用户名: 密码: 验证码:
声学法仓储粮食温度检测关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仓储粮食中霉变、虫害的发生以及水分异常都会直接反映在粮温变化上。储粮温度检测是储粮状态监测的最重要手段。如果在粮堆中某区域温度明显高于其他区域,则称该区域为热点。目前国内外普遍采用的储粮测温方法为接触式测温法,其最大弊端是测温点密度低。如果热点不是恰好出现在某个测温点附近,霉变、虫害通常只有蔓延到较大区域才能被发现,使得后续的控制处理措施不及时而导致储粮损失很大。粮食为热的不良导体,为能及时发现热点并采取必要措施,温度采样点间距应不超过0.5m,因此非接触测温更适合储粮温度检测。声波在粮食中可通过粮食颗粒孔隙间的气体来传播,因此,本文研究声学法储粮温度检测技术,并对此展开了理论与实验研究。本文的主要工作及贡献如下:
     将粮食颗粒间孔隙视为刚性的、圆柱形细管模型,推导了细管中的声波传播的波动方程、声波衰减方程和声速方程,并用曲折度描述声波在粮食中的曲折前行,建立了粮食中实测声速与粮温等参数之间的函数模型。定义相同温度、相同传声器间距下自由空间声速与粮食中的实测声速的比值为声速转换因子,分析了声速转换因子的影响因素,给出声速转换因子的标定方法,从而获得一个实用的、储粮温度声学法测量模型。应用声波传播时间测量系统在大豆中对函数模型进行了实验验证。结果表明,大豆中不同深度和传声器间距下的实测声速与声速转换因子的变化规律,符合其理论分析结果。
     在粮食中声波信号传播衰减大,且衰减程度与声波频率有关导致声信号畸变。为提高粮食中声波传播时间测量的稳定性和准确性,提出带小波抑噪的三次相关时延估计法(WT-TC),并与基本互相关法(CC)、带小波抑噪的基本互相关法(WT-CC)和带小波抑噪的相位加权广义互相关法(WT-PG),进行了比较研究。利用粮食对声波的衰减模型和MATLAB语言环境下自开发的仿真软件,在不同传声器间距和不同信噪比下,获得声波信号的仿真数据。用上述四种时延估计法,估计了声波在大豆中的传播时间。结果表明,传声器间距近时,声波信号衰减程度小,WT-CC、WT-TC和CC法的时延估计性能相当,且均好于WT-PG法;传声器间距远时,声波信号衰减程度大,WT-TC法的时延估值稳定性与准确性均好于其他三种方法。用自开发的声波传播时间测量系统测量了声波在大豆中的传播时间。结果亦表明,WT-TC法所获得的测量值的稳定性和准确性均好于其他三种时延估计法。
     储粮中可能同时出现多个热点且出现位置随机,而目前大多数声学法温度场重建算法,要求重建区域划分网格数目N小于系统有效声波路径数目M,等效测温点密度低,难以满足储粮中复杂温度场重建要求。为此,提出了不要求M>N基于Markov径向基函数和Tikhonov正则化的重建算法,简称MTR算法。应用该算法对三热点、五热点以及421个位置不同的单热点温度场进行仿真重建。结果表明,该算法具有更强的复杂温度场重建能力和热点定位能力,可望更好地适应储粮温度检测要求。
     以LabVIEW为软件平台,自开发了基于虚拟仪器技术的声学法温度场检测系统。利用修正转换后的实测声波传播时间和MTR算法,对大豆中用电加热器所形成的三种热点位置不同的单热点温度场进行了重建。单热点温度场重建图像能够正确的反应大豆中的热点存在,热点位置重建误差不大于0.07m,热点温度最大值的重建相对误差不高于1.9%。
     本文研究初步验证了用声学法监测储粮温度的可行性。
The activity of insects and fungi in the stored grain produces heat that inducedtemperature rising and the temperature is directly related to the spoilage. The temperaturemeasurement is the important method for status detection of stored grain. High temperaturezone in a grain bulk called hot spot is the location of spoilage caused by insects and fungi.Presently, the normal method of temperature measurement in stored grain is the invasivemethod. The disadvantage of the invasive method is the low. As the hot spot is far from themeasurement point, the spoilage area couldn’t be detected unless it is very large. That willmake the big loss of grain without detecting hot spot early. The grain is a poor heatconductor. The space between temperature sampling points must be less than 0.5m fordetecting the hot spot early. Therefore, the non-invasive method of temperaturemeasurement is more suitable for temperature detection in stored grain. The sound couldpropagate through the gas in the pores between the grain kernels. Thus, in this paper, theacoustic temperature measurement in stored grain is proposed and the theoretic andexperimental study is also introduced. The main study and the contribution are listed asfollows:
     The pore between grain kernels is considered as rigid, narrow, cylindrical pipes.Based of that, the acoustic wave equation in pipe, acoustic attenuation equation andacoustic velocity equation are deduced. The tortuosity is used to describe the flectionalpropagation of sound in grain. The function model between measured acoustic velocity, thetemperature and other parameters in stored grain is established. The acoustic velocityconversion factor is defined as the ratio of the measured acoustic velocity in grain and theacoustic velocity in free space as the temperature and the distance between microphonesare the same. The affection factors of acoustic velocity conversion factor are analyzed andthe calibration of the factor is introduced in details. Thereby, the applied acoustictemperature measurement model in stored grain is obtained. The model is verified bysound travel-time measurement system in soybeans. The result shows that the variation of measured sound velocity and the acoustic velocity conversion factor in different depths ofsoybeans and distances between two microphones is fitted for the theory analyze.
     The triple correlation with wavelet de-noising (WT-TC) is proposed for improving theaccuracy and the stability of time delay estimation at the condition of seriously soundsignal attenuation with sound frequency in the grain. The method is studied that comparedwith the cross-correlation (CC), the cross-correlation with wavelet de-noising (WT-CC),and the PHAT generalized cross-correlation with wavelet de-noising (WT-PG). Thesimulated acoustic signal is obtained in different distance between two microphones anddifferent signal-to-noise ratio with the sound attenuation model of stored grain. The soundtravel-time in soybeans is estimated by four methods in simulation. The result shows that,if the distance between two microphones is short, the sound propagated between them areattenuated lightly, and the time delay estimation ability of WT-TC is as much as theWT-CC and the CC, that is better than WT-PG; if the distance between two microphones islong, the sound propagated between them are attenuated seriously, and the WT-TC hasbetter stability and accuracy than the other methods. The sound travel-time measurementsystem is built and used to measure the sound travel-time in soybeans. The experimentalresult also shows that the accuracy and stability of WT-TC are better than the othermethods.
     Many hot spots could appear simultaneously at random locations in grain. Presently,most of acoustic temperature field reconstruction algorithm demand that the number ofpixels N divided in measured area must be less than the number of sound paths M. Thatcould make the density of temperature measurement points very low, and could not satisfythe need of complex temperature field reconstruction in grain. For solving the problem, thereconstruction algorithm based on Markov radial basic function and Tikhonovregularization is proposed with no demand of M>N, and called MTR for short. In computersimulation, three hot spots, five hot spots and 421 different locations of one hot spottemperature models are reconstructed by the algorithm proposed in the paper. The resultshows that, the proposed algorithm has good reconstruction capability of different complextemperature fields and good anti-noise ability. Therefore, it is expected to apply fortemperature measurement in grain.
     The acoustic temperature field measurement system based on virtual instrument isbuilt in laboratory, and the software of system control is self-developed under LabVIEW.By MTR algorithm with the stable measured sound travel-time of modification and conversion, the three temperature fields with one hot spot in different location arereconstructed. The reconstruction images of single hot spot can reflect the hot spot insoybeans exactly. The location error of hot spot is less than 0.07m, and relative error of themaximum temperature value of hot spot is less than 1.9%.
     The primary research in this paper verifies that the acoustic temperature measurementof stored grain is feasible.
引文
[1]李叶紫,孙晋豪,王颖洁.数字化粮情温湿度监控系统.北华航天工业学院学报,2010,20(5):4~6.
    [2]周经国,姜重然,刘德胜.粮情管控系统智能测控终端的设计.农机化研究,2011(6):154~158.
    [3]王梅,陈汲.浅析粮食仓储技术现状及科学保粮发展趋势.粮食储藏,2006(6):39~41.
    [4] Manickavasagan A, Jaya D S, White N D G and Jian F. Thermal Imaging of A Stored Grain Silo toDetect A Hot Spot. Applied Engineering in Agriculture, 2006, 22(6):891~897.
    [5]王志山,张新洲,张红梅.粮情检测系统检测数据的可视化显示.粮食储藏,2003(1):46~49.
    [6]徐恺,晏书明,付鹏程.接种霉菌的高水分玉米自然发热实验.粮食储藏,2000(2):20~26.
    [7]万拯群,万平.我国科学保粮若干问题之我见.粮食储藏,2009,38(4):52~56.
    [8] Chelladurai V, Jayas D S and White N D G. Thermal imaging for detecting fungal infection instored wheat. Jounral of Stored Products Research, 2010(46): 174~179.
    [9]张明春,肖燕红.热电偶测温原理及应用.攀枝花科技与信息,2009,34(3):58~62.
    [10]曹晶人,曹哲,胡振山.粮仓内温湿度测控系统.北华大学学报(自然科学版),2007,8(5):454~457.
    [11]赵斌,匡丽红,孙明.由DS1820构成的单线多点储粮温度自动测试系统.佳木斯大学学报(自然科学版),2002,20(2):156~158.
    [12]彭利军.光学测温技术中的物理原理.物理测试,2006,24(5):46~48.
    [13]王文革.辐射测温技术综述.宇航计测技术,2005,25(4):20~24.
    [14]李云红,孙晓刚,廉继红.红外热像测温技术及其应用研究.测控技术,2009(1):112~115.
    [15]孙晓刚,李云红.红外热像仪测温技术发展综述.激光与红外,2008,38(2):101~104.
    [16]姜贵彬,蓝天,倪国强.红外热成像系统评价的重要参数及测试方法.红外与激光工程,2008(37):470~473.
    [17]安连锁,沈国清,姜根山等.炉内烟气温度声学测量法及其温度场的确定.热力发电,2004(9):40~42.
    [18]周长全,黄晓斌,梅敏.粮情检测系统粮温检测点合理性初探.粮油仓储科技通讯,2002(1):24~25.
    [19]郭红(国家粮食储备局成都粮食储藏科学研究所).浅谈粮情测控系统的硬件集成及软件开发.中国粮食储藏科技网.
    [20]杨松山(国家粮食局郑州科学研究设计院).粮情测控系统现状及其发展探析.中国粮食储藏科技网.
    [21]张剑.国内粮情测控系统现状与发展趋势.电子产品世界,2001(2):20~22.
    [22]北京长英科技有限公司.粮情测试数字化系统方案. http//www.lance-cn.com.
    [23]刘红如,王瑞全,张冉等.立筒仓长期储粮温湿度检测实验研究.粮食储藏,2001(4):26~28.
    [24] Kleppe J A . Engineering Application of Acoustics. New York: Artech Press, 1989.
    [25] Muzio L J, Eskinazi D and Green S F. Acoustic pyrometer: A new diagnostic tool. PowerEngineering, 1989(11): 49~52.
    [26] Lu J, Wakai K, Takahashi S, et al. Acoustic Computer Tomographic Pyrometry forTwo-dimensional Measurement of Gases Taking into Account the Effect of Refraction of SoundWave Paths. Measurement Science and Technology, 2000, 11(6): 692~697.
    [27]田丰,邵富群,王福利.声学法工业炉温度场检测的现状与关键技术.煤炭科学技术,2002,309(6):50~52.
    [28] Kleppe J A . The application of digital signal processing to acoustic pyrometry. Proceedings 7thIEEE Digital Signal Processing Workshop, Leon Norway, 1996: 420~422.
    [29] Larry G, Yori P E. Applications and benefits of BOILERWATCH—Acoustic gas temperaturemeasurement system in fossil fueled power boilers. http://escopacific.com/
    [30] Ziemamn A, Arnold K, and Raabe A. Acoustic Travel Time Tomography-A Method for RemoteSensing of the Atmospheric Surface Layer. Meteorology and Atmospheric Physics, 1999(71):43~51.
    [31] Ziemamn A, Arnold K, and Raabe A. Acoustic Tomography in Atmospheric Surface Layer.Annales Geophysicae,1999(17): 139~148.
    [32] Gan T H, Hutchins D A, and Carpenter P W. Simultaneous reconstruction of flow and temperaturecross-section in gases using acoustic tomography. Acoustical Society of America, 2003, 114(2):759~766.
    [33] Holstein P, Raabe A, Müller R, et al. Acoustic tomography on the basis of travel-time measurement.Measurement Science and Technology, 2004(15): 1420~1428.
    [34] Ohyama S, Oshima K, and Takayama J . Temperature Distribution and Wind vector MeasurementUsing Ultrasonic CT Based on Time of Flight Detection. International Conference on Control.Automation and Systems 2007, Seoul, Korea: 2007, 166~170.
    [35]邵富群,吴建云.声学法复杂温度场的重组测量.控制与决策,1999,14(2):120~124.
    [36]黄庆康.声学炉内温度场实时监测系统.电站系统工程,2000,16(4):221~223.
    [37]行鸿彦,刘照泉,万明习.基于小波变换的广义互相关时延估计算法.声学学报,2002,27(1):88~93.
    [38]张晓东,高波,宋之平.互相关函数法在声学测温技术中的应用研究.中国电机工程学报,2003(4):185~188.
    [39]田丰,邵富群,王福利等.基于弯曲路径的复杂温度场重建算法仿真研究.系统仿真学报,2003,15(5):621~623.
    [40]田丰,邵富群,王福利.基于正则方法与迭代技术的复杂温度场重建算法.东北大学学报(自然科学版),2003,24(4):307~310.
    [41]田丰,孙小平,邵福群等.基于高斯函数与正则化法的复杂温度场图像重建算法研究.中国机电学报,2004,24(5):213~215.
    [42]沈国清,安连锁,姜根山.炉膛烟气温度声学测量方法的研究与进展.仪器仪表学报,2003,24(s1):555~558.
    [43]沈国清,安连锁,张波等.声学法重建炉内温度场的算法研究.锅炉技术,2005,36(6):52~54.
    [44]姜根山,安连锁,杨昆.温度梯度场中声线传播路径数值研究.中国电机工程学报,2004,24(10):210~214.
    [45]沈国清,安连锁,姜根山等.基于声学CT重建炉膛二维温度场的仿真研究.中国电机工程学报,2007,27(2):11~14.
    [46]沈国清,安连锁,姜根山等.电站锅炉声学测温中时间延迟估计的仿真研究.中国电机工程学报,2007,27(11):57~61.
    [47]李芝兰,颜华,陈冠男.基于修正Landweber迭代的声学温度场重建算法.沈阳工业大学学报,2008,30(1):90~93.
    [48]颜华,彭珍.基于互相关和插值运算的声波飞行时间测量.沈阳工业大学学报,2008,30(6):662~666.
    [49]颜华,崔柯鑫,续颖.基于声波飞行时间数据的温度场重建.仪器仪表学报,2010,31(2):470~475.
    [50]颜华,王金,陈冠男.16通道声波飞行时间测量系统.沈阳工业大学学报,2010,32(1):70~74.
    [51]王交锋,田丰,田金光.基于声学CT重建航空发动机燃烧室出口温度场的仿真研究.沈阳航空工业学院学报,2009,26(2):38~42.
    [52]毛洁,吴友凤,樊炜等.声学法深海热液温度场测量及重建算法研究.仪器仪表学报,2010,31(10):2339~2344.
    [53] Wei F, Chen Y, Pan H C, et al. Experimental study on underwater acoustic imaging of 2-Dtemperature distribution around hot springs on floor of Lake Qiezishan, China. ExperimentalThermal and Fluid Science, 2010, 34(8): 1334~1345.
    [54] Hickling R, Wei W and Hagstrum D W. Studies of sound transmission in various types of storedgrain for acoustic detection of insects. Applied Acoustics, 1997(4): 263~278.
    [55] Hickling R and Wei W. Sound transmission in stored grain. Applied Acoustics, 1995(1):1~8.
    [56]郭敏,尚远志,石焕文.多种粮食声吸收的研究.西北大学学报(自然科学版),2004,34(1):34~38.
    [57]郭敏,尚远志,石焕文.粮食吸声谱特性的实验研究.应用科学学报,2003,21(2):111~116.
    [58]郭敏.声信号在准多孔介质中的传播及害虫弱声信号特征分析:(博士学位论文).西安:陕西师范大学,2003.
    [59]郭敏,尚远志.基于Matlab软件实现储粮害虫声信号的时频分析.陕西师范大学学报(自然科学版),2002,30(3):62~66.
    [60]宋志强,樊旭.声学法锅炉温度场检测技术及应用.锅炉技术,2005,36(1):20~23.
    [61] Shogo T, Satoshi H. Measurement of temperature in boilers using acoustic sensors. SICE, 1998,109A: 185~192.
    [62] Kleppe J A. The measurement of combustion gas temperature using acoustic pyromrtry. Proceeding33rdAnnual Power Instruments Symposium, Instr Soc. America (ISA), 1990, Toronto, May.
    [63] Kleppe J A. Acoustic pyromrtry: a historical prospective. Proceeding 44thInternational InstrumentsSymposium, Reno, USA, 1998, pp. 504~512.
    [64] Kleppe J A, Fadali S, Lapolla M H and Fralick G C. High temperature gas measurement incombustors using acoustic pyrometry method. Proceeding 47thInternational InstrumentsSymposium, Denver, USA, 2001, pp. 441~449.
    [65]何其伟,於正前,李言钦等.炉膛速度场声学检测装置.自动化与仪器仪表,2003(3):42~45.
    [66]贾莉娜.声学法二维温度场重建算法及仿真分析.本溪冶金高等专科学校学报,2002,4(3):17~19.
    [67]杜功焕,朱哲民,龚秀芬.声学基础.南京:南京大学出版社,2001.
    [68]杨世铭,陶文铨,传热学.北京:高等教育出版社,1998.
    [69]刘伯胜,雷家煜.水声学原理.哈尔滨:哈尔滨工程大学出版社,1993.
    [70]毛汉领,王小纯,陈仲仪.大型设备中金属跌落零件的声学定位问题研究.应用声学,1998,17(2):31~35.
    [71]夏崔春,钱进.可变步长自适应时延估计方法研究.声学与电子工程,2004(76):24~27.
    [72]张中华,张瑞金,郭建军等.基于三阶累积量的多径时延估计.信息与电子工程,2009,7(2):94~97.
    [73]向阳.基于互相关延时估计的波速估计方法.武汉理工大学学报(信息与管理工程版),2003,25(5):63~65.
    [74]刘立云,田丰,李治壮等.基于互相关技术的声波飞行时间测量系统的设计与实现.沈阳航空工业学院学报,2005,22(1):57~59.
    [75]高松巍,丛迪娜,杨理践.输气管道泄漏点的定位算法.沈阳工业大学学报,2009,31(6):691~694.
    [76] Lu F K, Ortiz A A, Li J M, et al. Detection of shock and detonation wave propagation by crosscorrelation. Mechanical Systems and Signal Processing, 2009, 23(4): 1098~1111.
    [77]唐小明,吴昊,刘志坤.基于广义互相关算法的时延估计研究.电声技术,2009,33(8):71~74.
    [78] Chen L J, Lin W M, Tsao T P and Lin Y H . Study of Partial Discharge Measurement in PowerEquipment Using Acoustic Technique and Wavelet Transform. IEEE Transation on PowerDelivery, 2007, 22(3): 1575~1580
    [79] Ghinwa F C, and James R G . A Wavelet and Filter Bank Framework for Phonetic Classfication.2005 IEEE International Conference on Acoustic, Speech and Signal Processing, Philadelphia,USA: 2005, 933~936
    [80] Hamstad M A and O’Gallagher A. Effect of Noise on Lamb-mode Acoustic-emission ArrivalTimes Determined by Wavelet Transform. Journal of Acoustic Emission, 2005(23): 485~500
    [81]行鸿彦,刘照全,万明习.基于小波变换的广义相关时延估计算法.声学学报,2002,27(1):88~93.
    [82]蒋忠进,林君,陈祖斌.小波包在Chirp信号检测与时延估计中的应用.电讯技术,2003(2):58~61.
    [83]曾宪伟,赵卫明,盛菊琴.小波包分解树节点与信号子空间频带的对应关系及其应用.地震学报,2008,30(1):90~96.
    [84] Yan H, Chen G N, Han J F, et al. Application of wavelet threshold de-noising to sound travel-timeestimation, 2010 International Conference on Computer Engineering and Technology, Chengdu,China: 2010, v1, p V1214~V1218.
    [85] Yan H, Chen G N, Xu Y, et al. Research on estimation of acoustic travel-time in soybeans,International Conference on Measuring Technology and Mechatronics Automation, Zhang Jiajie,China: 2009, p 832~835.
    [86] Chen G N, Yan H, Zhou Y G, et al. A new method of sound travel-time measurement in storedgrain, Advanced Research on Computer Education, Simulation and Modeling-InternationalConference, WuHan, China: 2011, v175 CCIS, n PART 1, p 232~237.
    [87]李一兵,岳欣,杨莘元.多重自相关函数在微弱正弦信号检测中的应用.哈尔滨工程大学学报,2004,25(4):525~528.
    [88]薛年喜.MATLAB在数字信号处理中的应用.北京:清华大学出版社,2003.
    [89]王家文,曹宇.MATLAB 6.5图形图像处理.北京:国防工业出版社,2004.
    [90]求是科技.MATLAB 7.0从入门到精通.北京:人民邮电出版社,2006.
    [91]安连锁,李庚生,张世平等.电站锅炉声学测温中扫频信号声源特性研究.动力工程学报,2011,31(11):840~845.
    [92]罗振,田丰,孙小平.炉膛声波飞行时间测量中声源信号的选取研究.计算机仿真,2007,24(1):329~332.
    [93] Ishikawa E, Mizutani K, and Nagai K. Fast Method for Visualization of Temperature DistributionUsing Acoustic Computerized Tomography. Japanese Journal of Applied Physics, 2001, 40(9):5446~5449.
    [94] Fonakoshi A, Mizutani K, Nagai K, et al. Temperature Distribution in Circular SpaceReconstructed from Sampling Data at Unequal Interval in Small Numbers Using AcousticComputerized Tomography. Japanese Journal of Applied Physics, 2000, 39(5): 3107~3111.
    [95] Minamide A, Mizutani K and Wakatsuki N. Temperature Distribution Measurement UsingReflection with Acoustic Computerized Tomography. Japanese Journal of Applied Physics, 2008,47(5): 3967~3969.
    [96] Yan H, Chen G N, Xu Y, et al. Research on estimation of acoustic travel-time in soybeans. In:Measuring Technology and Mechatronics Automation, Zhangjiajie, Hunan, 2009: 832~835.
    [97] Jovanovic I, Sbaiz L, Vetterli M. Acoustic tomography method for measuring temperature andwind velocity, in: 2006 IEEE International Conference on Acoustic, Speech and Signal Processing,Toulouse, France, May 14-19, 2006, pp. IV 1141~1144.
    [98]乔志伟,韩焱,魏学业.一种滤波反投影法的加速方式.系统工程与电子技术,2010,32(2):401~404.
    [99]乔志伟,韩焱,魏学业.滤波反投影算法的数值实现问题研究.机械管理开发,2009,24(2):1~5.
    [100] Bramanti M, Salerno E A, Tonazzini A, et al. An acoustic pyrometer system for tomographicthermal imaging in power plant boilers. IEEE Transactions on Instrumentation and Measurement,1996, 45(1): 159~167
    [101]孙小平,田丰,邵富群等.复杂温度场图像重建算法实验研究.东北大学学报(自然科学版),2006,27(3):268~271.
    [102]吴宗敏.径向基函数、散乱数据拟合与无偏网格微分方程数值解.工程数学学报,2002,19(2):1~12.
    [103]王国荣.矩阵算子与广义逆.北京:科学出版社,1998.
    [104] Sielschott H, Derichs W. Tomography with few data---Use of collocation methods in acousticpyrometry.ECMI’94: Student Proceedings Kaiserslautern, 1996, 251~263.
    [105] Li Z C, Huang H T, Wei Y. Ill-conditioning of the truncated singular value decomposition,Tikhonov regularization and their applications to numerical partial differential equations.Numerical Linear Algebra with Applications, 2011, 18(2): 205~221.
    [106]张海滨,蒋伟康,万泉.边界元法循环平稳近场声全息理论研究.声学学报,2008,33(3):231~237.
    [107]雷振山.LabVIEW 7 Express实用技术教程.北京:中国铁道出版社,2004.
    [108] Young K J, Ireland S N, Melendez-Cervates M C, et al. On the systematic error associated withthe measurement of temperature using acoustic pyrometry in combustion products of unknownmixture. Measurement Science and Technology, 1998(9): 1~5.
    [109] Munk W, Worcester P, Wunsch C. Ocean Acoustic Tomography, England: Cambridge University1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700