用户名: 密码: 验证码:
粮食干燥过程水分检测与自动控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食问题是关系国计民生的重大课题,粮食的安全储藏显得尤为重要。利用干燥设备降低水分是粮食安全储藏的重要环节。而在粮食干燥过程中,水分在线检测和控制是制约干燥环节的主要问题。由于影响因素复杂,直接测量其含水率比较困难,一般通过测量影响粮食含水率的一些因素(如粮食温湿度、热风温湿度和粮食重量变化等)间接测量。而测量影响粮食含水率的这些间接因素很方便。如果要利用其实现控制,就需要对所测变量与粮食含水率建立关联,然后通过控制某个或某几个因素的方法间接控制粮食的出机含水率,从而实现粮食干燥过程的自动控制。
     本文在对粮食干燥过程水分检测和控制的综合研究分析基础上,研究不同干燥阶段玉米温度变化特点及玉米温度与含水率的变化关系,探索了利用玉米温度变化率进行水分预测的可行性;研究了基于粮仓局部压力和总重量变化的粮食水分检测的方法;最后基于现场总线和触摸屏技术开发了玉米干燥过程智能控制系统。本文是依托于“十二五”国家科技支撑计划项目“粮食保质节能烘干技术与装备的研究开发与示范”的子课题“粮食干燥数控技术及真空组合干燥工艺”中的内容开展的工作,从理论和试验两方面研究粮食干燥过程水分检测与自动控制。主要研究内容如下:
     1、通过数值模拟研究了玉米深层干燥过程中温湿度变化特点及二者的关系,建立了玉米温度与含水率的模拟方程,并进行了实验验证;探讨了利用玉米温度变化率控制水分的可行性;
     2、从理论和实验两个方面,研究了矩形筒仓内动静压力与含水率之间的变化关系,以此探讨了利用仓内饱和压力检测含水率;
     3、研究了压力式水分传感器的结构及数据采集系统,采用BP神经网络对温度的非线性校正,实现了水分在线检测;
     4、建立了基于粮食总重探测的循环式干燥机模拟系统,分析了粮食总重量变化对水分的影响,为实际干燥过程控制奠定了基础;
     5、开发了基于现场总线和触摸屏技术的玉米干燥过程智能控制系统,成功与实际干燥机配套使用,可通过粮食总重量、粮食温度及机内饱和压力三种方式实现粮食水分的检测和控制。
Food is a major topic of people's livelihood, food security storage is particularlyimportant. Use of grain drying equipment to reduce grain moisture is an important part ofsafe storage of food. While in the process of grain drying, on-line monitoring and control ofwater is a main restricting issue. As the impact of complex factors, direct measuring isdifficult, while some indirect affecting factors are easy to measure. Generally grain moistureis indirectly measured by measuring some affecting factors such as grain temperature, airtemperature and overall grain weight change, etc. For more precise control, you need tomeasure these variables, and then by controlling one or a few factors to indirectly control thewater content of the discharge, in order to achieve automatic control of the grain dryingprocess.
     On the basis of comprehensive analysis and study of moisture monitoring and controlduring food drying process, the paper made numerical simulation analysis of the corndeep-bed drying process, study the change characteristic of corn temperature and therelationship between the temperature and moisture change of corn. explored the feasibility ofmoisture prediction by change rate of corn temperature; studied grain moisture detectionmethod based on the change of the partial pressure and the total weight of granary; at leastdeveloped intelligent control system based on fieldbus and touch screen technology. Thisresearch work is based on the sub-project CNC Grain Drying technology and VacuumCombination Drying Process from12th Five-Year National Science and Technology SupportProgram: Research, Development and Demonstration of Grain Energy-saving and QualityDrying Technology and Equipment. From both theoretical and experimental aspects, thegrain drying process moisture detection and automatic control were studied. The maincontents are as follows:
     1. Researched the relationship and changes between temperature and humidity duringdeep-bed drying process by Numerical Simulation; established the simulation equations ofcorn temperature and moisture content. And carried out a series of experimental verification;explore the feasibility of using changing rate of corn temperature to control water;
     2. From both the theoretical and experimental aspects,studied the changing relationshipbetween the static-dynamic pressure and moisture content in the rectangular silos, in order to investigate the detection of moisture content using the saturated pressure;
     3. Studied the structure and data acquisition system of the pressure-type moisture sensor,using the BP neural network nonlinear correction for temperature to detect water online;
     4. Established the simulation system of circulating dryer based on the detection for thetotal grain weight, analyzing the impact of total mass change on the water, and laid thefoundation for the control of the actual drying process;
     5. Developed a intelligent control system for corn drying process based on fieldbus andtouch-screen technology, succeed in using the actual dryer to, the total grain weight, graintemperature and saturation pressure within the machine are three ways to achieve thedetection and control of food moisture.
引文
[1]刘建国.粮食干燥机微机自动监控系统的研究.东北农业大学硕士学位论文,2002.
    [2]邵耀坚,刘道被,肖俊铭等.粮食干燥机的原理与构造[M].北京:机械工业出版社,1985.
    [3]牛兴和,曹崇文,毛志怀.横流式粮食干燥机性能的计算机模拟分析[J].北京农业工提大学学报,1989,9(3):39-47.
    [4]李业波,曹崇文.圆筒形循环式粮食干燥机的模拟研究[J].农业机械学报,1994,25(4):31-37.
    [5]陈怡群,常春,胡志超等.循环式粮食干燥机干燥过程的模拟计算和分析[J].农业工程学报,2009,25(7):255-259.
    [6]贾晓峰.玉米多段干燥过程的热力学分析及数值仿真研究.硕士学位论文,2008.
    [7]赵云萍.粮食水分检验方法浅谈[J].科学之友,2010,5:11-12.
    [8] GB5497—85粮食、油料检验:水分测定法.中国标准出版社,1986.
    [9] PeterH.Sydnenham.Transdueerin Measurement and Control,Third Edition. Adem HilgerLtd,BritolandBoston,1985.
    [10]H.A.Slight.The Measurement of Moisture Content.Measurement and Control,1989,22(2):43-44.
    [11]滕召胜,江岳春,陈海滨.新型粮食水分快速测定仪的研究.湖南大学学报(自然科学版),1999,26(3):61-65.
    [12]瞿宝峰,郭宏林,许会.粮食水分检测技术的综合分析及发展概况.沈阳工业大学学报,2001,23(5):413-416.
    [13]孙健,周展明,唐怀建.国内外粮食水分快速检测方法的研究[J].粮食储藏,2007(3):46-49.
    [14]S.O.Nelson.Sensing Moisture Contentin(Train.Instrument and Measurement,2000,3(l):17-20.
    [15]Ki-BokKim, Jong-HeonKim, SeungSeokLee.Measuremen to fgrainmoistureeontentusing microwaveattenuationat10.5GHzandmoisturedensity. InstrumentandMeasurement,2002,51(1):72-77.
    [16]杜先锋,张胜全,张永林.基于微波的粮食水分检测技术与系统[J].武汉工业学院学报.2004(6):32-34.
    [17]Cywieka-Jakiel, Loskiewiez, Tracz.Theo Ptimisation of theafstneutronandGamma-raytransmissionset-uPo frmoisturemeasurementofeoke.APPlied Radiation&IsotoPes,2003,58(l):137-140.
    [18]张烨,李长友等.稻谷摩擦特性研究.广东农业科学,2011,13:115-17.
    [19]罗兰.粮食水分检测智能算法的研究与实现.吉林大学硕士学位论文,2005.
    [20]陆晶.新型电容传感器的研究与应用.河北工业大学硕士学位论文,2002.
    [21]M.T. Amoodeh,M.H. Khoshtaghaza,S. Minaei.Acoustic on-line grain moisture meter[J].Computers and Electronics in Agriculture52(2006):71–78.
    [22]单学军,卢凤桐.DM510烘干在线水分控制系统在玉米烘干塔上的应用[J].流通技术,2003,3:23-25.
    [23]滕召胜,宁乐炜,张海霞,等.粮食干燥机水分在线检测系统研究[J].农业工程学报,2004,20(5):130-133.
    [24]李长友,班华.一种检测粮食含水率得方法及其装置:中国,200610123461.3
    [P].2007,5,16.
    [25]刘燕.基于DSP的水分测定电子天平研究[D].湖南大学硕士学位论文,2006.
    [26]伟利国,张小超等.微波在线式粮食水分检测系统[J].农机化研究,2009,06:0145-0147.
    [27]P. A. Berbert, B. C. Stenning. On-line moisture content measurement of wheat[J].Journal of Agriculture Engineering Research,1996,(65):287-296.
    [28]粮食水分多点在线检测仪.专利申请号96246614.黑龙江省农业机械工程科学研究院,1996,11-13.
    [29]路东岩,殷晓慧.JZSZ-2008型玉米水分在线测控系统.粮食与饲料工业,2007.7:13-14.
    [30]杨荣辉.电容式粮食水分仪的研究.沈阳工业大学硕士学位论文,2003.
    [31]李振涛,张阳,张丽梅.粮食水分在线检测传感器[J].辽宁大学学报自然科学版,2006,33(3):241~243.
    [32]黄操军,田芳明等.基于DSP的粮食含水率在线测量方法[M].农业机械学报,2009,40:61-64.
    [33]欧阳斌林,张俐,周修理,初永良.粮食烘干机自动控制与微机管理系统中的单片机设计.农机化研究[J],1999,01:46-48.
    [34]蔡晓华,陈蕾,刘俊杰.单片机控制技术在粮食干燥水分监控系统中的应用研究.农机化研究[J],2000,04:102-106.
    [35]赵良羽,李宝华,郭怀天,曹彦波.基于干燥减量法水分检测仪的研制.微计算机信息,2007,23(9-2):26-27.
    [36]A. Balasubramanian, Panda, Ramachandra Rao. Modeling a fluidized bed dryer usingartificial neural network[J]. DryingTechnology,1996(14):7-8.
    [37]Gheorghita Jinescu, V. Lavric. The artificial neural networks and the drying processmodeling[J]. Drying Technology,1995(13):5-7.
    [38]I. Farkas, P. Remenyi, A. Biro. Modeling aspects of grain dry-ing with a neuralnetwork[J]. Computers and electronics in agri-culture,2000(29):99-113.
    [39]Somkiat Prachayawarakorn,Nattapol Poomsa-ad, Somchart Soponronnarit.Qualitymaintenance and economy with high-temperature paddy-drying processes[J]. Journalof Stored Products Research41(2005)333–351.
    [40]曹崇文.农产品干燥机理、工艺与技术[M].北京:中国农业大学出版社,1998.
    [41]李长友,班华.基于深层干燥解析理论的粮食干燥自适应控制系统设计[J].农业工程学报,2008,24(4):142-146.
    [42]Xiaoguang Chen, XueqiangLiu, WenfuWu. Multivariate statis-tical process controlfor grain drying[G]. The14thInternational Drying Symposium (CIGR2004),2004.
    [43]Xueqiang Liu, Xiaoguang Chen,Wenfu Wu. Process control based on principalcomponent analysis for maize drying [J].Food Control,2006,17(11):894-899.
    [44]Zhang Q, Gui X Q, Lithfield J B. A prototype fuzzy expert system for corn qualitycontrol during drying processes[C]. ASAE Paper,1989:6041-6055.
    [45]Zhang Q, Lithfield J B. Knowledge representation in a grain drier fuzzy logiccontroller[J]. Jagric EngngRes.1994,(57):269-278.
    [46]Qiang Liu, Bakker-Arkema F.W. A model-predictive controller for grain drying[J].Journal of Food Engineering.2001,4:321-326.
    [47]邹凤竹,邢黎峰,高永珍.家蚕茧干燥曲线模型的研究[J].苏州丝绸工学院学报,1998,18(1):38-41.
    [48]张志健,耿敬章,孙海燕等.家蚕茧干燥曲线模型的研究[J].安徽农业科学,2011,39(12):7106-7107.
    [49]林祥仪.小型经济作物烘干机的研制[J].福建农学院学报,1990,19(4):485-492.
    [50]余国和,金裕生,李征涛.确定颗粒状物料实际干燥曲线的通用方法[J].华东工业大学学报,1995,17(2):485-492.
    [51]李伟清,何培祥,李庆东.物料干燥曲线快速测定仪的研究[J].农业工程学报,1997,13(1):181-184.
    [52]任海军.基于给定干燥曲线的干燥设备微机控制系统的设计研究[D].西南大学硕士学位论文,2006.
    [53]陈正宏,崔文孝,孙云阁.粮食干燥过程的计算机控制与模拟.黑龙江电子技术,1999,2:4-5.
    [54]曹崇文.粮食干燥的数学模拟.北京农业机械化学院学报,1984,3:79-94.
    [55]梅君.消除大豆干燥内控现象的研究.中国油脂,1998,23(4):30.
    [56]管桂春,胡芃.烟叶在叶片复烤机干燥过程中的传热传质研究[J].包装与食品机械,2006,24(3):5-8.
    [57]王志魁.化工原理,北京:化学工业出版社,2003.
    [58]宋林海.立筒仓的储粮压力分析.内蒙古民族师院学报(自然科学版),1998,13(1):56-58.
    [59]de Gennes P G1999Rev.Mod.Phys.71S374.
    [60]Lu K Q, Liu J X2004Physics33629(in Chinese).
    [61]李兴照,王录民,黄茂松.大直径粮食浅圆仓仓壁压力有限元分析及验证[J].特种结构,2005,22(1):97-99.
    [62]张德贤,张元,王高平等.基于压力传感器的粮仓储粮数量检测方法:中国,201010240167.7[P].2010.12.8.
    [63]王志杰,钮重九.粮食水分变化对粮仓压力的影响[J].
    [64]郝培业.深仓散体静压力理论研究[J].农业机械学报,1993,24(1):68-72.
    [65]赵松,汪里杰.静载和卸料下筒仓壁侧压力分析[J].科协论坛,2011,4(下):69-70.
    [66]F.Ayuga, M.Guaita, Discharge and the eccentricity of thehopper in fluence on the silowall pressure.14th engineering Mechanical conference, May21-24,2000,Austin.
    [67]Pablo Vidal, Manuel Guaita, Francisco Ayuga, Analysis of Dynamic DischargePressures in Cylindrical Slender Silos with a Flat Bottom or with a1-Iopper:Comparison with Euro-code1; Biosystems Engineering;2005;335-348.
    [68]肖昭然,王军,何迎春.筒仓侧压力的离散元数值模拟[J].河南工业大学学报(自然科学版),2006,27(2):10-12.
    [69]曾青,王国鸿,肖万松.基于ANSYS的矩形钢筒仓有限元分析[J].固体力学学报,2008,29:60-63.
    [70]de Gennes P G1999Rev.Mod.Phys.71S374.
    [71]Lu K Q, Liu J X2004Physics33629(in Chinese).
    [72]National Standard of P.R.China GBJ77-851988reinforced concretesilo designspecification (Geijing:China Planning Press)[中华人民共和国国家标准GBJ77-851988钢筋混凝土筒仓设计规范(北京:中国计划出版社)].
    [73]Li,Y.and Puri,V.M.Finite element model prediction ofcyclic thermally induced in ascaled bin using elastic-vis-coplastic constitutive equation.Trans.ASAE.1991,34(5):2207~2215.
    [74]任伯特ML.筒仓理论与实践[M].北京:中国建筑工业出版社.
    [75]夏祁寒.应变片测试原理及在实际工程中的应用[J].山西建筑,2008(28).
    [76]OP07数据手册http://www.analog.com/static/im-ported-files/data_sheets/OP07.pdf.
    [77]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:高等教育出版社,2001:368-369.
    [78]孟凡勇,孟立凡,王华斌.应变测试信号处理电路设计[J].电子测试,2009(9):74-77.
    [79]何希才.运算放大器应用电路设计[M].北京:科学出版社,2007.
    [80]赫飞,汪玉凤,刘雨刚等.LM331在A/D转换电路中的应用[J].微计算机信息,2004,20(11):116-117.
    [81]林汉.LM331压频变换器的原理及应用[J].国外电子元器件,1999(10):20-22.
    [82]徐晖,关辉.一种模拟量光电隔离的实现[J].黑龙江大学自然科学学报,1999,16(3):92-94.
    [83]郭庆亮.非线性光耦实现模拟信号线性隔离[J].机械与电子,2010(11):106-107.
    [84]周云波.由DS1820单线数字温度计构成的单线多点温度测量系统[M].北京:电子技术应用,1996.
    [85]金伟正.单线数字温度传感器的原理与应用[J].仪表技术与传感器,2000(7):42-43.
    [86]王广志,吴颖.数字式温度传感器与分布式温度测量系统[J].传感技术学报,2001,14(1):26-31.
    [87]党峰,王敬农,高国旺.基于DS18B20的数字式温度计的实现[J].山西电子技术,2007(3).
    [88]魏治文,程琳,来记桃等.几种异常值判别准则在安全监测数据处理中的应用[J].大坝与安全,2009,1:67-69.
    [89]李国防,毛志怀.粮食干燥过程控制[J].中国粮油学报,2006,21(2):107-110.
    [90]曹崇文.粮食干燥过程模拟的现状及发展趋势[J].干燥技术与设备,2003(2):6-10.
    [91]李国防,毛志怀.粮食干燥过程控制的研究现状与发展方向[J].粮食与饲料工业,2006(4):17-18.
    [92]郑刚,崔国华.新型粮食烘干机过程控制系统的开发与应用[J].干燥技术与设备,2005,3(3):144-146.
    [93]彭波.农产品低温干燥专家系统的研究[D].北京:北京农业工程大学,1989.
    [94]金伟正.单线数字温度传感器的原理与应用[J].仪表技术与传感器,2000(7):42-43.
    [95]王广志,吴颖.数字式温度传感器与分布式温度测量系统[J].传感技术学报,2001,14(1):26-31.
    [96]潘永康.现代干燥技术[M].北京:化学工业出版社,1998.
    [97]刘明山,吴成武,吴思奇,等.粮食干燥模糊控制专家系统的研究与仿真[J].农业机械学报,2001,32(4):54-56.
    [98]顾冰,赵学工,郑刚,等.稻谷干燥智能控制系统的研究[J].粮食流通技术,2007(3):31-35.
    [99]董全,黄艾祥.食品干燥加工技术[M].北京:化学工业出版社,2007,3.1-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700