用户名: 密码: 验证码:
直流偏磁下变压器空载电流及损耗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力变压器是电力网中的主要电气设备。随着电力变压器的单台容量和电压等级的不断提高,我国生产的电力变压器单台最大容量为1000MVA、电压等级最高为1000kV,主要用于晋东南电网枢纽工程。据报道国外电力变压器单台最大容量已达1300MVA以上、最高电压等级上升到1150kV以上。现今,电网对特高压大容量电力变压器的要求愈来愈高,使得变压器制造业在设计、工艺、制造、实验等方面都面临着激烈的竞争。此外,随着直流输电技术的发展,超、特高压直流输电线路在我国快速铺开。在电力传输方便快捷的同时,直流输电系统的设备故障、常规的预防性检修以及换流站的单极投运、调试等一些原因,造成直流输电系统单极大地回线方式和双极不平衡方式的运行现象日益频繁。直流输电线路的非正常运行方式不仅会在交流系统中性点接地变压器中产生直流偏磁现象,使变压器铁心每隔半个周期出现磁饱和、励磁电流畸变、漏磁增加、损耗增大等后果,而且还会影响变压器关联电网的安全运行。从目前角度看,这种影响将会随着我国超高压直流输电线路的不断增加变得越来越严重。因此,在变压器行业里如何有效地对直流偏磁的影响加以控制,提高变压器抗直流偏磁的能力,在变压器设计上采取怎样的措施抑制直流偏磁影响,已引起国内外变压器制造厂家的高度重视。
     本文针对直流偏磁对变压器的影响,分别做了两种直流偏磁实验:一是,利用双爱泼斯坦方圈装置,从硅钢片的不同搭接方式出发研究了不同接缝形式对变压器磁路的影响;二是,依据模型变压器的特点设计了一种独特的交直流供应电源,成功模拟了变压器直流偏磁的现场情况。采用场路耦合法对直流偏磁变压器进行了仿真分析,得到了偏磁下励磁电流的波形及对应的磁场分布情况,给出了该方法计算变压器抗直流偏磁能力的判据,将仿真结果与实验结果进行了对比分析,验证了场路耦合法指导工程实际的可行性。通过2D等效磁路网络法对直流偏磁状态下变压器铁心漏磁场进行了研究计算。
Power transformers are the main electrical equipment in Grid Network. With the development of single-phase power transformers capacity and voltage level, in China, the maxiumum capacity of power transformer is 1000MVA, and voltage level up to 1000kV, which it is mainly used in southeastern power grid project. It is reported that the largest capacity of single-phase power transformer has reached 1300MVA, the highest voltage levels is above 1150kV, in foreign country. Nowadays, grid network is rising demand to Ultra High Voltage (UHV) large capacity power transformer, leads to the transformer manufacturing industry face up to fierce competition in the design, technology, manufacturing, test and so on. Furthermore, with the development of DC transmission technology, extra and ultra high voltage DC transmission lines are the rapid spread. DC transmission systerm equipment fault, routine preventive maintenance as well as monopole converter station pole operation, commissioning, which cause unipolar earth loop mode and bipolar operation inbalance mode operation phenonmenon have become more common during the DC transmission systerm. The non-normal operation of DC transmission line will not only arise the DC bias phenomenon in the neutral grounding transformer which cause a series of results, such as transformer core magnetic saturation in every half cycle, the distortion of magnetizing current, the increasing of leakage magnetic flux and corresponding losses, but also affect the related power transformer safe operation. From now on, along with extra and ultra high voltage transmission lines increase, these influence will become more serious. So, in the transformer industry, the transformer manufacturers have aroused great attention on how to effectively control to the influence of DC bias and strengthen ability to withstand DC current of transformer, how to make measures to curb impact of transformer DC bias in design.
     Research and analysis on the power transformer DC bias effect. The two tests here are helpful for research on transformer DC bias phenomenon:one researches the different lap ways of electrical steel sheet have an effect on transformer magnetic circuit by using the double Epstein square devices; another one designs a unique AC and DC hybrid supply voltage source, according to the model transformer characterictics, successfully simulates the site condition on transformer DC bias. By using the field-circuit coulped method, the transformer DC bias phenomenon is simulated and analyzed, excitation current waveformers and the field distributions with different DC bias condition are obtained, the judgement method on transformer withstand DC capacity is given, and then comparison with the simulation results and experimental results to verify the field-circuit coupled method has a guidance significance on practical engineer. By using the equivalent magnetic circuit network method, the 2D core leakage field distribution is researched and calculated.
引文
[1]周俊宇.南方电网变压器中性点直流电流的研究[J].电工技术学报,2009,6(23).
    [2]戴熙杰.直流输电基础[M].北京:水利电力出版社,1990.
    [3]Price P R. Geomagnetically induced current effects on transformers. IEEE Trans. on Power delivery,2002,17(4):1002-1008.
    [4]李长益.直流单极运行对于交流变压器的影响[J].华东电力,2005,1(33):36-39.
    [5]肖冬.直流输电和磁暴引起变压器直流偏磁的相关研究.硕士学位论文,华中科技大学,2007.
    [6]刘连光.磁暴对中国电网的影响[J].华北电力大学,2008,5(24):1-5.
    [7]梅桂华,徐柏榆,王晓毛等.直流输电对交流系统变压器的影响[J].广东电力,2006,1(1):1-7.
    [8]蒯狄正,万达,邹云.直流输电对变压器的影响[J].中国电力,2004,37(8):41--43.
    [9]朱韬析,王超,张雪松等.浅析空载投入换流变压器对直流输电系统的影响[J].电力系统自动化,2007,31(23):108-112.
    [10]肖琴.特高压直流输电引起的直流偏磁现象的研究[J].江西电力职业技术学院学报,2008,21(4):1-4.
    [11]鲁海亮,文习山,蓝磊等.变压器直流偏磁对无功补偿电容器的影响.高电压技术,2010,36(5):1124-1130.
    [12]骆志坚,叶杰宏.直流单极运行时谐波对并联电容器的影响[J].电力电容器与无功补偿,2009,30(5):58-61.
    [13]J.Cale, S.D.Sudhoff, R.R.Chan. A Field-Extrema Hysteresis Loss Model for High-Frequency Ferrimagnetic Materials. IEEE Transactions on magnetics,2008,44(7):1728-1736.
    [14]Mehdi Vakilian, Robert C. Degeneff.A Method for Modeling Nonlinear Core Characterisitics of Transformers During Transients. IEEE Transactions on Power Delivery,1994,9(4):1916-1922.
    [15]Sonia Boscolo, Sergei K T, Keith J B. Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications[J]. Optics Fiber Technology,2008,13(4):299-316.
    [16]NOBUO T, TETSUO O, FUMIHKO M, et al. An Experimental Analysis of Excitation of Transformers by Geomagnetically Induced Currents[J]. IEEE Transaction on Power Delivery,1994, 9(2):1173-1182.
    [17]赵健,王立仁,祁明等.硅钢片单位损耗的试验研究[J].变压器,2003,40(4):5-7.
    [18]GB/T3655-1992,电工钢片(带)磁电和物理性能测量方法[S].
    [19]王永,刘硕.具有直流偏磁交流磁滞回线的测量[J].磁性材料及器件,2001,32(3):41-40.
    [20]刘福贵.考虑磁滞特性的磁场数值分析及磁特性测量技术研究.(硕士学位论文).天津:河北工业大学,2001.
    [21]张献,刑金,杨庆新等.基于双方圈模型的叠片铁心斜接缝磁化及损耗特性[J].电工电能新技术,2009,28(1):56-59.
    [22]李靖宇.换流变压器直流偏磁的试验研究[J].变压器,2005,42(9):25-27.
    [23]赵志刚,刘福贵,程志光.变压器直流偏磁励磁方式的实验研究和分析.电力电气,2010,29(5):39-43.
    [24]蒯狄正.电网设备直流偏磁影响检测分析与抑制.(博士学位论文).南京:南京理工大学,2005.
    [25]DL 5014-1992,330-500kV变电所无功补偿装置设计技术规定[S],1993.
    [26]胡建军.电力系统谐波检测研究.(硕士学位论文).天津:河北大学,2006.
    [27]陈世青,赵新尚,李福祥.防止并联电容器运行中产生谐波放大[J].高电压技术,2004,30(12):19-22.
    [28]Greene J D, Gross C A. Nonlinear modeling of transformer[J]. IEEE Trans.Ind.Appl,1998,24(3): 434.
    [29]谢德馨,姚缨英,白保东,李锦彪.三维涡流场的有限元分析[M].机械工业出版社,2001.
    [30]张洋,白保东,谢德馨.三维瞬态涡流-电路-运动系统耦合问题的新解法[J].中国电机工程学报,2008,28(9):139-144.
    [31]倪镭,赵文彬,王之浩等.直流系统单极运行对上海500kV电网的影响模拟及解决方案.华北电力,2010,38(4):485-489.
    [32]李晓萍,文习山,蓝磊等.单相变压器直流偏磁试验与仿真.中国电机工程学报,2007,27(9):33-40.
    [33]郭满生,梅桂华,刘东升等.直流偏磁条件下电力变压器铁心B-H曲线及非对称励磁电流[J].电工技术学报,2009,24(5):46-51.
    [34]马为民.换流变压器中直流偏磁电流的计算[J].高电压技术,2004,30(11):48-49.
    [35]肖华.基于有限元法的单相变压器直流偏磁仿真研究.高压电器,2010,46(9):39-47.
    [36]王燕,皇甫成,赵淑珍等.考虑铁磁磁滞的变压器励磁涌流仿真分析[J].电力系统自动化,2009,33(15):78-82.
    [37]Andersen O W. Advanced calculations of magnetic leakage fields in transformers[C]. International Conference on Electrical Machines ICEM'98,Istanbul, Sep.1998,238-240.
    [38]Pavlik D, Johnson D C, Girgis R S. Calculation and reduction of stray and eddy losses in core-form transformers using a highly accurate finite element modelling technique[J].IEEE Trans. Power Deliv.,1993,8(1):239-245.
    [39]王建民,张喜乐,吴增泊.高压直流换流变压器电磁场特性的数值应用研究[J].变压器,2007,44(3): 1-5.
    [40]李晓萍,文习山.三相五柱变压器直流偏磁计算研究.中国电机工程学报,华中科技大学,2010,50(1):127-131.
    [41]Dick E P, Waston W. Transformer models for transient studies based on field measurements[J]. IEEE Trans.Power Appar.Syst.,1981,100(1):409-419.
    [42]Medina A, Arrillaga J. Generalized modeling of power transformers in the time domain[J]. IEEE Trans on Power Delivery,1992, Vol7(7):1458-1465.
    [43]Lathinen,M.,Elovaraa,J. GIC Occurrences and GIC Test for 400kV Systerm Transformer. IEEE Trans.Power Del,2002,17(7):555-561.
    [44]Fuchs E F, You Y, Roesler D J. Modeling and simulation, and their validation of three-phase transformers with three legs under DC bias[J]. IEEE Transaction on Power Delivery,1999,14(2): 443-449.
    [45]Xusheng Chen, S.S.Venkata. A Three-phase Three-winding Core-type Transformer Model for Low-frequency Transient Studies. IEEE Transaction on Power Delivery,1997,12(2):775-782.
    [46]Emanuel A E, Pileggi D J, Levitsky F J. Direct current generation in single-phase residential systems-DC effects and permissible levels[J]. IEEE Transaction on Power Apparatus and systems, 1994,103(8):2051-2057.
    [47]PICHER P, BOLDUC L, DUTIL A, et al. Study of the Acceptable DC Current Limit in Core-form Power Transformer[J]. IEEE Trans. on Power Delivery,1994,12(1):73-79.
    [48]Z.W.Shi, C.B.Rajanathan. A Method of Approach to Transient Eddy Current Problems Coupled with Voltage Sources. IEEE Transaction on Magnetics,1996,32(3):1082-1085.
    [49]刘曲,郑健超,潘文等.变压器铁心承受直流能力的仿真和分析.变压器,2006,43(9):5-10.
    [50]Pottiez O, Ibarra-Escamilla B, Kuzin E A. Large amplitude noise reduction in ultra short pulse trains using a power-symmetric nonlinear optical loop mirror[J].Optics&Laser Technology,2009, 41(4):384-391.
    [51]曹林,赵杰,何金良等.三相三柱变压器对偏磁电流的耐受特性研究.高电压技术,2007,33(3): 71-74.
    [52]姚俊.Simulink建模与仿真[M].西安:西安电子科技大学出版社,2002.
    [53]洪乃刚.电力电子和电力拖动控制系统MATLAB仿真[M].北京:机械工业出版社,2006.
    [54]李鸿志,崔翔,刘东升等.大型电力变压器直流偏磁分析的磁路建模与应用.高电压技术,2010,36(4):1068-1075.
    [55]李鸿志,崔翔,卢铁兵等.变压器直流偏磁的电路-磁路模型.中国电机工程学报,2010,29(27):119-124.
    [56]刘军,张安红.50MVA/220kV高阻抗变压器漏磁场分析.变压器,2005,42(9):1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700