用户名: 密码: 验证码:
地被菊早花与抗旱育种及早花相关AFLP分子标记筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地被菊作为近年来培育的新型开花地被植物,因其植株紧凑、低矮、花量大、抗性强等优势在园林应用中具有巨大潜力和前景。但现有地被菊品种巾早花品种较少;且部分品种的抗旱性较差。因此,为了培育早花和抗早性优良的地被菊新品种,本研究对菊花野生种质资源进行野外调查、收集和整理,建立菊花野生种质资源圃和地被菊品种资源圃。在对种质资源进行遗传多样性研究的基础上,以早花和优良抗旱性为主要育种目标,兼顾株型低矮、叶色奇特以及香花,开展了地被菊杂交育种研究,对杂交后代主要观赏性状遗传特点进行了分析。同时,利用野生种质资源和地被菊品种进行远缘杂交研究,对远缘杂交亲和性进行分析,通过胚拯救,获取远缘杂交后代,并对其杂种真实性进行了鉴定。构建花期分离广泛的F1杂交群体,选取极端个体,借助混合分群分析法,筛选了地被菊品种花期相关的AFLP分子标记。主要研究结论如下:
     1.在内蒙古、云南、四川和贵州四省的8个区域内进行菊花野生种质资源调查,以早花和优良抗旱性为目标性状,采集了7个菊属及其近缘属的野生种,结合对已有野生种质资源和地被菊品种资源的整理,建立野生种质资源圃,内有野生种22个,包括不同地理来源的材料共28份;建立地被菊品种资源圃,内有地被菊品种(或育种材料)62个。筛选出6个早花地被菊品种和17个抗旱性优良的野生种。
     2.建立并优化了AFLP反应体系,筛选出19个多态性丰富的引物对,对12份菊属及其近缘属野生种质资源以及62份地被菊品种资源进行AFLP遗传多样性分析。74份种质材料的遗传相似性系数变异范围为0.564~0.891,共得到452个多态性位点,平均每对引物得到23.8个多态性位点,表明在菊花种质资源中存在丰富的遗传多样性。聚类分析结果表明:野生种在遗传相似性系数0.66处可分为两大类,其聚类结果和供试材料的传统分类学地位以及地理来源高度相关。对所有供试材料进行聚类时,分组结果比较复杂,表现出和材料之间亲缘关系的高度相关性,以及和供试材料瓣型的一定相关性。
     3.以早花、优良抗旱性为育种目标,进行地被菊品种遗传改良研究。对子代的主要观赏性状遗传特点进行分析,结果表明:花色遗传上,黄色遗传力高于白色;亲本有跳色性状的后代花色变异广泛,但绝大多数表现为跳色性状。花径遗传杂种优势比较明显,尤其品种间杂交,能有效增大花径。株高和冠幅主要介于双亲之间,也有低亲和超亲现象出现。花期遗传特点表现为:秋菊和秋菊杂交,80%左右的后代花期和亲本相近,20%左右的后代表现为晚花。而两个地被菊早花品种杂交,F1花期出现明显分离,其中10.1%的后代表现为比亲本花期提前;8.8%的后代花期比亲本延迟;而大部分后代(81.1%)的花期和亲本接近。优选出了一批株型低矮、花期早、叶片和花序观赏性状突出的优良株系。
     4.远缘杂交亲和性研究结果表明:地被菊品种之间的杂交亲和性普遍较好;野生种和地被菊品种间杂交:矶菊和毛华菊与地被菊品种亲和性较好,长裂太行菊和甘菊与地被菊品种亲和性较差。野生种与野生种杂交:亲本染色体倍性相同或相近的种杂交亲和性相对较高,当亲本倍性差异较大时,母本倍性低,父本倍性高时结实率较高;母本倍性低而父本倍性高时多表现为不结实或结实少。
     5.初步建立了菊属植物远缘杂交胚拯救体系,筛选出培养基MS+BA1.5mg·L-1+NAA2.0mg·L-1对三个杂交组合进行幼胚拯救。结果表明:出愈率和成苗率大小主要受杂交亲本的亲缘关系影响,最佳子房培养时期各有不同,从授粉后16d-24d不等。对获得的胚拯救幼苗进行了形态学和AFLP分子鉴定,确定了杂种的真实性。
     6.以地被菊品种‘米白早’和‘七月桃花’杂交,对获得的F1群体的花期性状进行统计分析,结果表明后代花期分离广泛,呈连续性分布,并出现低亲和超亲现象。在后代中选取极端早花个体和极端晚花个体作为供试群体,采用混合分群分析法,分别取早晚花个体建立子代早花基因池(ZZ)和子代晚花基因池(ZW),利用筛选出的32对AFLP引物对亲本材料和两个基因池进行扩增,初步筛选出与地被菊花期差异相关联的标记E39/M61-156,并用三个地被菊晚花品种进行验证,计算其与控制早花性状的基因的遗传距离为13.43cM,表明该标记应与早花相关,可用于地被菊早花育种的早期辅助选择。
Chrysanthemum(Chrysanthemum spp.; Asteraceae, Anthemideae) is not only a traditional Chinese flower but also one of the most important cut flower in the world, which is popular for its exceptionally diverse in flower shape and color. Groud-cover chrysanthemum becomes a new type of flowering ground cover plants in recent years, which has great potential and prospects in urban landscape construction because of its compact and low type, dense flower and strong resistance. However, there are very few early-flowering cultivars existing, and a lot of cultivars'drought-resistance is poor. According to the investigating, collecting and collating of chrysanthemum resources, wild chrysanthemum germplasm nursery and ground-cover chrysanthemum germplasm nursery were established. On the basis of researching of genetic diversity of germplasm resources, hybridization and genetic improvement were processed to breed some new cultivars with early florescence and strong drought-resistance. The genetic rules of major ornamental characteristics of hybrids were analyzed. Distant crossing between wild germplasm resource and ground-cover chrysanthemum cultivars were processed to detect the cross compability. Embryo rescue was adopted to get distant hybridization, which authenticity was identified too. A F1population with wide range of florescence separation was constructed. Based on the selection of extreme individuals, bulked segregation analysis and AFLP molecular markers were employed to screen florescence-related molecular markers. The main conclusions are described as follows:
     1. Wild chrysanthemum germplasm resources of eight areas in Inner Mongolia, Yunnan, Sichuan and Guizhou provinces were investigated and seven wild specieces were collected for the aim of early-flowering and strong resistance. Combining the collection and collation of species and cultivars, wild chrysanthemum germplasm nursery and ground-cover chrysanthemum germplasm nursery were established, including22wild species and62cultivars. We selected6ground-cover chrysanthemum cultivars with early-florescnce and17species with strong resistance.
     2. AFLP markers were used to detect the relationships among12wild accessions and62ground-cover chrysanthemum cultivars. Nineteen EcoR/Msel primer combinations revealed452informative polymorphic bands, with a mean of23.8bands per primer-pair. Jaccard's coefficient of similarity varied from0.64to0.89, indicating much genetic variation in chrysanthemums. The74accessions were classified into two major groups by UPGMA. The dendrogram showed that AFLP variability was closely correlated with both geographic distribution and traditional classification of the wild accessions. Among all accessions, genetic relationship was the most relevant factor in AFLP-marker clustering, while petal type was also informative.
     3. Hybridization and genetic improvement were processed to breed some new cultivars with early florescence and strong resistance. The genetic rules of major ornamental characteristics of hybrids were analyzed. The results indicated that:yellow flower had much more heredity than white flower. Most hybrids of jump-colored parents were jump-colored too, but had a wide range of variation in flower color. The genetic heterosis of flower diameter was obvious, especially in intervarietal hybridization, which could effectively increase flower diameter. Height and crown of hybrids were mainly between their parents, but also had transgressive segregation. When the parents'florescences were later than September,80%of the offspring's florescences were similar to their parents and the left20%of the offspring showed late flowering. The hybrids of two early-flowering cultivars showed wide separation in florescence, in which10.1%of which performanced earlier flowering than parents and8.8%of the offspring's florescence were later than parents, while81.1%of the offspring's florescences were between parents. A group of hybrids with early-florescence and prominent ornamental traits were seleceted.
     4. The results of distant hybridization showed that:compatibility between cultivars was generally good. Ajania pacifica and Chrysanthemum vestitum showed much better compatibility than other wild specieces when hybrided with ground-cover cultivars. On the contrary, Opisthopappus longilobus and Chrysanthemum lavandulifolium showed poor compatibility. Compatibility of interspecific hybridization was related to the ploidy. Parents with similar ploidy showed higher affinity than those with different ploidy. When the parents'ploidies were obviously different, female parent with lower ploidy than male parent showed higher ripening rate than the opposite.
     5. Embryo rescue system was initially established to get distant hybridization. MS medium supplemented with BA1.5mg·L-1and NAA2.0mg·L-1was the optimal medium for germination and growth. The results showed that:callus rate and plant survival rate were mainly affected by the genetic relationship of hybrid parents. The best time for embryo rescue was16-24days after pollination. AFLP and morphological analysis proved the reliability of the hybrids.
     6. According to the statistical analysis of florescence heredity of F1individuals, which were hybrids of two early-flowering groud-cover cultivars:'Mibaizao' and 'Qiyuetaohua', the results showed that the florescence heredity of F1hybrids was continual and widely separated. Transgressive segregation phenomenon was existed. Based on the selection of extreme individuals, early-florescence (ZZ) and late-florescence (ZW) gene pool were established. Thirty-two AFLP primer combinations were used to amplify hybrid parents, ZZ and ZW gene pool. The result of screening and verification indicated that the molecular marker E39/M61-156should be related to early flowering, and the distance between the marker and the gene was13.43cM. The result indicated that this marker could be used for molecular marker-assisted selection of chrysanthemum.
引文
[1]安利忻,刘荣维,陈章良,李毅.花分生组织决定基因APl转化矮牵牛的研究[J].植物学报,2001,43(1):63-66.
    [2]白坚,胡旭,周淑婷,王慧中.47个建兰品种的SRAP遗传多样性分析[J].植物遗传资源学报,2012,13(3):376-380.
    [3]蔡海燕,李莹莹,温立柱,郑成淑,孙霞.切花菊品种神马早花突变体鉴定及相关生理特征研究[J].核农学报,2013,27(10):1456-1463.
    [4]陈发棣,赵宏波,房伟民,郭维明.菊科植物原生质体研究进展[J].西北植物学报,2005,25:1913-1920.
    [5]陈俊愉,崔娇鹏.地被菊培育与造景[M].北京:中国林业出版社.2006.
    [6]陈俊愉,邓朝佐.用百分制评选三种金花茶优株试验[J].北京林业大学学报,1986,(3):35-43.
    [7]陈俊愉,王四清,王春香.花卉育种中的几个关键环节[J].园艺学报,1995,22(4):372-376.
    [8]陈俊愉.菊花起源[M].合肥:安徽科学技术出版社,2012.
    [9]陈俊愉.中国菊花过去和今后对世界的贡献[J].中国园林,2005,21(9):73-75.
    [10]陈琳.切花菊转DdICE1基因研究[D].南京:南京农业大学,2011.
    [11]陈秀兰,冯玲秀,童华.小菊育种效果的探讨[J].江苏农业科技,1990,(6):48-50.
    [12]陈秀兰,李惠芬.小花型菊花新品种的选育[J].植物资源与环境,1993,2(1):37-40.
    [13]程金水.园林植物遗传育种学[M].北京:中国林业出版社,2002.
    [14]戴思兰,陈俊愉,李文彬.菊花起源的RAPD分析[J].植物学报,1998,40:1053-1059.
    [15]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001:41-44.
    [16]傅玉兰,郑路.冬菊新品种选育[J].安徽农业大学学报,1994,21:59-62.
    [17]盖钧镒,张元明,王建康.植物数量性状遗传体系[M].北京:科学出版社,2003:96-102.
    [18]管志勇,陈发棣,滕年军,陈素梅,刘浦生.5种菊花近缘种属植物的耐盐性比较[J].中国农业科学,2010a,43(4):787-794.
    [19]管志勇,陈素梅,陈发棣,尹冬梅,刘兆磊,唐娟,杨帆.32个菊花近缘种属植物耐盐性筛选[J].巾国农业科学,2010b,43(19):4063-4071.
    [20]管志勇,陈素梅,王艳艳,陈发棣.菊花近缘种属植物耐盐筛选浓度的确定及耐盐性比较[J].生态学杂志,2010c,29(3):467-472.
    [21]韩洁,胡楠,李玉阁,尚福德.菊花品种资源遗传多样性的AFLP分析[J].园艺学报,2007,34(4):1041-1046.
    [22]贺丹,唐婉,刘阳,蔡明,潘会堂,张启翔.尾叶紫薇与紫薇F1代群体主要表型性状与SSR标记的连锁分析[J].北京林业大学学报,2012,34(06):121-125.
    [23]洪波,仝征,李邱华,Mie Kasuga, Yamaguchi-Shinoza Kikaziko,高俊平.地被菊花‘Fall Color'体细胞胚途径再生、遗传转化及转基因植株的抗寒性检测[J].中国农业科学,2006a,39(7):1443- 1450.
    [24]洪波,仝征,马男,李建科,Mie Kasuga, Kazuko Yamaguchi-Shinozaki,高俊平.AtDREB1A基因在菊花中的异源表达提高了植株对干旱和盐渍胁迫的耐性[J].中国科学C辑(生命科学),2006b,36(3):223-232.
    [25]洪波,张常青,李邱华,高俊平,Kasuga Mie, Shinozaki-Yamaguchi Kazuko根癌农杆菌介导的转录因子DREB1A基因在地被菊花中的遗传转化[J].农业生物技术学报,2005,13(3):304-309.
    [26]黄平,崔鹏娇,郑勇奇,张川红,于雪丹.基于SSR标记月季品种鉴定及遗传关系分析[J].林业科学,2012,48(10):55-62.
    [27]季丽静.观赏芍药部分新种质SSR遗传多样性分析及DNA指纹图谱构建[D].北京:北京林业大学,2013.
    [28]李春楠,傅巧娟,陈一,崔海瑞.中国一串红主栽品种遗传多样性的SRAP标记分析[J].分子植物育种,2013,11(6):809-816.
    [29]李鸿渐,郝建文.中国菊花品种资源的调查收集和分类[J].南京农业大学学报,1990,13(1):3036.
    [30]李鸿渐.中国菊花[M].南京:江苏科技出版社,1993.
    [31]李懋学,陈瑞阳.关于植物核型分析的标准化问题[J].武汉植物学研究,1985,3(4):297-302.
    [32]李梅.桂花种质资源遗传多样性研究及品种鉴定[D].南京:南京林业大学,2009.
    [33]李锦馨.地被菊地栽抗旱性试验研究[J].安徽农业科学,2008,36(36):15974-15976.
    [34]李响,周明芹,赵凯歌,陈龙清.山腊梅复合体的遗传多样性和居群遗传分化研究[J].北京林业大学学报,2012,34(1):111-117.
    [35]李辛雷,陈发棣.菊花二倍体野生种与栽培种间杂种的幼胚拯救[J].林业科学,2006,42(11):42-46.
    [36]李辛雷,陈发棣.菊属野生种、栽培菊花及种间杂种的RAPD分析[J].南京农业大学学报,2004,27(3):29-33.
    [37]李辛雷,陈发棣.生物技术在花卉植物遗传育种上的应用[J].广西植物,2005,25(2):134-141.
    [38]李云,张钢,杨际风.热激锻炼对高温胁迫下菊花生理代谢的影响[J].武汉植物学研究,2008,26(2):175-178.
    [39]林功涛,李凤宜.北京小菊系列新品种的选育与推广应用[J].北京园林,1997,(04):6-11.
    [40]林镕,石铸.中国植物志[M](76卷第1册).北京:科学出版社,1983:28-45.
    [41]林尤奋,吴友根,李绍鹏,杜丽.海南菊花种质资源初步调查及其在海南发展前景的分析[J].中国农学通报,2008,10:509-511.
    [42]刘华.芳香地被菊杂交育种研究[D].北京:北京林业大学,2008.
    [43]刘路贤.菊花栽培品种遗传多样性的AFLP分析及SSR分子标记的开发[D].河南开封:河南大学,2013.
    [44]刘民,张世红,梁海永,甄志先.部分菊花品种遗传多样性的AFLP分析[J].河北农业大学学报, 2008,31(1):48-52.
    [45]刘蕤,杨际双.菊属11个野生种和12个栽培品种遗传关系的ISSR分析[J].基因组学与应用生物学,2009,28(5):847-882.
    [46]刘亚欣.菊花Na~+/H~+逆向转运蛋白基因的克隆、功能验证及表达分析[D].上海:华东师范大学,2009.
    [47]刘阳.紫薇微卫星标记开发及矮化性状的分子标记[D].北京:北京林业大学,2013.
    [48]龙茜,刘洪章,刘树英.玉簪种质资源遗传多样性SSR分析[J].北方园艺,2013,(17):100-103.
    [49]陆苗.太行菊抗旱相关基因的分离及其在菊花中的表达[D].北京:北京林业大学,2010.
    [50]缪恒彬,陈发棣,赵宏波.85个大菊品种遗传关系的ISSR分析[J].园艺学报,2007,34(5):12431248.
    [51]莫官站,张启翔,孙明,潘会堂.地被菊杂种1代若干性状的遗传与变异分析[J].安徽农业科学,2010,38(15):7814-7817.
    [52]莫官站.甘菊多倍体育种与优良地被菊的选育[D].北京:北京林业大学,2010.
    [53]聂京涛,潘俊松,何欢乐,司龙亭,蔡润,陈洪.非洲菊部分品种资源遗传多样性的ISSR分析[J].上海交通大学学报(农业科学版),2011,29(3):76-82.
    [54]秦贺兰,曹靖,姚士才,张西西.小菊花色芽变品系的SRAP鉴定[J].北方园艺,2010,(2):111-113.
    [55]秦贺兰,游捷,高俊平.菊花18个品种的RAPD分析[J].园艺学报,2002,29:488-490.
    [56]邵寒霜,李继红,郑学勤,陈守才.拟南芥LFY cDNA的克隆及转化菊花的研究[J].植物学报,1999,41(3):268-271.
    [57]沈国正,李春楠,傅巧娟,刘继业,崔海瑞.一串红SRAP标记的建立与品种鉴定[J].浙江农业学报,2011,23(1):84-89.
    [58]沈红香,赵天田,宋婷婷,姚允聪,高俊平.观赏海棠‘王族’自然杂交后代的遗传多样性分析[J].园艺学报,2011,38(11):2157-2168.
    [59]孙静,曾俊,王银杰,陈发棣,房伟民,陈素梅.20个切花菊品种抗旱性评价与筛选[J].南京农业大学学报,2013,36(1):24-28.
    [60]孙丽丹.梅花遗传连锁图谱构建和表型性状QTLs分析[D].北京:北京林业大学,2013.
    [61]孙明.地被菊及近缘种亲缘关系分析和新品种选育[D].北京:北京林业大学,2007.
    [62]时丽冉,陈红艳,崔兴国.干旱胁迫对地被菊膜脂过氧化和抗氧化酶活性的影响[J].北方园艺,2010a,(9):96-98.
    [63]时丽冉,赵炳春,白丽荣.地被菊抗盐性研究[J].中国农学通报,2010b,26(12):139-142.
    [64]时丽冉,王玉平,刘国荣,李明哲.干旱胁迫对地被菊光合生理特性及水分利用率的影响[J].河南农业科学,2011,40(3):119-121.
    [65]唐源江,武晓燕,曹雯静.叶子花种质资源遗传多样性及亲缘关系的RAPD和ISSR分析[J].西北植物学报,2013,33(7):1325-1332.
    [66]田赟,雒新燕,戴思兰.菊花芽变和相似品种的RAPD分析[J].分子植物育种,2008,6:1223-1232.
    [67]王关林,刘彦泓,郭邵华,王宇,纪彦,方宏筠.雪花凝集素基因转化菊花及转基因植株的抗蚜性研究[J].遗传学报,2004,31(12):1434-1438.
    [68]王红宾,陈发棣,陈素梅,房伟民,朱喜荣,李风童.中国六个城市大菊品种资源现状调查研究[J].植物遗传资源学报,2011,12(4):570-574.
    [69]王佳媛,吴传芳,唐亚.基于SNP分子标记的凹叶木兰遗传多样性初步研究[J].广西植物,2012,32(4):542-547.
    [70]王沛,周洲,苏丽娟,尹新明.根癌农杆菌介导mBt886Cry3Aa转化菊花及对菊天牛毒杀作用[J].中国农业科学,2011,14:2918-2925.
    [71]王彭伟.地被菊选育的研究[D].北京:北京林业大学,1988.
    [72]王青,戴思兰,何晶,季玉山,王朔.灰色关联法和层次分析法在盆栽多头小菊株系选择中的应用[J].中国农业科学,2012,45(17):3653-3660.
    [73]王世动,袁继功,孟圣华,刘祖伦,孙马达,牛力文,陈微,谢庆国.北京小菊夏花品种的育种与推广[J].北京园林,2008,(04):21-28.
    [74]王四清.地被菊遗传育种[D].北京:北京林业大学,1994.
    [75]王涛,徐进,张西西,赵梁军.43份三色堇\角堇材料亲缘关系的SRAP分析[J].中国农业科学,2012,45(3):496-502.
    [76]王业,孔志新,孙明,张启翔,陈雪娟.湿热胁迫对地被菊及野生菊生理生化特性的影响[J].西北农业学报,2012,21(9):133-138.
    [77]王亚.地被菊苗期耐湿热能力评价及其生理的研究[D].北京:北京林业大学,2013.
    [78]王翊,马月萍,戴思兰.观赏植物花期调控途径及其分子机制[J].植物学报,2010,45(6):641-653.
    [79]王中仁.植物遗传多样性和系统学研究中的等位酶分析[J].生物多样性,1994,2(1):38-43.
    [80]魏倩,李超,杨英杰,徐彦杰,高俊平,洪波.‘神马’菊花DREB1A基因的分离及同源遗传转化[J].植物生理学报,2011,47(2):153-159.
    [81]吴国盛,陈发棣,陈素梅,赵宏波,房伟民.基于PCR-RFLP多态的部分菊属与亚菊属植物亲缘关系研究[J].江苏农业科学,2008,36(2):58-61.
    [82]吴静,成仿云,张栋.‘正午’牡丹的杂交利用及部分杂种AFLP鉴定[J].西北植物报,2013,33(8):1551-1557.
    [83]吴仕超.42份菊科花卉的离体保存及其遗传多样性的RAPD分析[D].福建福州:福建农林大学,2010.
    [84]吴学尉,崔光芬,吴丽芳,张艺萍,明军,王杰,王继华.百合杂交后代ISSR鉴定[J].园艺学报,2009,36(5):749-754.
    [85]吴月亮.根癌农杆菌介导PEAMT基因转化菊花的研究[D].北京:北京林业大学,2006.
    [86]吴在生,李海龙,刘建辉,左志锐,田瑞昌.65个菊花栽培品种遗传多样性的AFLP分析[J].南京农业大学学报(自然科学版),2007,31(5):67-70.
    [87]邢延豪,周延清,楚素霞,郭静佩,周鹏,范念斯.CAPS标记技术及其应用进展[J].江苏农业科学, 2011,39(5):74-76.
    [88]徐基艳,雷家军,胡新颖,颜范悦.地被菊抗寒生理生化特性研究[J].沈阳农业大学学报,2010,41(1):23-26.
    [89]许瑛,陈发棣.菊花8个品种的低温半致死温度及其抗寒适应性[J].园艺学报,2008,35(4):559-564.
    [90]薛建平,张爱民,高翔,盛玮.安徽药菊耐盐突变体的筛选[J].中国中药杂志,2004,29(09):834.
    [91]熊毅,郭彦萃,张志.高温对转基因地被菊的影响[J].东北林业大学学报,2014,42(3):45-47.
    [92]杨柳燕.马蹄莲属(Zantedeschia)品种指纹图谱及生殖生物学研究[D].南京:南京林业大学,2013.
    [93]杨秋,唐岱,苏腾伟,孙晓佳,颜隽.昆明市区菊花资源调查研究[J].附件林业科技,2006,33:123-126.
    [94]杨雨,尚富德.开封地区菊花资源调查研究[J].河南大学学报(自然科学版),2008,38:293-295.
    [95]尹冬梅,管志勇,陈素梅,陈发棣.菊花及其近缘种属植物耐涝评价体系建立及耐涝性鉴定[J].植物遗传资源学报,2009,10(3):399-404.
    [96]于海萍.牡丹SSR分子标记的开发及其在亲缘关系分析中的应用[D].北京:北京林业大学,2013.
    [97]余利,黄少勇,张智俊,管雨.13种观赏竹EST-SSR标记遗传多样性分析[J].经济林研究,2012,30(3):6-10.
    [98]袁力行,傅骏骅,Warburton M,李新海,张世煌,Khairallah M,刘新芝,彭泽斌,李连城.利用RFLP、SSR> AFLP和RAPD标记分析玉米自交系遗传多样性的比较研究[J].遗传学报,2000,27(8):725-733.
    [99]张常青,洪波,李建科,高俊平.地被菊花幼苗耐旱性评价方法研究[J].中国农业科学,2005,38(4):789-796.
    [100]张飞,陈发棣,房伟民,陈素梅,刘浦生,尹冬梅.菊花花期性状的杂种优势与混合遗传分析[J].南京农业大学学报,2011,34(4):31-36.
    [101]张飞,陈发棣,房伟民.菊花花器性状在F1代变异及相关联的SRAP分子标记[J].林业科学,2010,46(11):162-167.
    [102]张红磊,丰震,郭先锋,赵兰勇,刘芳,李艳艳,杨科家.牡丹花期的重复力与遗传相关分析[J].中国农学通报,2010,26(14):243-246.
    [103]张路,张启翔,高亦珂,陆苗,王叶,张杰.转基因地被菊品种晚粉的耐盐性研究[J].种子,2012,31(6):15-19.
    [104]张美蓉,赵兰勇,刘军.山东省野生菊花种质资源调查与分类研究[J].山东林业科技,2004,2:13-15.
    [105]张琼.樱属观赏品种资源调查及部分种与品种SSR分析[D].南京:南京林业大学,2013.
    [106]张淑梅,张咏新.十五个地被菊品种的抗寒性比较[J].北方园艺,2014,(08):69-71.
    [107]张树林,戴思兰.中国菊花全书[M].北京:中国林业出版社.2013:24-31.
    [108]张鲜艳,张飞,陈发棣,郭慧敏,陈素梅.12份不同地理居群野菊的遗传多样性分析[J].南京农业 大学学报,2011,34(3):48-54.
    [109]张小明,李春寿,叶胜海.混合分组分析法在作物基因定位上的研究进展[J].上海农业学报,2002,18(3):24-27.
    [110]赵冰,徐曼,司国臣,李厚华,张延龙.秦岭秀雅杜鹃野生种群遗传多样性和遗传分化的AFLP分析[J].应用生态学报,2012,23(11):2983-2990.
    [111]赵宏波,陈发棣,房伟民.栽培小菊和几种菊属植物花粉离体萌发研究[J].南京农业大学学报,2005,28(2):22-27.
    [112]赵静媛,陈发棣,滕年军,陈素梅.地被菊匍匐性的遗传分析与RAPD标记研究[J].中国农业科学,2009,42(2):734-741.
    [113]赵天田,沈红香,姚允聪,曹庆芹,宋婷婷.苹果属观赏海棠实生单株亲本的AFLP鉴定[J].园艺学报,2010,37(1):121-128.
    [114]郑丽,李名扬,晁岳恩,裴炎.根癌农杆菌介导ipt基因对切花菊的遗传转化[J].农业生物技术学报,2005,13(1):26-31.
    [115]周春玲,戴思兰.菊属部分植物的AFLP分析[J].北京林业大学学报,2002,24(5/6):71-75.
    [116]周树军.菊属细胞及形态分类学研究[D].北京:北京大学,1992.
    [117]朱蕊蕊.耧斗菜杂交育种研究和遗传连锁图谱构建[D].北京:北京林业大学,2011.
    [118]Abd EI-Twab M H, Kondo K. Gebine territories of Dendranthema horaimontana in mitotic nuclei of F1 hybrid between D. horaimontana and Tanacetum parthenium [J]. Chromosome Science, 2001,5:63-71.
    [119]Abd E1-Twab M H, Kondo K. Identification of nucleolar organizing regions and parental chromosomes in F1 hybrid of Dendranthema japonica and Tanacetum vulgare simultaneously by fluorescence in situ hybridization and fluorescence genomic in situ hybridization [J]. Chromosome Science,1999b,3:59-62.
    [120]Abd EI-Twab M H, Kondo K. Isolation of a particular chromosome of Ajania remotipinna in a chromosome complement of an artificial F1 hybrid of Dendranthema lavandulifolia×Ajania remotipinna by use of genomic in situ hybridization [J]. Chromosome Science,1999a,3:21-28.
    [121]Anderson NO. Chrysanthmum In:Anderson NO, ed. [M] Flower Breeding and Genetics. Dordrecht:2006, Springer:pp.389-437.
    [122]Buitendijk JH, Pinsonneaux N, Van Donk AC, Ramanna MS, Van Lammeren AAM. Embryo rescue by half-ovule culture for the production of interspecific hybrids in Alstroemeria [J].Scientia Horticulturae,1995,6:65-75.
    [123]Chatterjee J., Mandal A.K.A., Ranade S.A. et al. Molecular systematics in Chrysanthemum x grandiflorum (Ramat.) Kitamura [J]. Scienctia Horticulturae,2006,110:373-378.
    [124]Chen DW, Chen LQ. The first intraspecific genetic linkage maps of wintersweet (Chimonanthus praecox (L.) Link) based on AFLP and ISSR markers [J].Scientia Horticulturae,2010,124:88- 94.
    [125]Chen Junyu. Studies on the origin of chinese florist's chrysanthemum [J]. Acta Horticulturae 1985, 167:949-961.
    [126]Chen XJ, Sun M, Liang JG, Xue H, Zhang QX. Genetic diversity of species of chrysanthemum and related genera and groundcover cultivars assessed by Amplified Fragment Length Polymorphic markers [J]. HortScience.2013,48(5):539-546.
    [127]Douzono M, Ikeda H. All year round productivity of F1 and BC1 progenies between Dendranlhema grandiflorum and D. shiwogiku [J]. Acta Horticulturae,1998,454:303-310.
    [128]Dowrick, G.J. The chromosomes of chrysanthemum. I. The species [J]. Heredity,1952,6:365-375.
    [129]Dugo ML, Satovic Z, Millan T, Cubero JI, Rubiales D, Cabrera A, Torres AM. Genetic mapping of QTLs controlling horticultural traits in diploid roses [J]. Theoretical and Applied Genetics,2005, 111:511-520.
    [130]ERDTMAN G.中国科学院植物所,译.孢粉学手册[M].北京:科学出版社,1978.
    [131]Furuta H, Shinoyama H, Nomura Y, Maeda M, Makara K. Production of intergeneric somatic hybrids of chrysanthemum (Dendranthema X gradiflorum Ramat.) and wormwood (Artemisia sieversiana J. F. Ehrh. Ex. Willd) with rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts [J]. Plant Science,2004,166 (3):695-702.
    [132]Goivannoni IL, Wing RA, Ganaland MW. Isolation of molecular markers from specific chromosomal interval using DNA pools from existing mapping populations [J]. Nucleic Acids Research,1991,19:6553-6555.
    [133]Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross:mapping strategy and RAPD markers [J]. Genetics,1994,137:1121 1137.
    [134]Holcomb EJ and Berghage R. Photoperiod, chilling and light quality during daylight extension affect growth and flowering of tissue-cultured Easter lily plants [J]. HortiScience,2001,36(1):53-55.
    [135]Huttema JBM, Preil W, Gussenhoven GC, Schneiderr M. Methods for selection of low-temperature tolerance mutants of Chrysanthemum morifolium Ramat. Using irradiated cell suspension culture [J].Plant Breeding,1991,102:140-147.
    [136]Ishida I, Tukahara M, Yoshioka M, Ogawa T, Kakitani M, Toguri T. Production of antivirus, viroid plants by genetic manipulations [J]. Pest Management Science,2002,58:1132-1136.
    [137Janssens GA, Goderis IJ, Broekaert WF, Broothaerts W. A molecular method for S-allele identification in apple based on allele-specific PCR [J]. Theoretical and Applied Genetics,1995, 91(4):691-698.
    [138]Klebs G, Uber das Verhaltnis der Aubenwelt zur Entwicklung der Pflanze [J].Sitz-Ber. Akad. Wiss. Heidelberg 1913, B(5):3-47.
    [139]Komeda Y. Genetic regulation of time to flower in Arabidopsis thaliana [J]. Annual Review of Plant Biology,2004,55:521-535.
    [140]Kuo S R, Wang TT, Huang TC. Karyotype analysis of some Formosan gymnosperms [J].Taiwania, 1972,17(1):66-80.
    [141]Lamote, V., I.Roldan-Ruiz, E. Coar, M.D. Loose, and E.V. Bockstaele. A study of genetic variation in Iris pseudoacorus populations using amplified fragment length polymorphisms (AFLPs) [J]. Aquatic Botany,2002,73(1):19-31.
    [142]Lema-Ruminska J., Zalewska M., Sadoch Z. Radiomutants of chrysanthemum (Dendranthma grandiflora Tzvelev) of the lady group:RAPD analysis of the genetic diversity [J]. Plant Breeding, 2004,123:290-293.
    [143]Martf:n C., Uberhuaga E., Perez C. Application of RAPD markers in the characterization of Chrysanthemum varieties and the assessment of somaclonal variation [J]. Euphytica,2002,127: 247-253.
    [144]Martin WJ, Stimart DP. Genetic analysis of advanced populations in Antirrhinum majus L. with special reference to cut flower post-harvest longevity [J]. Journal of American Society of Horticultural Science,2005,130(3):434-441.
    [145]Michelmore RW, Paranand 1, Kessali RV. Identification of markers linked to disease resistance gene by bulked segregant analysis:a rapid method to detect marker in specific genomic regions using segregating populations [J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88:9829-9832.
    [146]Mitra A, Higgins DW, Langenberg WG, Nie H, Sengupta DN, Silverman RH. A mammalian2-5A system functions as an antiviral pathway in transgenic plants [J]. Proceedings of the National Academy of Science of the United States of America,1996,93(13):6780-6785.
    [147]Mohan M, Nair S, Bentur JS, Rao UP, Bennett J.RFLP and RAPD mapping of the rice Gm2 gene that confers resistance to biotype 1 of a gall midge (Orseolia oryzae) [J]. Theoretical and Applied Genetics,1994,87:782-788.
    [148]Nakatsuka T, Abe Y, Kakizaki Y, Kubota A, Shimada N, Nishihara M. Over-expression of Arabidopsis FT gene reduces juvenile phase and induces early flowering in ornamental gentian plants [J]. Euphytica,2009,168:113-119.
    [149]Narumia T, Aidab R, Ohmiyab A, Satoh S. Transformation of chrysanthemum with mutated ethylene receptor genes:mDG-ERS1 transgenes conferring reduced ethylene sensitivity and characterization of the transformants [J]. Postharvest Biology and Technology,2005,37(2):101-110.
    [150]Oberprieler, Ch., Vogt, R., Watson, L.E. Tribe Anthemideae Cass. (1819).-In:Kadereit, J. W., Jeffrey, C., ed. [M] The Families and Genera of Vascular Plants, Vol. Ⅷ:Flowering Plants, Eudicots, Asterales. Berlin, Heidelberg:2007, Springer:pp.342-374.
    [151]Oda A, Narumi T, Li TP, Kando T, Higuchi Y, Sumitomo K, Fukai S, Hisanatsu T. CsFTL3, a chrysanthemum Flowering Locus T-like gene, is a key regulator of photoperiodic flowering in chrysanthemums [J]. Journal of Experimental Botany,2011,63(3):1461-1477.
    [152]Oren-Shamir M, Shaked-Sachray L, Nissim-Levi A, Weiss D. Effect of growth temperature on Aster flower development [J]. HortScience,2000,35(1):28-29.
    [153]Ortiz, R., S. Madsen, and D. Vuylsteke. Classification of African plantain landraces and banana cultivars using a phenotypic distance index of quantitative descriptors [J].Theoretical and Applied Genetics.1998.96(6-7):904-911.
    [154]Park BH, Pearson S. Environmental regulation of flowering time in heliotrope (Heliotropium arborescens L. cv. Marine) [J]. Scientia Horticulturae,2000,85:231-241.
    [155]Qyant HS L, Crespel L, Rajapakse S. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits [J]. Tree Genetics & Genomes, 2008a,4:11-23.
    [156]Qyant LHS, Crespel L, Rajapakse S, Zhang L, Foucher F. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits [J]. Tree Genetics and Genomes,2008b,4(1):11-23.
    [157]Raghavan V, Srivastava PS. Experimental embryology of vascular plants//Embryo culture, Johri BM [M]. Academic New York,1982,195-230.
    [158]Redei GP, Acedeo G, Gavazzi G. Flower differentiation in Arabidopsis [J]. Stadler Symp,1974,6: 135-168.
    [159]Reese CL, Erwin JE. The effect of day/night temperature on Pharbitis nil Chois. Flowering [J]. HortiScience,1997,32(6):1046-1048.
    [160]Roux F, Touzet P, Cuguen J, le Corre V. How to be early flowering:an evolutionary perspective [J]. Trends in Plant Science,2006,11:375-381.
    [161]Saxena, R.K., K.B. Saxena,R.V. Kumar, D.A. Hoisington and R.K.Varshney. Simple sequence repeat-based diversity in elite pigeonpea genotypes for developing mapping populations to map resistance to Fusarium wilt and sterility mosaic disease [J]. Plant Breed,2010,129(2):135-141.
    [162]Sehrawat SK, Kumar R, Dahiya DS, Boora KS, Yadav R. DNA fingerprinting of chrysanthemum cultivars using RAPDs [J].Acta Horticulturae,2003,624:479-485.
    [163]Serge G. Embryo rescue in Rosa hybrida [J]. Euphytica,1994,72:205-212.
    [164]Shulga OA, Mitiouchkina TY, Shchennikova AV, Skryabin KG, Dolgov SV. Overexpression of API-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants [J]. In Vitro Cellular & Developmental Biology-Plant,2011,47(5):553-560.
    [165]Stebbins G L. Chromosomal evolution in higher plant [M]. London:Edward Arnold Ltd Publishers, 1971:87-93.
    [166]Sung ZR, Belachew A, Shunong B, Bertrand-Garcia R. EMF, an Arabidopsis gene required for vegetative shoot development [J].Science,1992,258:1645-1647.
    [167]Takatsu Y, Nishizawa Y, Hibi T, Akutsu K. Transgenic chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) expressing a rice chitinase gene shows enhanced resistance to gray mold (Botrytis cinerea) [J]. Scientia Horticulturae 1999,82(1-2):113-123.
    [168]Takhtajan AL. Outline of the classification of flowering plants (Magnoliophyta) [J]. The botanical Review.1980,46(3):225-359.
    [169]Tanaka R, Watanable K. Embryological studies in Chrysanthemum makinoi and its hybrid crossed with hexaploid Ch. Japonense [J]. Journal of Science of the Horishina University, Series B, Division 2 (Botany),1972,14(2):75-84.
    [170]Tasma IM, Lorenzen LL, Green DE, Shoemaker RC. Mapping genetic loci for flowering time, maturity, and photoperiod insensitivity in soybean [J]. Molecular Breeding,2001,8:25-35.
    [171]Thiruvengadam M, Chung IM, Yang CH. Overexpression of Oncidium MADS box (OMADS1) gene promotes early flowering in transgenic orchid(Oncidium Gower Ramsey) [J]. Acta Physiologiae Plantarum,2012,34(4):1295-1302.
    [172]Toguri T, Ogawa T, Kakitani M, Tukahara M, Yoshioka M. Agrobacterium-mediated transformation of chrysanthemum(Dendranthema grandiflora) plants with a disease resistant gene (pad) [J]. Plant Biotechnology,2003,20(2):121-127.
    [173]Vos, P., R. Hogers, M. Bleeker, M.Reijans, T. vande Lee, M Homes and M. Zabeau. AFLP:A new technique for DNA fingerprinting. Nucleic Acids Res.1995.23:4407-4414.
    [174]Wang CY. Evaluation of genetic diversity of Chrysanthemum using AFLP markers [M]. Dutch-Chinese Life Science Forum. Wagenningen, The Netherlands,2003.
    [175]Wolff K, van Rijn PJ. Rapid detection of genetic variability in chrysanthemum(Dendranthema grandiflora Tzvelev) using random primers [J].Heredity,1993,71:335-341.
    [176]Wolff K. RAPD analysis of sporting and chimerism in chrysanthemum [J]. Euphytica,1996,89: 159-164.
    [177]Wolff K., Zietkiewicz E., Hofstra H. Identification of chrysanthemum cultivars and stability of DNA fingerprint patterns [J].Theoretical and Applied Genetics,1995,91:439-447.
    [178]Yin DM, Chen SM, Chen FD, Guan ZY, Fang WM. Morpho-anatomical and physiological response of two Dendranthema species to waterlogging [J].Enviromental and Experimental Botany, 2010,68:122-130.
    [179]Yin DM, Chen SM, Chen FD, Guan ZY, Fang WM. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging [J].Enviromental and Experimental Botany,2009,67:87-93.
    [180]Zhang F, Chen SM, Chen FD, Fang WM, Chen Y, Li FT. SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium) [J]. Molecular Breeding,2011,27(1):11-23.
    [181]Zhang LH, Byrne DH, Ballard RE, Rajapakse S. Microsatellite marker development in rose and its application in tetraploid mapping [J]. Journal of the American Society for Horticultural Science, 2006,131(3):380-387.
    [182]Zhang QF, Shen BZ, Dai XK, Mei MH, Maroof MAS, Li ZB. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice [J].Proceedings of the National Academy of Sciences,1994,91(18):8675-8679.
    [183]Zhao HE, Liu ZH, Hu J, Yin JL, Li W, Rao GY, Zhang XH, Huang CL, Anderson N., Zhang QX, Chen JY. Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China [J]. Genetic Resources and Crop Evolution,2009,56(7):937-946.
    [184]Zhu D, Lawes GS, Gordon IL. Estimates of genetic variability for vegetative and reproductive characters of kiwifruit (Actinidia deliciosa) [J]. Euphytica,2002,124:93-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700