用户名: 密码: 验证码:
猪XCL1基因原核表达、多克隆抗体制备及产物活性鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
趋化因子(chemokines, chemoattractant cytokines)是能够使细胞定向移动的小分子细胞因子,在促使细胞迁移和活化过程中发挥重要作用,对机体的免疫系统非常重要。淋巴细胞趋化因子(Lymphotactin,Lptn)是C族趋化因子的一员,也被称为淋巴趋化因子配体1(XCL1)。淋巴趋化因子受体XCR1与XCL1相互作用参与呈递抗原、激活T淋巴细胞和NK细胞,发挥机体的细胞免疫功能,能够调节免疫系统平衡,增强粘膜免疫、抗肿瘤免疫,在感染性疾病过程中诱发炎症反应等。
     柳超等已构建pEGFP-PLptn真核表达载体,证实绿色荧光融合蛋白在体外具有趋化活性,但并未进行进一步的研究。本研究首次构建了原核表达载体pET-32a-XCL1,摸索了原核表达的最佳诱导和纯化条件,采用HiTrap~(TM) Chelating HP纯化蛋白,SDS-PAGE检测重组蛋白纯化情况,Western-blot检测重组蛋白表达情况。并以此重组蛋白作为抗原,制备多克隆抗体,双向琼脂扩散试验、间接ELISA检测多克隆抗体效价,MTT法检测猪XCL1对淋巴细胞增殖的影响,为研究XCL1在猪中的功能提供了素材。主要研究内容与结果如下:
     1.根据NCBI上猪XCL1基因序列,设计引物,从猪淋巴结克隆得到0.27 kb的目的片段。将目的片段克隆至pMD-19T载体中,筛选出阳性质粒送测序,结果表明该目的片段序列正确。
     2.将目的基因构建到原核表达载体pET-32a (+),在大肠杆菌BL21(DE3)中进行原核表达,纯化目的蛋白,免疫新西兰大白兔,制备多克隆抗体。
     3.双向琼脂扩散试验显示抗原抗体的结合比为1:8,间接ELISA检测到抗体效价达到1: 12 800。
     4.通过MTT法试验检测重组蛋白XCL1对淋巴细胞增殖的影响,结果表明重组蛋白XCL1能促进淋巴细胞的增殖,而此实验制备的多克隆抗体可以阻断这种效应。
Chemokines(chemoattractant cytokines) are cytokines of small molecular size that can induce directed chemotaxis, and play an important role in the process of cell migration and activation. Thus, chemikines are very important components in the immune system. Lymphocyte chemotactic factor (Lymphotactin, Lptn) , also known as lymphoid chemokine ligand 1 (XCL1), is a member of C chemokine family. The interaction between XCR1 and XCL1 involves in antigen presentation, T lymphocytes and NK cells activation, and the cellular immune function exertion processes, thus can regulate immune balance and induce inflammatory reaction in the process of infectious disease, and can enhance mucosal immunity and anti-tumor immunity.
     Liu et al(2010)had constructed eukaryotic expression vector pEGFP-PLptn, and confirmed that the fusion protein with green fluorescent marker displays chemotactic characteristic in vitro, but further study was not carried out. In this study, we first ever constructed prokaryotic expression vector pET-32a-XCL1 and found out the optimum conditions of its expression and purification. First, purify the recombinant protein using HiTrap~(TM) Chelating HP chromatographic column. Second, check the purified product using SDS-PAGE technique. Thirdly, detect the expression of the recombinant protein using western-blot.
     Immunize the experimental animals (New Zealand white rabbits) with the purified fusion protein to prepare the serum that contains the associated polyclonal antibody. The serum will then undergo double immnodiffusion test and indirect ELISA test to determine the polyclonal antibody titre. Then, test the condition of lymphocytes proliferation by MTT. This research can provide basic material for further investigation of the function of XCL1 in swine. The main contents and results of our research are as follows:
     1. Primers were designed according to XCL1 gene sequences on NCBI , and its ORF of about 0.27kb was amplified from the porcine lymph nodes and then integrated into the pMD-19T vector, and its positive plasmids were screened and sequenced. Sequencing results confirmed the correctness of the ORF in the recombinant vector.
     2. The ORF of XCL1 gene was integrated into prokaryotic expression vector pET-32a (+), and expressed in E.coli.BL21(DE3). Immunize the New Zealand white rabbits with the purified fusion protein to prepare the serum that contains the associated polyclonal antibody.
     3. Double immunodiffusion test showed the antigen-antibody binding ratio to be 1:8, and the titre of antibodies was 1: 12 800 detected by indirect ELISA.
     4. MTT method was used to study how this recombinant protein affects on lymphocytes proliferation. This result of MTT showed that the recombinant protein could stimulate lymphocytes proliferation, and that this stimulating effect could be effectively blocked by the polyclonal antibody we prepared.
引文
陈焕春,琚春梅,刘正飞等. 2002.猪圆环病毒研究进展.动物医学进展, 23(2): 14~16
    崔继丽. 2010.趋化因子及其受体在口腔扁平苔藓中的作用.口腔医学研究, 26(5): 761~763
    丁红晖,郝友华. 2009.淋巴细胞相关趋化因子及其受体与慢性病毒性肝炎.细胞与分子面医学杂志, 25(8): 764~766
    贾民勇,山小薪,王文军,湛晓勤. 2010.大鼠白色念珠菌肺炎与淋巴细胞趋化因子的相关性研究.国际呼吸杂志, 30(8): 458~461
    简陈兴,杨春康, 2008.趋化因子及其受体在肿瘤治疗中的前景.医学综述, 14(8): 1171~1173
    孔庆波,刘剑郁,常建军. 2007.犬淋巴细胞转化增殖试验最佳条件的确定.畜牧兽医科学, 23(7):46~49
    李昌崇,张维溪,罗运春,董琳,蔡晓红,李梦荣,吴荣熙,张正霞. 2005.地塞米松对哮喘小鼠MIP-1蛋白和mRNA表达的调控.温州医学院学报, 35(1): 1~3
    柳超,曹金锁,蒋鹏飞,张德礼. 2010. PLPTN真核载体的构建、表达及趋化活性测定.中国兽医杂志, 46(7): 22~24
    朴花子,郑善子,崔万善. 2008.汉黄芩素对脂多糖诱导细胞因子IL-6和趋化因子RANTES的影响.中华药理与临床, 24(6): 34~36
    乔琦,张文丽,朱辉. 2008.不同年龄犬红细胞培养上清对淋巴细胞增殖的作用.西北农林科技大学学报, 36(6): 15~20
    任勇,陈寿松,齐曼丽,熊丽萍. 2009.趋化因子及其受体与肿瘤研究进展.临床军医杂志, 37(3): 485~487
    宋豪,张德礼. 2008.猪淋巴细胞趋化因子XCL1的电子克隆和编码区序列RT-PCR验证.动物医学进展, 29(12): 11~16
    唐威华,王宗阳,张景六. 2000. SDS-PAGE法测定His-tag融合蛋白分子量产生偏差的原因.植物生理学报, 26(1): 64~68
    吴琼,翟原,焦守恕,孟霞,卢静,乔欣,王锯. 2009.大鼠心肌缺血再灌注损伤中诱导CD4+T细胞募集的趋化因子的表达.中国比较医学杂志, 19(4): 38~43
    岳艳,胡林昆,徐薇,熊思东. 2010a.淋巴细胞趋化因子增强柯萨奇病毒DNA疫苗黏膜免疫及预防小鼠心肌炎的作用.微生物与感染, 5(2): 77~83
    岳艳,徐薇,蒋正刚,胡林昆,李康,熊思东. 2008. C家族趋化因子XCL1增强CVB3基因疫苗的抗病毒免疫应答及保护作用.现代免疫学, 28 (2): 91~95
    岳艳,徐薇,熊思. 2010b.佐剂LTN增强新型CVB3黏膜疫苗病毒性心肌炎保护效果的机制探讨.中华微生物学和免疫学杂志, 30(6): 541~545
    张佩君,白丽丽,乔琪. 2007.犬红细胞培养上清液对淋巴细胞增殖转化的影响.西北农林科技大学学报, 35(4):51~54
    张文丽,乔琦,朱辉. 2008.不同年龄犬红细胞培养上清对淋巴细胞增殖的作用.西北农林科技大学学报, 36 (6):15~20
    左维泽,沈兰超,许春梅,田群,买力坎木,季榕. 2010.慢性乙型肝炎患者血清XCL1与免疫损失的相关性分析.中国医师杂志, 12(6): 768~771
    Adachi S, Metcalfe D D, Nakano T, Vliagoftis H. 1999. Receptor-mediated modulation of murine mast cell function by alpha-melanocyte stimulating hormone. Immuno1, 163(6): 3363~3368
    Andrew D L. 2002. The role of chemokines in linking innate and adaptive immunity. Current Opinion in Immunology,14, 129~135
    Bachem A, Güttler S, Hartung E. 2010. Superior antigen cross-presentation and XCR1 expression define human CD11+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med, 207(6): 1273~81
    Berquist S W, Nadeau K C. 2008. Depressed Levels of XCL1 in Allergic Asthmatic Plasma. Journal ofAllergy and Clinical Immunology, 121(2): 119~123
    Billen F, Peeters D, Peters IR, Helps CR, Huynen P, De Mol P, Massart L, Day MJ, Clercx C. 2009. Comparison of the value of measurement of serum galactomannan and Aspergillus-specific antibodies in the diagnosis of canine sino-nasal aspergillosis. Vet Microbiol, 133(4): 358~365
    Blaschke S, Brandt P, Wessels JT, Muller G A. 2009. Expression and function of the C-class chemokine lymphotactin (XCL1) in Wegener's granulomatosis. Journal of Rheumatology, 36: 2491~2500
    Bonecchi R, Galliera E, Borroni E M. 2009. Chemokines and chemokine receptors: an overview. Front Biosci, 14, l540~1551
    Bonifaz L, Bonnyay D, Mahnke K. 2002. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation onmajou histocompatibiility complex class I products and peripheral CD8+ T cell tolerance. The Journal of expermental medicine, 196(12): 1627~1634
    Boyaka P N, Marinaro M, Jackson R J, Menon S, Kiyono H, Jirillo E, McGhee J R. 1999. IL-12 is an effective adjuvant for induction of mucosal immunity. Journal of Immunology, 162: 122~128
    Buyong, Xiong J, Lubkowski J, Nussinov R. 2000. Homology modeling and molecular dynamiics simulations of lymphotactin. Protein Sci, 9: 2192~2199
    Cerdan C, Devilard E, Xerri L, Olive D. 2001. The C-class chemokine lymphotactin costimulates the apoptosis of human CD4+ T cells. Blood, 97: 2205~2212
    Diane Ordway, David M. Higgins, Ian M. Joaquin Sanchez-Campillo, John S. Spencer, Marcela Henao-Tamayo, Marisa Harton Orme, Mercedes Gonzalez Juarrero. 2007,11. XCL1 (lymphotactin) chemokine produced by activated CD8 T cells during the chronic stage of infection with Mycobacterium tuberculosis negatively affects productionof IFN-γby CD4 T cells and participates ingranuloma stability. Leukocyte Biology, 82, 1221~1229
    Endres M, Andreas K, Kalwitz G, Freymann U, Neumann K, Ringe J, Sittinger M, H?upl T, Kaps C. 2010.Chemokine profile of synovial fluid from normal, osteoarthritis and rheumatoid arthritis patients: CCL25, CXCL10 and XCL1 recruit human subchondral mesenchymal progenitor cells. Osteoarthritis Cartilage, 18(11): 1458~1466
    Garvy B A, Qureshi M H. 2000. Delayed inflammatory response to Pneumocystis carinii infection in neonatal mice is due to an inadequate lung environment. Journal of Immunology, 165: 6480~6486 Gene ID: 2829.2011. XCR1 chemokine. [2011-5-15]
    Giancarlo B, Silvano S, Albert Z, Alberto M, Paola A. 1996. Migratory response of human natural killer cells to lymphotactin. European Journal of Immunology, 26: 3238~3241
    Hautamaa D M R, Chen Z. 1997. Murine lymphotactin: gene structure, post-translational modification and inhibition of expression by CD28 costimulation. Cytokine, 9: 375~ 382
    Hedrick J A, Zlotnik A. 1998. Lymphotactin. Clinical Immunology and Immunopathology, 87: 218~222 Hegewald AA, Neumann K, Kalwitz G, Freymann U, Endres M, Schmieder K, Kaps C, ThoméC. 2011.The Chemokines CXCL10 and XCL1 recruit human annulus fibrosus cells. Spine(Phila Pa 1976), Epub ahead of print
    Hochuli E, Dobeli H, Schacher A. 1987. New metal chelate adsorbent selective for proteins containing neighboring histidine rusidues. Chromatogr, 411: 177~184
    Hoshino K, Miyamoto R, Y amazaki C. 2010. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice. Biochem Biophys Res Commun, 397(4): 756~61.
    Huang H, Li F, Cairns C M, Gordon J R, Xiang J. 2001. Neutrophils and B cells express XCR1 receptor and chemotactically respond to lymphotactin. Biochemical and Biophysical Research Communications, 281: 378~382
    Huang H, Li F, Gordon J R, Xiang J. 2002. Synergistic enhancement of antitumor immunity with adoptively transferred tumor-specific CD4+ and CD8+ T cells and intratumoral lymphotactin transgene expression. Cancer Res, 62(7): 2043~2051
    Hyung J C, Dalal N G, Vakharia V N. 1999. Expression and purification of human interleukin-2 simplified as a fusion with green fluorescent protein in suspended Sf-9 insect cells. Journal of Biotechnology, 3 (26): 9~17
    Jung S, Unutmaz D, Wong P. 2002. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity, 17(2): 211~220
    Karine C, Rachel G, Vanessa Cl. 2010, 6, 7. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8α+ dendritic cells. J Exp Med, 207(6): 1283~1292
    Keen J C, Garrett-Mayer E, Petit C, Mack K M, Manning J, Herman J G, Davidson N E. 2004. Epigenetic regulation of protein phosphatase2A (PP2A), lymphotactin (XCL1) and estrogen receptor alpha (ER) expression in human breast cancer cells. Cancer Biology&Therapy, 3(12): 1304~1312
    Khoa D N, Alison F, Jerome D. 2008. XCL1 enhances regulatory activities of CD4+CD25highCD127low/- T cells in human Allergic Asthma. The Journal of Immunology, 181: 5386~5395
    Khurram S A, Whawell S A, Bingle L, Murdoch C, McCabe B M, Farthing PM. 2010.Functional expression of the chemokine receptor XCR1 on oral epithelial cells. J Pathol, 221(2): 153~163
    Kim B O, Liu Y, Zhou B Y, He J J. 2004, 2. Induction of C chemokine XCL1 (lymphotactin/single C motif-1 /activation-induced, T cell-derived and chemokine-related cytokine) expression by HIV-1 Tat protein. Immunology, 172(3): 1888~1895
    Kuloglu E S, McCaslin D R, Kitabwalla M, Pauza C D, Markley J L, Volkman B F. 2001. Monomeric solution structure of the prototypical 'C' chemokine lymphotactin. Biochemistry, 40: 12486~12496
    Kurt R A, Bauck M, Harma S, McCulloch K, Baher A, Urba W J. 2001. Role of C chemokine lymphotactin in mediating recruitment of antigen-specific CD62L(lo) cells in vitro and in vivo. Cellular Immunology, 209: 83~88
    Laura M, Julio V H, Zavala-Flores, Anali G E. 2009. Production of biological active human lymphotactin(XCL1) by Lactococcus lactis. Biotechnol Lett, 31: 215~220
    Lazennec G, Richmond A. 2010.Chemokines and chemokine receptors: new insights into cancer relatedinflammation. Trends Mol Med, 16(3):133~144
    Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, B?sl MR, Holl?nder GA, Hayashi Y, Malefyt Rde W, Nitta T, Takahama Y. 2011. Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med, 208(2): 383~394
    Li A L, Ma D X, Meng X C. 2011. Effect of lactobacilli on Th1/Th2 cells balance in primary lymphocytes. Chinese Journal of Cellular and Molecular Immunology,27(4): 389~391
    Maghazachi A A, Skalhegg B S, Rolstad B, Alaoukaty A. 1997. Interferon-inducible protein-10 and lymphotactin induce the chemotaxis and mobilization of intracellular calcium in natural killer cells through pertussis toxin-sensitive and -insensitive heterotrimeric G-proteins. Faseb Journal, 11: 765~774
    Malcolm L. Wastson. 2002. Chemokines-linking receptors to response. Immunology, 105, 121~124 Marcaurelle L A, Mizoue L S, Wilken J, Oldham L, Kent S B H, Handel T M, Bertozzi C R. 2001.
    Chemical synthesis of lymphotactin: A glycosylated chemokine with a C-terminal mucin-like domain. Chemistry a European Journal, 7: 1129~1132
    Miyamoto R, Y amazaki C, Hoshino K. 2010. Conservation of a chemokine system, XCR1 and its ligand, XCL1, between human and mice. Biochem Biophys Res Commun, 397(4): 756~61
    Moser B, Loetscher P. 2001. Lymphocyte traffic control by chemokines. Nature Immunology, 2: 123~128.
    Natori Y, Ou Z L, Yamamoto S Y, Natori Y. 1998. Expression of lymphotactin mRNA in experimental crescentic glomerulonephritis. Clinical and Experimental Immunology, 113: 265~268
    Nguyen K D, Fohner A, Booker J D, Dong C, Krensky A M, Nadeau K C. 2008. XCL1 enhances regulatory activities of CD4(+)CD25(high)CD127(low/-) T cells in human allergic asthma. Journal of Immunology, 181: 5386~5395.
    Niu X, Guiltinan M J. 1994. DNA binding specificity of the wheat bZIP protein EmBP-1. Nucleic Acids Res, 22: 4969~4978
    Olive D, Cerdan C. 1999. CD28 co-stimulation results in down-regulation of lymphotactin expression in human CD4(+) but not CD8(+) T cells via an IL-2-dependent mechanism. European Journal of Immunology, 29: 2443~2453
    Pieper J, Methner U, Berndt A. 2008. Heterogeneity of avian gamma delta T cells. Veterinary Immunology and Immunopathology, 124: 241~252
    Probst H C, Lagnel J, Kollias G. 2003. Inducible ransgenic mice reveaal resting dendritic cells as potent inducers of CD8+ T cell tolerance. Immunity, 18(5): 713~720
    Rosas-Taraco A G, Higgins D M, Sánchez-Campillo J, Lee E J, Orme IM, González-Juarrero M. 2009.Intrapulmonary delivery of XCL1-targeting small interfering RNA in mice chronically infected with Mycobacterium tuberculosis. Am J Respir Cell Mol Biol, 41(2): 136~145
    Rossi D, Sanchez G J, McCormack W T, Bazan J F, Zlotnik A. 1999. Identification of a chicken "C" chemokine related to lymphotactin. Journal of Leukocyte Biology, 65: 87~93
    Saraya A, Wacharapluesadee S, Khawplod P, Tepsumethanon S, Briggs D, Asawavichienjinda T, Hemachudha T. 2010. A preliminary study of chemo- and cytokine responses in rabies vaccine recipients of intradermal and intramuscular regimens. Vaccine, 28(29):4553~4557
    Shan L X, Qiao X D, Oldham E, Catron D, Kaminski H, Lundell D, Zlotnik A, Gustafson E, Hedrick J A.2000. Identification of viral macrophage inflammatory protein (vMIP)-II as a ligand for GPR5/XCR1. Biochemical and Biophysical Research Communications, 268: 938~941
    Sheng X L, Zhang H. 2007. In-vitro activation of cytotoxic T lymphocytes by fusion of mouse hepatocellular carcinoma cells and lymphotactin gene-modified dendritic cells. World Gastroenterol, 13(44): 5944~5950
    Sun Q, Tyler RC, Volkman BF, Julian RR. 2011. Dynamic interchanging native states of lymphotactin examined by SNAPP-MS.J Am Soc Mass Spectrom, 22(3): 399~407
    Tuinstra R L, Peterson F C, Elgin E S, Pelzek A J, Volkman B F. 2007. An engineered second disulfide bond restricts lymphotactin/XCL1 to a chemokine-like conformation with XCR1 agonist activity. Biochemistry, 46: 2564~2573
    Tuinstra R L, Peterson F C, Kutlesa S, Elgin E S, Kron M A, Volkman B F. 2008. Interconversion between two unrelated protein folds in the lymphotactin native state. Proceedings of the National Academy of Sciences of the United States of America, 105: 5057~5062
    Van B V, Barrett J, Tiffany H L. 2000. Identification of a gamma-herpesvirus selective chemokine binding protein that inhibits chemokine action. J Viro1, 74(15): 674l~6747
    Volkman B F, Liu T Y, Peterson F C.2009. Chapter 3.Lymphotatactin structuual dynamics. Methods Enzymol, 461: 51~70
    Wikipedia. 2010. XCR1. http://en.wikipedia.org/wiki/XCR1. [2011-05-15]
    Yamashita Y, Kajiura D, Tang L, Haseqawa Y, Kinoshita T, Nakamura S, Akatsuka S, Toyokuni S, Mori N. 2011. XCR1 expression and biased VH gene usage are distinct features of diffuse large B-cell lymphoma initially manifesting in the bone marrow. Am J Clin Pathol, 135(4): 556~56
    Yip-Schneider MT, Wu H, Njoku V, Ralstin M, Holcomb B, Crooks PA, Neelakantan S, Sweeney CJ, Schmidt CM. 2008. Effect of celecoxib and the novel anti-cancer agent, dimethylamino-parthenolide, in a developmental model of pancreatic cancer. Pancreas, 37(3): e45~53
    Yvonne B. 2010. A class apart-uncovering a role for the C-chemokine. nature reviews/immunology, 1(10) Zavala-Flores L M, Villatoro-Hernandez J, Gamez-Escobedo A, Franco-Molina M, Rangel-Colmenero B R, Villanueva-Olivo A, Gutierrez-Puente Y, de Oca-Luna R M, Valdés-Flores J, Saucedo-Cardenas O. 2009. Production of biologically active human lymphotactin (XCL1) by Lactococcus lactis. Biotechnol Lett, 31(2): 215~220
    Zhang J, Zhou Z, Wang C, Shen J, Zheng Y, Zhang L, Wang J, Xia D. 2011. Reduced tumorigenesis of EG7 after interleukin-10 gene transfer and enhanced efficacy in combination with intratumorally injection of adenovirus-mediated lymphotactin and the underlying mechanism. Cancer Immunol Immunother, 60(4):559~573
    Zlotnik A , Yoshie. 2000. A new classification system and their role in immunity. Chemokines, 2: 121~12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700