhizosphere of S. alterniflora in April and August, suggesting that sulfate reduction is enhanced by S. alterniflora and likely to play an important role in As mobility and transformation. We can infer that the dynamics of As mobility and transformation in salt-marsh sediments could be significantly influenced by the rapid spread of S. alterniflora.
     (6) The results from our microcosm experiments revealed that As mobility and transformation during biogeochemical redox processes are controlled by the transformation of iron minerals. When conditions changed from oxidizing to progressively more anoxic due to labile organic degradation, the reductive dissolution (hydr)oxides of Fe(Ⅲ) and Mn(IV, Ⅲ) that results in mobilization of As. Our results also revealed that acetate-extractable fractions of As had a positive correlation with acetate-extractable Fe, suggesting that probably bacterial reductive dissolution of Fe(Ⅲ)(hydr)oxides produces large quantities of Fe(II) which promotes siderite, green rust and magnetite formation. These iron secondary mineral phases often immobilize As (Ⅲ) and As (V) by inner-sphere adsorption and promote sequestration of As into sediments. The enhanced sulfate reduction may lead to precipitate As in sulfide phases and keep them retention in sediments. However, the reactive Fe abounds, As could be hardly sequestered into sulfide precipitations. The precipitation of iron sulfides may remove sulfide from solution but not As if precipitation rates are fast which may not result in the accumulation of As sulfides, whose effects require further investigation.
     Generally, the results suggest that a clear seasonally variable redox conditions exists in subsurface sediments of salt marsh and the change of redox conditions are strongly rapid. Following the growth of plans, higher amounts of labile and reactive organic materials are provided, and these organic matters are decomposed and leaded to more reductive conditions in the sediments, suggesting that the degradation of labile and reactive organic materials could be key to understanding the seasonal variations of dissolved As and As-bearing solid fractions in salt-marsh sediments. The mobility and transformation of As are controlled by the transformation of iron minerals during the changing redox conditions. Furthermore, combined with the results of the mobility of
     As and accumulation of AVS in the sediments of microcosm incubation experiments during the changing redox conditions, we infer that when subsurface conditions change from oxidized to progressively more anoxic conditions, the reduction of reactive Fe (hydr)oxides could promote the mobility of As, leading to dissolved As increase drastically in pore water, and potentially influencing bentonic organism, particularly in rhizosphere of S. alterniflora during the warmer seasons. The rate of these reactions could be enhanced during summer and autumn, and more reducing conditions could release As from the sediments to the pore water and surface water, which could cause potentially toxic to benthic bio-communities and aquatic life in the salt-marsh of the Yangtze River Estuary.
引文
1. Abdullah M I, Shiyu Z, Mosgren K. Arsenic and selenium species in the oxic and anoxic waters of the Oslofjord, Norway. Marine Pollution Bulliten,1995,31:16-126.
    2. Agusa T, Kunito T, Fujihara J, Kubota R, Minh T B, Kim Trang P T, Iwata H, Subramanian A, Viet P H, Tanabe S. Contamination by arsenic and other trace elements in tube well water and its risks assessments to humans in Hanoi, Vietnam. Environmental Pollution,2006,139(1):95-106.
    3. Amstaetter K, Borch T, Larese-casanova P, Kappler A. Redox transformation of arsenic by Fe(II)-activated goethite (a-FeOOH). Environmental Science and Technology,2010,44:102-108.
    4. Barbaris B and Betterton E A. Initial snow chemistry survey of the Mogollon Rim in Arizona. Atmospheric Environment,1996,30:3093-3103.
    5. Bernard P B. The diffusive tortuosity of fine-grained unlithified sediments Geochimica et Cosmochimica Acta,1996,60(16):3139-3142.
    6. Bissen M and Frimmel F H. Arsenic-a review.-Part Ⅰ:occurrence, toxicity, speciation, mobility. Acta Hydrochimica Et Hydrobiologica,2003,31(1):9-18.
    7. Blodau C, Fulda B, Bauer M, Knorr K H. Arsenic speciation and turnover in intact organic soil mesocosms during experimental drought and rewetting. Geochimica et Cosmochimica Acta, 2008,72:3991-4007.
    8. Blute N K, Brabander D J, Hemond H F, Sutton S R, Newville M G, Rivers M L. Arsenic sequestration by ferric iron plaque on Cattail Roots, Environmental Science and Technology,2004, 38:6074-6077.
    9. Blute N K, Jay J A, Swartz C H, Brabander D J, Hemond H F. Aqueous and solid phase arsenic speciation in the sediments of a contaminated wetland and riverbed. Applied Geochemistry,2009, 24(2):346-358
    10. Bogdan K, Schenk M K. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environmental Science and Technology,2008,42(21):7885-7890.
    11. Borch T, Kretzachmar R, Kappler A, Cappellen P V, Ginder-Vogel M, Voegelin A, Campbell K. Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science and Technology,2010,44:15-23.
    12. Bostick B C, Chen C, Fendorf S. Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environmental Science and Technology,2004; 38:3299-3304.
    13. Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L. Arsenite and arsenate binding to dissolved humic acids:Infuence of pH, type of humic acid, and aluminum. Environmental Science and Technology.2006,40,6015-6020.
    14. Caetano M and Vale C. Retention of arsenic and phosphorus in iron-rich concretions of Tagus salt marshes. Marine Chemistry,2002,79:261-271.
    15. Cances B, Juillot F, Morin G, LapercheV, Alvarez L, Proux O, Hazemann J L, Brown G E, Calas G, XAS evidence of As(V) association with iron oxyhydroxides in a contaminated soil at a former arsenical pesticide processing plant. Environmental Science and Technology,2005,39: 9398-9405.
    16. Chaillou, G, Schafer J, Anschutz P, Lavaux G, Blanc G. The behaviour of arsenic in muddy sediments of the bay of Biscay (France). Geochimica et Cosmochimica Acta,2003,67: 2993-3003.
    17. Chen Z, Zhu Y G, Liu W J, Meharg A A. Direct evidence showing the effect of root surface iron plaque on arsenite and arsenate uptake into rice (Oryza sativa)roots. New Phytologist,2005, 165(1):91-97.
    18. Cheng X L, Peng R H, Chen J Q, Luo Y Q, Zhang Q F, An S Q, Chen J K, Li B. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms. Chemosphere,2007,68:420-427.
    19. Choi J H, Park S S, Jaffe P R. The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments. Environmental Pollution,2006,140(2):286-293.
    20. Christiansen B C, Balic-Zunic T, Dideriksen K, Stipp S L S. Identification of green rust in groundwater. Environmental Science and Technology,2009,43(10):3436-3441.
    21.Cooper D C, Picardal F F, Coby A J. Interactions between microbial iron reduction and metal geochemistry:effect of redox cycling on transition metal speciation in iron bearing sediments. Environmental Science and Technology,2006,40:1884-1891.
    22. Dittmar J, Voegelin A, Maurer F, Roberts L C, Hug S, Saha G C, Ali M A, Badruzzaman A B M, Kretzachmar R. Arsenic in soil and irrigation water affects arsenic uptake by rice: complementary insights from field and pot studies. Environmental Science and Technology,2010, 44:8842-8848.
    23. Dixit S, Hering J G Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology,2003,37:4182-4189.
    24. Donald Mackay著,黄国兰,陈春江,孔庆宁等译.环境多介质模型——逸度方法.北京:化学工业出版社.2007,p 98-107.
    25. Doyle M O and Otte M L. Organism-induced accumulation of iron, znic and arsenic in wetland soils. Environmental Pollution 1997,96 (1):1-11.
    26. Druschel G K, Emerson D, Sutka R, Suchecki P, Luther III, G W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochimica et Cosmochimica Acta,2008,72,3358-3370.
    27. Eusterhues K, Wagner F E, Hausler W, Hanzlik M, Knicker H, Totsche K U, Kogel-Knabner I, Schwertmann U. Characterization of ferrihydrite-soil organic matter coprecipitates by X-ray diffraction and Mossbauer spectroscopy. Environmental Science and Technology,2008,42: 7891-7897.
    28. Fernandeza E, Jimeneza R, Lallenab A M, Aguilar J. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environmental Pollution,2004,131: 355-364.
    29. Gill G A, Bloom N S, Cappellino S, Driscoll C T, Dobbs C, Mcshea L, Mason R, Rudd J W M. Sediment-water fluxes of mercury in Lavaca Bay, Taxas. Environmental Science and Technology, 1999,33:663-669.
    30. Hines M E, Evans R S, Genthner B R S, Willis S G, Friedman S, Rooney-Varga J N, Devereux R. Molecular phylogenetic and biogeochemical studies of sulfate-reducing bacteria in the rhizosphere of Spartina alterniflora. Applied and Environmental Microbiology,1999,65(5): 2209-2216.
    31. Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A. The accumulation and toxicity of methylated arsenicals in endothelial cells:important roles of thiol compounds. Toxicology and Appllied Pharmacology,2004,198(3):458-467.
    32. Hjorth T. Effects of freeze-drying on partitioning patterns of major elements and trace metals in lake sediments. Analytica Chimica Acta,2004,526:95-102.
    33. Horneman A, Van Geen A, Kent D V, Mathe P E, Zheng Y, Dhar R K, O'Connell S, Hoque M A, Aziz Z, Shamsudduha M, Seddique A A, Ahmed K M, Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part 1:Evidence from sediment profiles. Geochimica et Cosmochimica Acta,2004,68,3459-3473.
    34. Hyacinthe C, Bonneville S, Van Cappellen P. Reactive iron(III) in sediments:chemical versus microbial extractions. Geochimica et Cosmochimica Acta,2006,70:4166-4180.
    35. Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D, Lloyd J R. Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature,2004,430: 68-71.
    36. Jiang J, Bauer I, Paul A, Kappler A. Arsenic redox changes by microbially and chemically formed semiquinone radicals and hydroquinones in a humic substance model quinone. Environmental Science and Technology,2009,43:3639-3645.
    37. Jones A M, Collins R N, Rose J, Waite T D. The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals. Geochimica et Cosmochimica Acta,2009,73:4409-4422
    38. Jonsson J and Sherman D M. Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite:implications for arsenic release in anoxic groundwaters. Chemical Geology,2008, 255:173-181.
    39. Keon N E, Swartz C H, Brabander D J, Harvey C, Hemond H F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environmental Science and Technology,2001,35(13):2778-2784.
    40. Kinniburgh D G and Kosmus W. Arsenic contamination in groundwater:some analytical considerations. Talanta,2002,58(1):165-180.
    41. Kocar B D and Fendorf S. Thermodynamic constraints on reductive reactions influencing the biogeochemistry of arsenic in soils and sediments. Environmental Science and Technology,2009, 43(13):4871-4877.
    42. Kolmert A, Per Wikstrom, Kevin B. Hallberg. A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. Journal of Microbiological Methods,2000,41:179-184.
    43. Koretsky C M, Haas J R, Ndenga N T, Miller D. Seasonal variations in vertical redox stratification and potential influence on trace metal speciation on minerotrophic peat sediments. Water, Air, and Soil Pollution,2006,173:373-40.
    44. Koretsky C M, Haveman M, Beuving L, Cuellar A, Shattuck T. Wagner M. Spatial variation of redox and trace metal geochemistry in a minerotrophic fen. Biogeochemistry,2007,86(1): 33-62.
    45. Kuhn A and Sigg L. Arsenic cycling in eutrophic Lake Greifen, Switzerland-infuence of seasonal redox processes. Limnology Oceanography,1993,38:1052-1059.
    46. Kulp T R, Hoeft S E, Asao M, Madigan M T, Hollibaugh J T, Fisher J C. Stolz J F, Culbertson C W, Miller L G, Oremlandand R S. Arsenic(Ⅲ) fuels anoxygenic photosynthesis in hot spring biofilms from Mono Lake, California. Science,2008,321,967-970.
    47. Kwong Y T J, Beauchemin S, Hossain M F, Gould W D. Transformation and mobilization of arsenic in the historic Cobalt mining camp, Ontario, Canada. Journal Geochemistry Exploration, 2007,92(2-3):133-150.
    48. La Force M J, Hansel C M, Fendorf S. Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emergent wetland. Environmental Science and Technology,2000,34 (18),3937-3943.
    49. Laforce Matthew J, Handsel Colleen M, Fendorf S. Arsenic speciation, seasonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emergent eetland. Environmental Science and Technology,2000,34:3937-3943.
    50. Lee Byeong-Gweon, Griscom S B, Lee Jung-Suk, Choi H J, Koh Chul-Hwan, Luoma S N, Fisher N S. Influences of dietary uptake and reactive sulfides on metal bioavailability from aquatic sediments. Science,2000,282(5451):282-284.
    51. Liao C Z, Luo Y Y, Jiang Li F, Zhou X H, Wu X W, Fang C M Chen, J K, Li B. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze estuary, China. Ecosystems,2007,10(8):1351-136.
    52. Li B, Liao C H, Zhang X D, Chen H L, Wang Q, Chen Z Y, Gan X J, Wu J H, Zhao B, Ma Z J, Cheng X L, Jiang L F, Chen J K. Spartina alterniflora invasions in the Yangtze River estuary, China:An overview of current status and ecosystem effects. Ecological engineering,2009,35(4): 511-520.
    53. Lin Saulwood, Hsieh I-Jy, Huang K M, Wang C H. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sendiments. Chemical Geology,2002,182:377-394.
    54. Liu G, Fernandez A, Cai Y. Compexation of arsenite with humic acid in the presence of ferric iron. Environmental Science and Technology.2011,45:3210-3216.
    55. Liu W J, Zhu Y G, Smith F A, Smith S E. Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture? Journal of Experimental Botany,2004,55(403):1-7.
    56. Liu W J, Zhu Y G, Hu Williams Y P N, Gault A G, Meharg A A, Charnock J M, Smith F A. Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants(Oryza Sativa L.). Environmental Science and Technology,2006,40:5730-5736.
    57. Lloyd J R, Sole V A, Van Praagh C V, Lovley D R. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology,2000,66: 3743-3749.
    58. Manceau A, Lanson M, Geoffroy N. Natural speciation of Ni, Zn, Ba, and As in ferromanganese coatings on quartz using X-ray fluorescence, absorption and diffraction. Geochimica et Cosmochimica Act,2007,71:95-128.
    59. Matschullat, J. Arsenic in the geosphere-a review. Science of the Total Environment,2000,249 (1-3):297-312
    60. Meharg A A, Williams P N, Adomako E, LawgalY Y, Deacon C, Villada Antia, Cambell R C J, Sun G X, Zhu Y G, Feldmann J, Raab A, Zhao F J, Islam R, Hossain S. Yanai J. Geographical variation in total and inorganic arsenic content of polished (white) rice. Environmental Science and Technology,2009,43(5):1612-1617.
    61. Miyata N, Tani Y, Maruo K, Tsuno H. Sakata M, Iwahori K. Manganese(IV) oxide production by Acremonium sp strain KR21-2 and extracellular Mn(II) oxidase activity. Appllied and Environmental Microbiology,2006,72,6467-6473.
    62. Morse J W and Luther III G W. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochimica et Cosmochimica Acta,1999,63:3373-3378.
    63. Morse J W and Rickard D. Peer reviewed:chemical dynamics of sedimentary:acid volatile sulfide. Environmental Science and Technology,2004,38 (7):131A-136A
    64. Newman D K, Ahmann D, Morel F M M. A brief review of microbial arsenate respiration. Geomicrobiology,1998,15:255-268.
    65. Nie M, Wang M, Li B. Effects of salt marsh invasion by Spartina alterniflora on sulfate-reducing bacteria in the Yangtze River estuary, China. Ecological Engineering,2009,35(12):1804-1808.
    66. Nordstrom D K. World wide occurrences of arsenic in groundwater. Science,2002,296: 2143-2144.
    67. Novikov A P, Kalmykov S N, Utsunomiya S, Ewing R C, Horreard F, Merkulov A, Clark S B, Tkachev W, Myasoedov B F. Colloid transport of plutonium in the far-field of the Mayak production association, Russia. Science,2006,314:638-641.
    68. NRC (National Research Council). Arsenic in drinking water:2001 Update. National Academy Press:Washington, D C, USA,2001.
    69. O'Day P A, Vlassopoulos D, Root R, Rivera N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proceedings of the National Academy of Sciences of the United States of America,2004,101(38): 13703-13708.
    70. O'Loughlin E J, Kelly S D, Kemner K M, Csencsits R, Cook R E. Reduction of AgⅠ, AuⅢ, CuⅡ, and HgⅡ by FeⅡ/FeⅢ hydroxysulfate green rust. Chemosphere 2003,53:437-446.
    71. Ole L and Dieke P. Kinetics of reductive bulk dissolution of lepidocrocite, ferrihydrite, and goethite. Geochimica et Cosmochimica Acta,2001,65(9):1367-1379.
    72. Oremlandand R S and Stolz J F. The Ecology of Arsenic. Scienc,2003,300:939-944.
    73. Oremlandand R S, Dowdle P R, Hoeft S, Sharp J O, Schaefer J K, Miller L G, Blum Jodi Switzer, Smith R L, Bloom N S, Wallschlaeger D. Bacterial dissimilatory reduction of arsenate and sulfate in meromictic Mono Lake, California. Geochimica et Cosmochimica Acta, 2000,64:3073-3084.
    74. Pallud C, Cappellen P V. Kinetics of microbial sulfate reduction in estuarine sediments. Geochimica et Cosmochimica Acta,2006,701148-1162.
    75. Pattrick R A D, Mosselmans J F W, Charnock, J M, England K E R, Helz G R, Garner C D, Vaughan D J. The structure of amorphous copper sulfide precipitates:An X-ray absorption study. Geochimica et Cosmochimica Acta 1997,61:2023-2036.
    76. Pereira P, Cacador I, Vale C, Caetano M, Costa A. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal). Science of the Total Environment, 2007,380:93-101.
    77. Petrick J S, Ayala-Fierro F, Cullen W R, Carter D E, Vasken Aposhian H. Monomethylarsonous acid (MMA(Ⅲ)) is more toxic than arsenic in chang human hepatocytes. Toxicology and Appllied Pharmacology,2000,163(2):203-207.
    78. Polizzotto M L, Harvey C F, Sutton S R, Fendorf S. Processes conducive to the release and ransport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences of the United States of America,2005,102,18819-18823.
    79. Polizzotto M L, Kocar B D, Benner S G, Sampson M, Fendorf Scott. Nearsurface wetland sediments as a source of arsenic release to groundwater in Asia. Nature,2008,454(7203): 505-508.
    80. Post J E. Manganese oxide minerals:Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of the United States of America, 1999,96,3447-3454.
    81. Postma D, Larsen F, Minh Hue N T, Duc M T, Viet P H, Nhan P Q, Jessen S. Arsenic in groundwater of the Red River floodplain, Vietnam:Controlling geochemical processes and reactive transport modeling. Geochimica et Cosmochimica Acta,2007,71 (21):5054-5071.
    82. Poulton S W and Canfield D E. Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates. Chemical Geology,2005, 214(3-4):209-221.
    83. Quan W M, Han J D, Shen A L, Ping X Y, Qian P L, Li C J, Shi L Y, Chen Y Q. Uptake and distribution of N, P and heavy metals in three dominant salt marsh macrophytes from Yangtze River estuary, China. Marine Environmental Research,2007,64:21-37.
    84. Reboreda R, Cacador I, Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution,2007,146:147-154.
    85. Redman A D, Macalady D L, Ahmann D. Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science and Technology,2002,36:2889-2896.
    86. Rickard D, Morse J W. Acid volatile sulfide (AVS). Marine Chemistry,2005,97(3-4):141-197.
    87. Rickard D, Schoonen M A A, Luther III G W. Chemistry of iron sulfides in sedimentary environments. In:Geochemical transformations of sedimentary sulfur. American Chemical Society.1995, pp 168-193.
    88.. Ritter K, Aiken G R, Ranville J F, Bauer M, Macalady D L. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III). Environmental Science and Technology, 2006,40:5380-5387.
    89. Rochette E A, Bostick B C, Li G C, Fendorf S. Kinetics of arsenate reduction by dissolved sulfide. Environmental Science and Technology,2000,34:4714-4720.
    90. Rose A L and Waite T D. Kinetic model for Fe(II) oxidation in seawater in the absence and presence of natural organic matter. Environmental Science and Technology,2002, 36(3):433-444.
    91. Saalfield S L and Bostick B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environmental Science and Technology, 2005,39:2073-2079.
    92. Saalfield S L and Bostick B C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environmental Science and Technology, 2009,43:8787-8793.
    93. Santana-Casiano J M, Gonzalez-Davila M, Millero F J. Oxidation of nanomolar levels of Fe(Ⅱ) with oxygen in natural waters. Environmental Science and Technology,2005,39(7):2073-2079.
    94. Schoof R A, Yost L J, Eickhoff J, Creceliusc E A, Cragind D W, Meachere D M, Menzele D B. A market basket survey of inorganic arsenic in food. Food and Chemical Toxicology,1999,37(8): 839-846.
    95. Seyfferth A, Webb S M, Andrews J C, Fendorf S. Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environmental Science and Technology,2010,44,8108-8113。
    96. Sharma P, Ofner J, Kappler A. Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Environmental Science and Technology,2010,44:4479-4485.
    97. Sharma P, Rolle M, Kocar B, Fendorf S, Kappler A. Infuence of natural organic matter on As transport and retention. Environmental Science and Technology.2011,45,546-553.
    98. Simpson S. Apte Simon C. Batley Graeme E. Effect of short-term resuspension events on trace metal speciation in polluted anoxic sediments. Environmental Science and Technology,1998,32: 620-625.
    99. Simpson S. Apte Simon C. Batley Graeme E. Effect of short-term resuspension events on the oxidation of cadmium, lead, and zinc sulfide phases in anoxic estuarine sediments. Environmental Science and Technology,2000,34:4533-4537.
    100. Smedley P L and Kinniburgh D G A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry,2002,17(5):517-568.
    101. Smith P G, Koch I, Kenneth J. Reimer. Arsenic speciation analysis of cultivated white button mushrooms (Agaricus bisporus) using high performance liquid chromatography inductively coupled plasma mass spectrometry, and X-ray absorption spectroscop. Environmental Science and Technology,2007,41:6947-6954.
    102. Somenahally A C, Hollister E B, Yan W G, Gentry T J, Loeppert R H. Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environmental Science and Technology,2011,45:8328-8335.
    103. Spencer K L, Cundy A. B., Croudace I W. Heavy metal distribution and early-diagenesis in salt marsh sediments from the Medway Estuary, Kent, U.K., Estuarine, Coastal and Shelf Science, 2003,57:43-54.
    104. Steven E B and Herbert E A. Sediment pore water collection methods for trace metal analysis: A review. Water Research.1995,29 (1):165-177.
    105. Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Analtical Chemistry,1979,51,844-851.
    106. Toevs G R, Morra M J, Polizzotto M. L., Strawn D G, Bostick B C, Fendorf S. Metal(loid) diagenesis in mine-impacted sediments of Lake Coeur d'Alene, Idaho. Environmental Science and Technology,2006,40:2537-2543.
    107. Tufano K J, Reyes C, Saltikov C W, Fendorf S. Reductive processes controlling arsenic retention:revealing the relative importance of iron and arsenic reduction. Environmental Science and Technology,2008,42:8283-8289.
    108. van Griethuysen C, de Lange H J, van den Heuij M, de Bies S C, Gillissen F, Koelmans A A. Temporal dynamics of AVS and SEM in sediment of shallow freshwater floodplain lakes. Applied Geochemistry,2006,21(4):632-642.
    109. Vilante A, Del Gaudio S, Pigna M,, Ricciardella M, Banerjee D, Coprecipitation of arsenate with metal oxides.2. nature, mineralogy, and reactivity of iron(III) precipitates. Environmental Science and Technology,2007,41(24):8227-8518.
    110. Voegelin A, Weber Frank-Andreas, Kretzschmar R. Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil:Micro-XRF element mapping and EXAFS spectroscopy. Geochimica et Cosmochimica Acta,2007,71:5804-5820.
    111. Wang Y H, Morin G, Ona-nguema G, Juillot F, Guyot F, Calas G, Jr Brown G E. Evidence for different surface speciation of arsenite and arsenate on green rust:an EXAFS and XANES study. Environmental Science and Technology,2010,44(1):109-115.
    112. Warwick P, Inam E, Evans N. Arsenic's interaction with humic acid. Environmental Chemistry, 2005,2:119-124.
    113. Webb S M, Tebo B M, Bargar J R. Structural characterization of biogenic Mn oxides produced in seawater by the marine bacillus sp strain SG-1. American Mineralogist,2005,90: 1342-1357.
    114. Weber Frank-andreas, Hofacker A F, Voegelin A, Kretzschmar R. Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil. Environmental Science and Technology,2010,44:116-122.
    115. Weber Frank-Andreas, Voegelin A, Kaegi R, Kretzschmar R. Contaminant mobilization by metallic copper and metal sulphide colloids in flooded soil. Nature geoscience,2009,2: 267-271.
    116. Weber Frank-andreas, Voegelin A, Kretzschmar R. Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta,2009,73: 5513-5527.
    117. Weis J and Weis P. Metal uptake, transport and release by wetland plants:implications for pytoremediation and restoration. Environment International,2004,30:685-700.
    118. Wenzel W W, Natalie K, Thomas P, Stingeder G, Lombic E, Adriano D C. Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta,2001,436: 309-323.
    119. Williams P N, Raab A, Feldmann J, Meharg A A. High levels of arsenic in south central US rice grain:consequences for human dietary exposure. Environmental Science and Technology,2007, 41(7):2178-2183.
    120. Williams P N, Zhang H, Davison W, Meharg A A, Hossain Ma, Norton G J, Brammer H, Islam R M. Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environmental Science and Technology,2011,45: 6080-6087.
    121. Williams T P, Bubb J M, Lester J N, Metal accumulation within salt marsh environments:a review. Marine Pollution Bulliten,1994,28:277-290.
    122. Wu W M, Wang S S Y. Formulas for sediment porosity and settling velocity. Journal of Hydraulic Engineering,2006,321(8):858-862.
    123. Yan X P, Kerrich R, Hendry M J. Distribution of arsenic(III), arsenic(V) and total inorganic arsenic in pore-waters from a thick till and clay-rich aquitard sequence,Saskatchewan, Canada. Geochimica et Cosmochimica Acta,2000,64:2637-2648.
    124. Yao Q Z, Zhang J, Qin X G, Xiong H, Dong L X.The behavior of selenium and arsenic in the Zhujiang (Pearl River) Estuary, South China Sea. Estuarine, Coastal and Shelf Science,2006, 67:170-180.
    125. Yu K C, Tsai L J, Chen S H, Ho S T. Chemical binding of heavy metals in anoxic river sediments. Water Research,2001,35:4086-4094.
    126. Zachara J M, Fredrickson J K, Smith S C, Gassman P L. Solubilization of Fe(Ⅲ) oxide-bound trace metals by a dissimilatory Fe(Ⅲ) reducing bacterium. Geochimica et Cosmochimica Acta, 2001,65:75-93.
    127. Zhang J. Geochemistry of arsenic in the Huanghe (YellowRiver) and its delta region-A review of available data. Aquatic Geochemistry,1996(1):241-27.
    128. Zhang J. Nutrient elements in large Chinese estuaries.Continental Shelf Research,1996, 16:1023-1045.
    129. Zhang W G, Yu L Z, Hutchinson S M, Xu S Y, Chen Z L, Gao X J. China's Yangtze Estuary:Ⅰ. Geomorphic influence on heavymetal accumulation in intertidal sediments. Geomorphology, 200141:195-205.
    130. Zhang,W G, Yu L Z, Lu M, Hutchinson S M, Feng H. Magnetic approach to normalizing heavy metal concentrations for particle size effects in intertidal sediments in the Yangtze Estuary, China. Environmental Pollution,2007,147:238-244.
    131. Zhang Y H, Ding W X, Luo J F, Donnison A. Changes in soil organic carbon dynamics in an Eastern Chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biology & Biochemistry,2010,42(10):1712-1720.
    132. Zhou C F, An S Q, Deng Z F, Yin D Q, Zhi Y B, Sun Z Y, Zhao H, Zhou L X, Fang C, Qian C. Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering,2009,35(4):536-543.
    133. Zhu M Q, Paul K W, Kubicki J D, Sparks D L. Quantum chemical study of arsenic (Ⅲ,Ⅴ) adsorption on Mn-oxides:implications for arsenic(Ⅲ) oxidation. Environmental Science and Technology,2009,43:6655-6661.
    134. Zhu Y G, Williams P N, Meharg A A. Exposure to inorganic arsenic from rice:A global health issue? Environmental Pollution,2008,154(2):169-171.
    135.毕春娟.长江口滨岸潮滩重金属环境生物地球化学研究.华东师范大学博士学位论文,2004.
    136.曹爱丽,周桂平,胡姝,高效江.崇明东滩湿地沉积物中还原无机硫的形态特征.复旦学报(自然科学版),2010,49(5):612-617.
    137.陈启明,仇玉芹,陈邦林,陈吉余.长江口悬浮物和沉积物的物相分析.华东师范大学学报(自然科学版),2001,1:77-83.
    138.陈振楼,许世远,柳林,余佳.上海滨岸潮滩沉积物重金属元素的空间分布于累积.地理学报,2000,55(6):641-651.
    139.戴树桂.环境化学进展.北京:化学工业出版社,2005.
    140.段桂兰,王利红,陈玉,徐玉新,孟祥燕,朱永官.水稻砷污染健康风险与砷代谢机制的研究.农业环境科学学报,2007,26(2):430-435.
    141.关道明.中国滨海湿地米草盐沼生态系统与管理.北京:海洋出版社,2009:1-167.
    142.国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版). 北京:中国环境科学出版社,2002,pp.139-141.
    143.侯立军.长江口滨岸潮滩营养盐环境地球化学过程及生态效应.华东师范大学博士学位论文,2004.
    144.黄清辉,马志玮,李建华,董丽娴,陈玲.2006年春季长江口砷形态分析及其生物有效性.环境科学,2008,29(8):2131-2136.
    145.贾国东,钟佐燊.铁的环境地球化学综述.环境科学进展,1998,7(5):74-84.
    146.李宇.湘江武水河沿岸稻田的砷毒危害调查及对策.中国环境监测,2006,22(1):85-87.
    147.李学恒,土壤化学[M].北京:高等教育出版社,2001
    148.廖成章.外来植物入侵对生态系统碳、氮循环的影响:案例研究与整合分析.复旦大学博士学位论文,2007.
    149.林以安,唐仁友,李炎.长江口絮凝聚沉特征与颗粒表面理化因素作用——Ⅱ颗粒表面性质对聚沉的作用.泥沙研究,1997,4:76-84.
    150.林玉环,郭明新,庄岩.底泥中酸性挥发硫及同步浸提金属的测定.环境科学学报,1997,17(3):353-358.
    151.刘敏,许世远,侯立军.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程.北京:科学出版社,2007,pp:1-100.
    152.刘杰.长江口潮滩无机氮界面交换研究.华东师范大学博士论文,2006.
    153.刘启贞.长江口细颗粒泥沙絮凝主要影响因子及其环境效应研究.华东师范大学博士学位论文,2007.
    154.刘文菊,朱永官.湿地植物根表的铁/锰氧化物膜.生态学报,2005,25(2):358-363.
    155.欧冬妮.长江口滨岸多环芳烃(PAHs)多相分布特征与源解析研究.华东师范大学博士学位论文,2007.
    156.沈焕庭,潘定安.长江河口最大浑浊带.北京:海洋出版社,2001.
    157.沈军.物理扰动再悬浮作用下长江口近岸水体中汞的迁移与转化.华东师范大学硕士毕业论文,2009.
    158.孙玮玮.长江口南岸滨岸带底泥中重金属的生物有效性及其再悬浮.华东师范大学硕士毕业论文,2009.
    159.孙玮玮,王东启,陈振楼,毕春娟,胡蓓蓓,刘耀龙,李九发,许世远.长江口吴淞-浏河滨岸带沉积物AVS和SEM含量的空间分布特征.地球化学,2009,38(2):140-146.
    160.时钟,K.Pye,陈吉.潮滩盐沼物理过程的研究进展综述.地球科学进展,1995,10(1):19-30.
    161.谭文峰,周素珍,刘凡,冯雄汉,李学垣.土壤中铁铝氧化物与黏土矿物交互作用的研究进展土壤,2007,39(5):726-730.
    162.王东启.长江口滨岸潮滩沉积物反硝化作用及N20的排放和吸收.华东师范大学博士学位 论文,2006.
    163.吴丰昌,王立英,黎文,张润宇,傅平青,海清,白英臣,郭建阳,王静.天然有机质及其在地表环境中的重要性.湖泊科学,2008,20(1):1-12.
    164.武斌,廖晓勇,陈同斌,阎秀兰.石灰性土壤中砷形态分级方法的比较及其最佳方案.环境科学学报,2006,26(9):1467-1473.
    165.肖唐付,洪冰,杨中华,杨帆.砷的水地球化学及其环境效应.地质科技情报,2001,20(1):71-76.
    166.许世远,长江三角洲地区风暴潮沉积研究.北京:科学出版社.1997.
    167.杨世伦Zhu Jun,李明.长江入海泥沙的变化趋势与上海滩涂资源的可持续利用.海洋科学研究.2009,27(2):7-15.
    168.杨世伦,陈沈良,王兴放.长江口未来环境演变的若干影响因子及减灾对策.自然灾害学报,1997,6(4):74-81.
    169.姚庆祯,张经.长江口及近海域痕量元素砷、硒的分布特征.环境科学,2009,30(1):33-38.
    170.姚庆祯.痕量元素砷、硒在长江流域的生物地球化学行为探讨.华东师范大学博士论文,2005.
    171.张恩仁.长江口悬浮泥沙的吸附—解吸作用对元素固—液相态转化控制的研究.华东师范大学博士毕业论文,2003.
    172.周俊丽.长江口湿地生态系统中有机质的生物地球化学过程研究——以崇明东滩为例.华东师范大学博士学位论文,2005.
    173.朱立峰,郑祥民,周立旻,王永杰.崇明东滩湿地沉积物砷的形态特征.城市环境与城市生态,2009,22(5):26-28.
    174.朱立峰.崇明东滩湿地元素砷的时空分布特征及其影响因素初探.华东师范大学硕士论文,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700